Excess of Nutrients in Prefabricated or Compact Wastewater Treatment Plants: Review, Solution Alternative, and Modeling for Verification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Existing Situation and Case Analysis
2.2. Biological Nitrogen Removal
2.2.1. Factors Controlling Biological Nitrogen Removal
- Temperature: Temperature significantly affects the growth rate (µmax) of nitrifying organisms. Nitrification occurs within a temperature range of 5 to 50 °C, with optimal performance at temperatures of 25 to 36 °C. Experimental studies report that the denitrification rate increases up to a certain point (35–50 °C) and then decreases.
- Dissolved Oxygen Concentration: Dissolved oxygen (DO) is a limiting factor, considering that Nitrosomonas are aerobic bacteria. The reference value in the aerobic zone for nitrogen removal is between 0.5 and 2.5 mgO2/L. Some studies on nitrification with high ammoniacal nitrogen content indicate an optimal DO of 1.7 mg/L. In winter, 2 to 3 mgO2/L is suggested.
- pH: Optimal nitrification rates are 7.0 < pH < 8.5, with a sharp decrease outside of this range. Metcalf and Eddy [43] reported a pH range between 6.0 and 9.0.
2.2.2. Simultaneous Nitrification and Denitrification (SND)
- Bardenpho System: This system is widely recognized and consists of four stages that alternate between anoxic and aerobic zones (anoxic/aerobic/anoxic/aerobic) [16,29]. The system observed in Figure 5, utilizes the carbon found in the raw water and the carbon produced from the breakdown of biomass for biological denitrification.To accomplish this, distinct stages are employed for each process: carbon oxidation, nitrification, and denitrification [43,50]. Therefore, the water flows into a zone of anoxic denitrification. In this zone, mixed liquor from the oxidation and nitrification tank, which is located downstream of the first anoxic zone, is recirculated [22,24,25,58].
2.3. Biological Phosphorus Removal
2.3.1. Factors Controlling Biological Phosphorus Removal
- Availability of volatile fatty acids (VFA): The availability of easily biodegradable substrate, mainly in the form of VFA, is of great importance for the development and performance of the biological phosphorus removal process.
- Nitrate concentration: Where nitrification is required to meet the effluent concentration, the presence of nitrates affects the efficiency of a treatment system aimed at biological phosphorus removal.
- Dissolved oxygen concentration: This parameter is necessary for the aerobic phase to carry out the assimilation of orthophosphates, and it has been indicated that a concentration of 1.5–3.0 mg O2/L may be optimal without affecting the anoxic or anaerobic states of a combined process.
- pH: The pH (hydrogen potential) is a crucial element in the biological phosphorus elimination process and should be controlled within the range of 6.5–8.0.
- Temperature: Microbial populations are impacted by temperature fluctuations ranging from 20 °C to 35 °C. Maintaining a temperature below 30 °C offers specific benefits to the PAO in terms of metabolism. Lower temperatures need longer retention durations.
2.3.2. Proposed Schemes for Phosphorus Removal
- A2/O System: This process is based on the A/O (anaerobic/aerobic) system, which was developed as the Phoredox system in South Africa and later patented in the United States as A/O [16,57]. It was designed specifically for phosphorus removal, incorporating an anoxic phase in the middle of the flow line [37,41,67]. Therefore, the arrangement consists of two sets of tanks, one for anoxic conditions and the other for aerobic conditions, placed consecutively, as can be appreciated in Figure 6. The first tank is in an anaerobic environment [33].Sludge recirculation to the anaerobic tank occurs at varying rates between 100 and 400% [24,25,43]. Hu et al. [37] states that efficiencies in TN removal above 50% and TP removal above 40% were achieved without the need for an external carbon source. Authors have noted significant efficiencies ranging from 67 to 89% [48].Figure 6. A2/O process, adapted from [41].
