Comparative Study on the Determination of Chlorophyll-a in Lake Phytoplankton by a YSI Multi-Parameter Water Quality Meter and Laboratory Spectrophotometric Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Laboratory Spectrophotometric Assay
2.4. Phytoplankton Collection and Identification
2.5. Statistical Analysis
3. Results
3.1. Comparative Analysis of Laboratory Instrumental Measurements and YSI Determination of Chl-a
3.2. Accuracy of Chl-a Concentration in Characterizing Phytoplankton Density
3.2.1. Effects of Seasonal Variations
3.2.2. Effects of Trophic States of the Lakes
3.2.3. Effects of Phytoplankton Community Structures in Lakes
3.3. Analysis of the Factors Influencing the Chl-a Concentration
4. Discussion
4.1. Potential Reasons for Discrepancies between Laboratory Instruments and the YSI
4.2. Factors Affecting the Effect of Chl-a on Phytoplankton Density
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H. Lake Management and Eutrophication Mitigation: Coming down to Earth—In Situ Monitoring, Scientific Management and Well-Organized Collaboration Are Still Crucial. Water 2022, 14, 2878. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Jia, Y. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Qi, J.; Deng, L.; Song, Y.; Qi, W.; Hu, C. Nutrient Thresholds Required to Control Eutrophication: Does It Work for Natural Alkaline Lakes? Water 2022, 14, 2674. [Google Scholar] [CrossRef]
- Li, D.; Chang, F.; Wen, X.; Duan, L.; Zhang, H. Seasonal Variations in Water Quality and Algal Blooming in Hypereutrophic Lake Qilu of Southwestern China. Water 2022, 14, 2611. [Google Scholar] [CrossRef]
- Tebbs, E.J.; Remedios, J.J.; Harper, D.M. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, L.; Zhu, Y.; Wang, S.; Duan, C.; Yang, C.; Tang, J. Hysteresis effects of meteorological variation-induced algal blooms: A case study based on satellite-observed data from Dianchi Lake, China (1988–2020). Sci. Total Environ. 2022, 812, 152558. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Duan, L.; Liu, Q.; Zhang, Y.; Zhang, X.; Liu, F.; Zhang, H. Spatiotemporal Changes in Water Quality Parameters and the Eutrophication in Lake Erhai of Southwest China. Water 2022, 14, 3398. [Google Scholar] [CrossRef]
- Huang, C.C.; Li, Y.M.; Sun, D.Y.; Le, C.F. Retrieval of Microcystis aentginosa percentage from high turbid and eutrophia inland water: A case study in Taihu Lake. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4090–4100. [Google Scholar] [CrossRef]
- Du, S.; Huang, X.; Zang, C. Study on the Correlation Research between Indicators of Phytoplankton Standing Stock I: Chlorophyll A and Algal Density. Water Resour. Water Eng. 2011, 22, 40–44. [Google Scholar]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Yang, Y.P.; Wang, Q.; Wen, J.G. Quantitative remote sensing inversion methods of chlorophyll-a concentration in Taihu Lake based on TM data. Geogr. Geo-Inf. Sci. 2006, 22, 5–8. [Google Scholar]
- Wang, Z.; Zou, H.; Yang, G.; Zhang, H.; Zhuang, Y. Spatial-temporal characteristics of chlorophyll-a and its relationship with environmental factors in Lake Taihu. Lake Sci. 2014, 26, 567–575. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Li, N.; Sun, X.; Wang, W.; Qin, B.; Zhu, G. Capturing the rapid intraday change of cyanobacterial bloom by land-based hyperspectral remote sensing in Lake Taihu. Lake Sci. 2021, 33, 1951–1960. [Google Scholar]
- Obenour, D.R.; Gronewold, A.D.; Stow, C.A.; Scavia, D. Using a B ayesian hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water Resour. Res. 2014, 50, 7847–7860. [Google Scholar] [CrossRef]
- Zhu, G.; Shi, K.; Li, W.; Li, N.; Zou, W.; Guo, C.; Qin, B. Seasonal forecast method of cyanobacterial bloom intensity in eutrophic Lake Taihu. China. Lake Sci. 2020, 32, 1421–1431. [Google Scholar]
- Vörös, L.; Padisák, J. Phytoplankton biomass and chlorophyll-an in some shallow lakes in Central Europe. Hydrobiologia 1991, 215, 111–119. [Google Scholar] [CrossRef]
- Lehman, P.W. Comparison of chlorophyll A and carotenoid pigments as predictors of phytoplankton biomass. Mar. Biol. 1981, 65, 237–244. [Google Scholar] [CrossRef]
- Du, S.L.; Huang, S.L.; Zang, C.J.; Wu, M.; Gao, F.; Lin, C.; Guo, Y.; Luo, Y. Study on the Correlation Research between Indicators of Phytoplankton Standing Stock II: Chlorophyll A and Algal Density. Water Resour. Water Eng. 2011, 22, 44–49. [Google Scholar]
- Sun, L.; Zhong, Y.; Zhang, D.M.; Zhu, L.; Dai, S.G.; Zhuang, Y.Y. Changes of algal communities in water body with different proportions of nitrogen and phosphorus. Appl. Ecol. 2006, 17, 1218–1223. [Google Scholar]
- Liu, Y.; Chen, Y.; Deng, J. Discussion on accuracy and errors for phytoplankton chlorophyll-a concentration analysis using YSI (multiparameter water analyzer). J. Lake Sci. 2010, 22, 965–968. [Google Scholar]