- Modified Bardenpho System: It is an addition to the earlier four-stage process that removes phosphorus by adding an anaerobic step at the beginning of the line, as shown in the configuration in Figure 7, as explained by Escaler and Mujeriego [41] and Curtin et al. [57]. It is also known as the five-stage Bardenpho or Phoredox [12]. They also describe it as a system for the simultaneous removal of N and P, which aligns with what CONAGUA [25] describes. Authors report efficiencies between 67 and 89% for this system [48].Figure 7. Modified 5-stage Bardenpho process, adapted from [43].
- University of Cape Town (UCT): The UCT process was designed to reduce nitrates in the anaerobic zone when high nitrate removal in the effluent is not required, similar to the A2/O [43,67]. Like other nitrogen and phosphorus removal technologies, it consists of three stages: an anaerobic stage, an anoxic stage, and an aerobic stage [12], as seen in Figure 8. The return-activated sludge returns from the clarifier to the anoxic zone instead of the anaerobic zone to allow for denitrification. The modified process divides the anoxic zone into two stages. Nitrate-rich recycle from the aerobic zone is recycled to the head of the second anoxic stage [16,67,68].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SISS. Superintendencia de Servicios Sanitarios, Informe de Coberturas Sanitarias. 2020. Available online: https://www.siss.gob.cl/586/articles-19543_recurso_1.pdf (accessed on 29 April 2024).
- Chile—Ministerio Secretaría General de la Presidencia (MINSEGPRESa). Decreto Supremo N°46, Establece Norma de Emisión de Residuos Líquidos a Aguas Subterraneas. 2003. Available online: https://bcn.cl/2f864 (accessed on 29 April 2024).
- Chile—Ministerio Secretaría General de la Presidencia (MINSEGPRESb). Decreto Supremo N°90, Establece Norma de Emisión Para la Regulación de Contaminantes Asociados a las Descargas de Residuos Líquidos a Aguas Marinas y Continentales Superficiales. 2000. Available online: https://bcn.cl/2f7i3 (accessed on 29 April 2024).
- Chile—Ministerio Secretaría General de la Presidencia (MINSEGPRESc). Decreto Supremo N°609, Establece Norma de Emisión Para la Regulación de Contaminantes Asociados a las Descargas de Residuos Industriales Líquidos a Sistemas de Alcantarillado. 1998. Available online: https://bcn.cl/2f8hn (accessed on 29 April 2024).
- Díaz, M.A.; Decinti, A.; Blanco, D.; Vasquez, K. Metodología para la reutilización de aguas grises en viviendas ubicadas en áreas de estrés hídrico y estrés hídrico extremo—Caracterización, calidad y opciones de tratamiento para su reuso en Chile. Inf. Construcción 2021, 73, e408. [Google Scholar] [CrossRef]
- Ireland. Environmental Protection Agency (EPA). Wastewater Treatment Manuals: Treatment Systems for Small Communities; Business, Leisure Centres and Hotels; Environmental Protection Agency: Johnstown Castl Estate, Co.: Wexford, Ireland, 1999; Available online: https://www.epa.ie/publications/compliance--enforcement/waste-water/EPA_water_treatment_manual_-small-comm_business.pdf (accessed on 29 April 2024).
- Koul, B.; Yadav, D.; Singh, S.; Kumar, M.; Song, M. Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water 2022, 14, 3542. [Google Scholar] [CrossRef]
- Barañao, P.; Tapia, L. Tratamiento de las Aguas Servidas: Situación en Chile. Rev. Cienc. Trab. Número 2004, 13, 111–117. Available online: https://research.csiro.au/gestionrapel/wp-content/uploads/sites/79/2016/11/Tratamiento-de-las-aguas-servidas-Situaci%C3%B3n-en-Chile-2005.pdf (accessed on 29 April 2024).
- Pérez Oddershede, A. Selección de Sistema de Tratamiento de Aguas Residuales para Localidad de Santa Bárbara Usando Metodología de Decisión Multicriterio, A.H.P; Tesis para Ingeniería Civil, Universidad de Chile: Santiago, Chile, 2010; p. 110. Available online: https://repositorio.uchile.cl/handle/2250/103989 (accessed on 29 April 2024).
- Jing, W.; Sajnani, S.; Zhou, M.; Zhu, H.; Xu, Y. Evaluación del impacto ecológico de las descargas de aguas residuales en la dinámica microbiana y de contaminantes en los ríos. Agua 2024, 16, 377. [Google Scholar] [CrossRef]
- Choi, I.S.; Dombrowski, E.M.; Wiesmann, U. Fundamentals of Biological Wastewater Treatment; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; ISBN 978-3-527-31219-1. [Google Scholar]
- Henze, M.; van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modelling and Design; IWA Publishing: London, UK, 2008; ISBN 9781780401867. [Google Scholar] [CrossRef]
- Claros Bedoya, J.A. Estudio del Proceso de Nitrificación y Desnitrificación Vía Nitrito para el Tratamiento Biológico de Corrientes de Agua Residual con Alta Carga de Nitrógeno Amoniacal. Ph.D. Thesis, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València, Valencia, Spain, 2012. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Energy-Efficient AnMBRs Technology for Treatment of Wastewaters: A Review. Energies 2022, 15, 4981. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Treating for Nutrients in Wastewater. Office of Research and Development/National Risk Management Research Laboratory. 2010. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1008KTD.txt (accessed on 29 April 2024).
- Wang, Q.; Chen, Q. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic–oxic process without internal recycle treating low strength wastewater. J. Environ. Sci. 2016, 39, 175–183. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, D.; Wu, Y.; Zhang, H.; Zhang, X. Operation mode of a step-feed anoxic/oxic process with distribution of carbon source from anaerobic zone on nutrient removal and microbial properties. Sci. Rep. 2019, 9, 1153. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Potencial global y regional de las aguas residuales como fuente de agua, nutrientes y energía. Nat. Recurso. Foro. 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Slavov, A. Performance of Complete-Mix And Plug-Flow Systems During Treatment of Low Loaded Nitrogen Deficient Waste Water—Simulation with Asal1 Model. Food Environ. Saf. J. 2017, 15, 1–7. Available online: http://fens.usv.ro/index.php/FENS/article/view/211 (accessed on 29 April 2024).
- Wang, Y.; Cheng, Y.; Liu, H.; Guo, Q.; Dai, C.; Zhao, M.; Liu, D. A Review on Applications of Artificial Intelligence in Wastewater Treatment. Sustainability 2023, 15, 13557. [Google Scholar] [CrossRef]
- Cotoruelo, L.; Dolores Marqués, M. Eliminación de nutrientes en aguas residuales (I) Eliminación del fósforo. Ing. Química 1999, 365, 161–171. [Google Scholar]
- Winkler, M.; Coats, E.R.; Brinkman, C.K. Advancing post-anoxic denitrification for biological nutrient removal. Water Res. 2011, 45, 6119–6130. [Google Scholar] [CrossRef]
- Venegas, C.B. Eliminación Biológica de Nutrientes en Aguas Residuales con Alto Contenido de Nitrógeno Amoniacal Utilizando un Reactor Biológico Secuencial. Ph.D. Thesis, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad De Cantabria, Cantabria, Spaña, 2016; p. 172. Available online: http://hdl.handle.net/10902/8451 (accessed on 29 April 2024).
- Comisión Nacional del Agua (CONAGUA). Libro 35. Manual de Agua Potable, Alcantarillado y Saneamiento, Diseño de Plantas de Tratamiento de Aguas Residuales Municipales: Procesos Avanzados con Fines de Reúso 2019; Secretaria de Medio Ambiente y Recursos Naturales: Tlalpan, México; ISBN 978-607-626-032-6. Available online: https://files.conagua.gob.mx/conagua/mapas/SGAPDS-1-15-Libro35.pdf (accessed on 29 April 2024).
- Zhang, H.; Li, R.; Shi, Y.; Pan, F. Effect of Aeration and External Carbon Source on Nitrogen Removal and Distribution Patterns of Related-Microorganisms in Horizontal Subsurface Flow Constructed Wetlands. Water 2024, 16, 632. [Google Scholar] [CrossRef]
- Omar, A.; Almomani, F.; Qiblawey, H.; Rasool, K. Advances in Nitrogen-Rich Wastewater Treatment: A Comprehensive Review of Modern Technologies. Sustainability 2024, 16, 2112. [Google Scholar] [CrossRef]
- Cui, X.; You, J.; Liao, K.; Ding, L.; Hu, H.; Ren, H. Carbon Source in Tertiary Denitrification Regulates Dissolved Organic Nitrogen in Wastewater Effluent. Environ. Sci. Technol. 2024, 58, 4648–4661. [Google Scholar] [CrossRef]
- Sarkar, U.; Dasgupta, D.; Bhattacharya, T.; Pal, S.; Chakroborty, T. Dynamic simulation of activated sludge based wastewater treatment processes: Case studies with Titagarh Sewage Treatment Plant, India. Desalination 2010, 252, 120–126. [Google Scholar] [CrossRef]
- Wang, W.; Shi, C.; Yang, J.; Zeng, M.; Dai, Z.; Zhang, Z. Modelling performance of oxidation ditch in wastewater treatment plant by STOAT software. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 032065. [Google Scholar] [CrossRef]
- Abbasi, N.; Ahmadi, M.; Naseri, M. Quality and cost analysis of a wastewater treatment plant using GPS-X and CapdetWorks simulation programs. J. Environ. Manag. 2021, 284, 111993. [Google Scholar] [CrossRef]
- Issa, H.M. Optimization of Wastewater Treatment Plant Design using Process Dynamic Simulation: A Case Study from Kurdistan, Iraq. Aro-Sci. J. Koya Univ. 2019, 7, 59–66. [Google Scholar] [CrossRef]
- Gao, Y.N.; Liu, X.Z.; Zhang, R.X.; Shan, J.J.; Sun, M.Q.; Zong, Z.X.; Li, C.W.; Wang, X.Z. Operation and management of Liaoning waste water treatment plants by STOAT Simulation. MATEC Web Conf. 2016, 63, 04019. [Google Scholar] [CrossRef]
- ANDA. Asociación Nacional de Avisadores A.G. Anda Chile. Estilos de Vida de los Nuevos Grupos Socioeconómicos en Chile. 2019. Available online: https://www.anda.cl/wp-content/uploads/2019/05/GfK_GSE_190502_FINAL.pdf (accessed on 29 April 2024).
- Jimenez, J.; Bott, C.; Love, N.; Bratby, J. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants. Water Environ. Res. 2015, 87, 2120–2129. [Google Scholar] [CrossRef]
- Flanagan, C.P.; Randall, D.G. Development of a novel nutrient recovery urinal for on-site fertilizer production. J. Environ. Chem. Eng. 2018, 6, 6344–6350. [Google Scholar] [CrossRef]
- Hu, X.; Xie, L.; Shim, H.; Zhang, S.; Yang, D. Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment. Chin. J. Chem. Eng. 2014, 22, 447–454. [Google Scholar] [CrossRef]
- Bai, X.; Li, J.; Chang, S. Effects of Different Carbon and Nitrogen Ratios on Nitrogen Removal Efficiency and Microbial Communities in Constructed Wetlands. Water 2023, 15, 4272. [Google Scholar] [CrossRef]
- Ya, L.; Gu, J.; Yu, L. Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward. Bioresour. Technol. 2018, 269, 513–519. [Google Scholar] [CrossRef]
- Tiar, S.M.; Bessedik, M.; Abdelbaki, C.; ElSayed, N.B.; Badraoui, A.; Slimani, A.; Kumar, N. Steady-State and Dynamic Simulation for Wastewater Treatment Plant Management: Case Study of Maghnia City, North-West Algeria. Water 2024, 16, 269. [Google Scholar] [CrossRef]
- Escaler, M.; Mujeriego, R. Eliminación biológica de nutrientes (nitrógeno y fósforo) mediante un proceso discontinuo de fangos activados. Ingeniería Del Agua 2001, 8, 67–77. [Google Scholar] [CrossRef]
- Cisneros-Ortiz, M.; Noyola, A. Metano Como Fuente de Carbono y Energía Para la Desnitrificación Biológica de Aguas Residuales. Rev. Aidis Ing. Cienc. Ambient. Investig. Desarro. Práctica 2011, 3, 74–85. [Google Scholar]
- Metcalf & Eddy, Inc. Treatment and Reuse, 4th ed.; Wastewater Engineering: New York, NY, USA; Mc Graw Hill: New York, NY, USA, 2003. [Google Scholar]
- Dunner, I. Evaluación Integral de PTAS y Alternativas de Tratamiento en Localidades Rurales Concentradas. Ph.D. Thesis, Programa de Magíster en Ciencias de la Ingeniería Mención Recursos y Medio Ambiente Hídrico, Universidad de Chile, Santiago, Chile, 2004; p. 172. Available online: https://repositorio.uchile.cl/handle/2250/102800 (accessed on 29 April 2024).
- Oleyiblo, J.; Jia-Shun, C.; Xiao-Guang, L. Troubleshooting a Full-scale Wastewater Treatment Plant for Biological Nutrient Removal. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 745–753. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Biological Nutrient Removal Processes and Costs, National Service Center for Environmental Publications (NSCEP). 2007. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/60000G2U.PDF?Dockey=60000G2U.PDF (accessed on 29 April 2024).
- Choi, D.; Shin, H.; Jung, J. Control parameters in three-stage deammonification process for a mature leachate treatment based on a traditional Modified Ludzack-Ettinger process. J. Water Process Eng. 2022, 48, 102863. [Google Scholar] [CrossRef]
- Hodgson, B.; Sharvelle, S. Development of generalized empirical models for comparing effectiveness of wastewater nutrient removal technologies. Environ. Sci. Pollut. Res. 2019, 26, 27915–27929. [Google Scholar] [CrossRef]
- Guerrero, J.; Guisasola, A.; Baeza, J. The Nature of the Carbon Source Rules the Competition between PAO and Denitrifiers in Systems for Simultaneous Biological Nitrogen and Phosphorus Removal. Water Res. 2011, 45, 4793–4802. [Google Scholar] [CrossRef]
- Rodríguez, A.; Letón, P.; Rosal, R.; Dorado, M.; Villar, S.; García, J. Tecnologías Convencionales. In Tratamientos Avanzados de Aguas Residuales Industriales; Tratamientos biológicos, Universidad de Alcála del Círculo de Innovación en Tecnologías Medioambientales y Energía (CITME): Madrid, España, 2006; Available online: https://www.madrid.org/bvirtual/BVCM001696.pdf (accessed on 29 April 2024).
- Persson, F.; Suarez, C.; Hermansson, M.; Plaza, E.; Sultana, R.; Wilén, B. Community structure of partial nitritation-anammox biofilms at decreasing substrate concentrations and low temperature. Microb. Biotechnol. 2017, 10, 761–772. [Google Scholar] [CrossRef]
- McCarty, P.L. What is the Best Biological Process for Nitrogen Removal: When and Why? Environ. Sci. Technol. 2018, 52, 3835–3841. [Google Scholar] [CrossRef]
- Ikem, J.; Chen, H.; Delatolla, R. Design strategy and mechanism of nitrite oxidation suppression of elevated loading rate partial nitritation system. Front. Microbiol. 2023, 14, 1142570. [Google Scholar] [CrossRef]
- Bianco, F.; Ali Saeed Al-Gheethi, A.; Race, M. Coupling of Anammox Activity and PAH Biodegradation: Current Insights and Future Directions. Processes 2023, 11, 458. [Google Scholar] [CrossRef]
- Campo, R.; Sguanci, S.; Caffaz, S.; Mazzoli, L.; Ramazzotti, M.; Lubello, C.; Lotti, T. Efficient carbon, nitrogen and phosphorus removal from low C/N real domestic wastewater with aerobic granular sludge. Bioresour. Technol. 2020, 305, 122961. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Zheng, S.; Duan, S. Impact of dissolved oxygen and loading rate on NH3 oxidation and N2 production mechanisms in activated sludge treatment of sewage. Microb. Biotechnol. 2021, 14, 419–429. [Google Scholar] [CrossRef]
- Curtin, K.; Duerre, S.; Fitzpatrick, B.; Meyer, P. Biological Nutrient Removal. Minnesota Pollution Control Agency, US. 2011. Available online: https://www.pca.state.mn.us/sites/default/files/wq-wwtp8-21.pdf (accessed on 29 April 2024).
- Ramalho, R.S. Tratamiento Terciario de Aguas Residuales; Jimenez, D., Lora, F., Ramalho, R., Eds.; Tratamiento de aguas residuales; Editorial Reverté: Barcelona, España, 2009; pp. 642–646. [Google Scholar]
- Ma, T.-F.; Ma, H.-X.; Wu, J.; Yu, Y.-C.; Chen, T.-T.; Yao, Y.; Liao, W.-L.; Feng, L. The Inhibition of Engineered Nano-ZnO in the Biological Nitrogen Removal Process: A Review. Water 2024, 16, 17. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, L.M.; Han, W.; Wang, X.; Guo, Z.B.; Peng, F.Q.; Yang, F.; Kong, M.; Gao, Y.X.; Chao, J.Y.; et al. Nitrate removal, spatiotemporal communities of denitrifiers and the importance of their genetic potential for denitrification in novel denitrifying bioreactors. Bioresour. Technol. 2017, 241, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Rovira, L. Eliminación Catalítica de Nitratos y Bromatos en Aguas. Master’s Thesis, Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Valencia, Spaña, 2012; p. 55. Available online: https://riunet.upv.es/bitstream/handle/10251/30008/PFM%20Laura%20Rovira%20Gonz%E1lez.pdf?sequence=1 (accessed on 29 April 2024).
- Cao, J.; Oleyiblo, O.J.; Xue, Z.; Otache, Y.M.; Feng, Q. Achieving low effluent, N.O.3.-N.; TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source. Chin. J. Ocean. Limnol. 2015, 33, 1039–1052. [Google Scholar] [CrossRef]
- Qi, S.; Lin, J.; Wang, Y.; Yuan, S.; Wang, W.; Xiao, L.; Zhan, X.; Hu, Z. Fermentation liquid production of food wastes as carbon source for denitrification: Laboratory and full-scale investigation. Chemosphere 2021, 270, 129460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, Y.; Wang, B.; Zhang, H.; Ding, J. Effects of Stepwise Adjustment of C/N during the Start-Up of Submerged Membrane Bioreactors (SMBRs) on the Aerobic Denitrification of Wastewater. Water 2021, 13, 3251. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Wastewater Treatment Fact Sheet: External Carbon Sources for Nitrogen Removal; US EPA, Office of Wastewater Management: Washington, DC, USA, 2013. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100IL8F.txt (accessed on 29 April 2024).
- Nadeem, K.; Alliet, M.; Plana, Q.; Bernier, J.; Azimi, S.; Rocher, V.; Albasi, C. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. Sci. Total Environ. 2022, 809, 151109. [Google Scholar] [CrossRef] [PubMed]
- Demir, S. Comparison of performances of biological nutrient removal systems for municipal wastewater treatment. Sigma J. Eng. Nat. Sci. 2021, 38, 1235–1248. [Google Scholar]
- Rahman, S.; Eckelman, M.; Onnis-Hayden, A.; Gu, A. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 3020–3030. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yuan, L.; Lv, J. Influence of anoxic to aerobic volume ratio on sludge settleability and bacterial community structure in a denitrifying–nitrifying activated sludge system. Desalination Water Treat. 2015, 56, 1863–1876. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, C.; Liu, T.; Wang, X. Removal of Nitrate Nitrogen from Municipal Wastewater Using Autotrophic Denitrification Based on Magnetic Pyrite. Water 2023, 15, 4292. [Google Scholar] [CrossRef]
- Pradhan, S.; Mikola, A.; Vahala, R. Nitrogen and phosphorus harvesting from human urine using a stripping, absorption, and precipitation process. Environ. Sci. Technol. 2017, 51, 5165–5171. [Google Scholar] [CrossRef]
- Saetta, D.; Zheng, C.; Leyva, C.; Boyer, T. Impact of acetic acid addition on nitrogen speciation and bacterial communities during urine collection and storage. Sci. Total Environ. 2020, 745, 141010. [Google Scholar] [CrossRef] [PubMed]
- Dereszewska, A.; Cytawa, S. Circular Economy in Wastewater Treatment Plants—Potential Opportunities for Biogenic Elements Recovery. Water 2023, 15, 3857. [Google Scholar] [CrossRef]
- Kim, M.; Nakhla, G.; Keleman, M. Modeling the impact of food wastes on wastewater treatment plants. J. Environ. Manag. 2019, 237, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Agyeman, I.; Plaza, E.; Elginöz, N.; Atasoy, M.; Khatami, K.; Perez-Zabaleta, M.; Cabrera-Rodríguez, C.; Yesil, H.; A Tugtas, A.; Calli, B.; et al. Conceptual system for sustainable and next-generation wastewater resource recovery facilities. Sci. Total Environ. 2023, 885, 163758. [Google Scholar] [CrossRef] [PubMed]
Parameters | Characteristic Value | Polluting Load (100 per/Day) |
---|---|---|
BOD5 | 250 (mg/L) | 4000 (g/day) |
Phosphorus | 5 (mg/L) | 80 (g/day) |
Ammoniacal nitrogen | 50 (mg/L) | 800 (g/day) |
Total suspended solids | 220 (mg/L) | 3520 (g/day) |
Parameters | Units | Analyzed Sample | Limit DS 46 | Limit DS 90 | Evaluation | |
---|---|---|---|---|---|---|
Influent | Effluent | |||||
Fecal coliforms * | NMP/100 mL | - | 500 | - | 1000 | Approved |
BOD5 * | mg/L | 179 | 16 | - | 35 | Approved |
Phosphorus | mg P/L | 10.3 | 12 | - | 10 | Not approved |
Total Nitrogen Kjeldhal | ppm | 131 | 69.9 | 10 | - | Not approved |
pH * | Unidad | 8.37 | 7.47 | 6–8.5 | Approved | |
Total suspended solids | mg/L | 132 | 17 | - | 80 | Approved |
Temperature * | °C | 18 | 18.2 | 35 | Cumple |
Parameters | Units | Modeling Results | ||
---|---|---|---|---|
Effluent L1 | Effluent L2 | Effluent L3 | ||
Flow | m3/h | 2.11 | 0.64 | 0.91 |
DBO5 | mg/L | 21.45 | 3.25 | 15.22 |
Phosphorus | mg P/L | 11.45 | 11.38 | 11.46 |
Total Nitrogen Kjeldhal | mg/L | 89.8 | 89.32 | 89.85 |
pH | Unidad | 7 | 7 | 7 |
Total suspended solids | mg/L | 30.4 | 4.98 | 21.41 |
Temperature | °C | 18 | 18 | 18 |
Process | Nitrogen Removal | Phosphorus Removal |
---|---|---|
MLE | Good | None |
A2/O | Good | Good |
Bardenpho | Excellent | None |
Modified Bardenpho | Excellent | Good |
Modified UCT | Good | Excellent |
Process | Volume Distribution (%) | Total SS (mg/L) | Total BOD (mg/L) | Total N (mg/L) | Total P (mg/L) | Remotion N (%) | Remotion P (%) |
---|---|---|---|---|---|---|---|
MLE | 25/75 | 4.35 | 1.18 | 44.79 | 11.46 | 65.8 | −11.3 |
50/50 | 4.35 | 1.18 | 44.79 | 11.46 | 65.8 | −11.3 | |
75/25 | 7.95 | 5.85 | 39.17 | 11.46 | 70.1 | −11.3 | |
A/O | 25/75 | 4.55 | 1.54 | 53.41 | 11.43 | 59.2 | −11.0 |
50/50 | 4.55 | 1.54 | 53.41 | 11.43 | 59.2 | −11.0 | |
75/25 | 4.41 | 2.00 | 44.92 | 11.43 | 65.7 | −11.0 | |
A2/O | 25/18/57 | 8.52 | 6.31 | 39.16 | 9.22 | 70.1 | 10.5 |
18/57/25 | 8.27 | 6.11 | 38.97 | 9.19 | 70.3 | 10.8 | |
Bardenpho | 15/51/12/22 | 32.12 | 23.26 | 40.12 | 11.45 | 69.4 | −11.2 |
Modified Bardenpho | 15/12/25/26/22 | 32.33 | 23.33 | 39.38 | 9.21 | 69.9 | 10.6 |
UCT | 25/18/57 | 14.09 | 10.84 | 39.32 | 8.81 | 70.0 | 14.5 |
18/57/25 | 11.67 | 8.86 | 39.02 | 8.83 | 70.2 | 14.3 | |
18/25/57 | 11.94 | 9.06 | 39.24 | 8.89 | 70.0 | 13.7 | |
Modified UCT | 18/28/29/25 | 12.28 | 9.34 | 38.99 | 8.60 | 70.2 | 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, M.A.; Blanco, D.; Chandia-Jaure, R.; Lobos Calquin, D.; Decinti, A.; Naranjo, P.; Almendro-Candel, M.B. Excess of Nutrients in Prefabricated or Compact Wastewater Treatment Plants: Review, Solution Alternative, and Modeling for Verification. Water 2024, 16, 1354. https://doi.org/10.3390/w16101354
Díaz MA, Blanco D, Chandia-Jaure R, Lobos Calquin D, Decinti A, Naranjo P, Almendro-Candel MB. Excess of Nutrients in Prefabricated or Compact Wastewater Treatment Plants: Review, Solution Alternative, and Modeling for Verification. Water. 2024; 16(10):1354. https://doi.org/10.3390/w16101354
Chicago/Turabian StyleDíaz, Marco Antonio, David Blanco, Rosa Chandia-Jaure, Danny Lobos Calquin, Alejandra Decinti, Pedro Naranjo, and María Belén Almendro-Candel. 2024. "Excess of Nutrients in Prefabricated or Compact Wastewater Treatment Plants: Review, Solution Alternative, and Modeling for Verification" Water 16, no. 10: 1354. https://doi.org/10.3390/w16101354
APA StyleDíaz, M. A., Blanco, D., Chandia-Jaure, R., Lobos Calquin, D., Decinti, A., Naranjo, P., & Almendro-Candel, M. B. (2024). Excess of Nutrients in Prefabricated or Compact Wastewater Treatment Plants: Review, Solution Alternative, and Modeling for Verification. Water, 16(10), 1354. https://doi.org/10.3390/w16101354