- Song, T.; Zhu, B.; Yan, F.; Xu, C. Comparison of Onsite YSI6600V2 Multi-Parameter Water Quality Meter and Laboratory Spectrophotometry for the Determination of Lake Algal Chlorophyll. Environ. Monit. Forewarning 2016, 8, 14–18. [Google Scholar]
- Yu, Z.; Yang, K.; Luo, Y.; Yang, Y. Secchi depth inversion and its temporal and spatial variation analysis—A case study of nine plateau lakes in Yunnan Province of China. Appl. Earth Obs. Geoinf. 2021, 100, 102344. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, F.; Duan, L.; Wu, H.; Zhang, H. The industrial pollution history inferred by stable Pb isotope in the chronological sedimentary record of a plateau lake, Yunnan Province, southwestern of China. Coast. Res. 2020, 115, 641–647. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, E.; Zhang, E.; Nath, B.; Bindler, R.; Liu, J.; Shen, J. Organic carbon burial in a large, deep alpine lake (Southwest China) in response to changes in climate, land use and nutrient supply over the past 100 years. Catena 2021, 202, 105240. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Q.; Liu, Z. Seasonal variations of thermal stratification in Lake Lugu. Highlights Sci. Online 2014, 7, 2441–2448. [Google Scholar]
- Zhou, Q.; Zhang, Y.; Li, K.; Huang, L.; Yang, F.; Zhou, Y.; Chang, J. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China. Environ. Sci. 2018, 72, 185–197. [Google Scholar] [CrossRef]
- Seuront, L.; Schmitt, F.; Lagadeuc, Y.; Schertzer, D.; Lovejoy, S.; Frontier, S. Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophys. Res. Lett. 1996, 23, 3591–3594. [Google Scholar] [CrossRef]
- Karlson, B.; Godhe, A.; Cusack, C.; Bresnan, E. Introduction to methods for quantitative phytoplankton analysis. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; UNESCO: London, UK, 2010; p. 5. [Google Scholar]
- Dong, Y. Research and Development of Algae in the Nine Plateau Lakes in Yunnan. Environ. Sci. Guide 2014, 33, 1–8. [Google Scholar]
- Zhang, Y.; Zhang, H.; Liu, Q.; Duan, L.; Zhou, Q. Total nitrogen and community turnover determine phosphorus use efficiency of phytoplankton along nutrient gradients in plateau lakes. Environ. Sci. 2023, 124, 699–711. [Google Scholar] [CrossRef]
- Hou, P.; Chang, F.; Duan, L.; Zhang, Y.; Zhang, H. Seasonal Variation and Spatial Heterogeneity of Water Quality Parameters in Lake Chenghai in Southwestern China. Water 2022, 14, 1640. [Google Scholar] [CrossRef]
- Wang, J.H.; Yang, C.; Dao, G.H.; Du, J.S.; Han, Y.P.; Wu, G.X.; Hu, H.Y. Meteorological factors and water quality changes of Plateau Lake Dianchi in China (1990–2015) and their joint influences on cyanobacterial blooms. Sci. Total Environ. 2019, 665, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Roesler, C.S.; Perry, M.J. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. Geophys. Res. Ocean. 1995, 100, 13279–13294. [Google Scholar] [CrossRef]
- Holm-Hansen, O.; Lorenzen, C.J.; Holmes, R.W.; Strickland, J.D. Fluorometric determination of chlorophyll. Mar. Sci. 1965, 30, 3–15. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Yang, J.; Wang, T.; Ma, W.P. The research of methods of measuring chlorophyll an in water. Environ. Monit. China 2011, 27, 24–27. [Google Scholar]
- Vernon, L.P. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal. Chem. 1960, 32, 1144–1150. [Google Scholar] [CrossRef]
- Xu, W.; Duan, L.; Wen, X.; Li, H.; Li, D.; Zhang, Y.; Zhang, H. Effects of seasonal variation on water quality parameters and eutrophication in Lake Yangzong. Water 2022, 14, 2732. [Google Scholar] [CrossRef]
- Desortová, B. Relationship between chlorophyll-α concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1981, 66, 153–169. [Google Scholar] [CrossRef]
- Hunter, B.L.; Laws, E.A. ATP and chlorophyll a as estimators of phytoplankton carbon biomass. Limnol. Oceanogr. 1981, 26, 944–956. [Google Scholar] [CrossRef]
- Barçante, B.; Nascimento, N.O.; Silva, T.F.; Reis, L.A.; Giani, A. Cyanobacteria dynamics and phytoplankton species richness as a measure of waterbody recovery: Response to phosphorus removal treatment in a tropical eutrophic reservoir. Ecol. Indic. 2020, 117, 106702. [Google Scholar] [CrossRef]
- Li, Z.; Guo, W.J.; Cheng, S.P.; Chai, P.H.; Liang, W.; Wu, Z.B. The spatial and temporal distribution of chlorophyll-a and its correlation with environmental factors in the Nanfeihe River. Acta Hydrobiol. Sin. 2014, 38, 342–350. [Google Scholar]
- Zhang, G.G. Spatial-temporal distribution of chlorophyll-a and its correlation with environment factors in Dongting Lake. Environ. Monit. China 2016, 32, 84–90. [Google Scholar]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algal species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Zhong, W. Application of Fluorescence Technique in Early Warning Monitor to Cyanobacteria Bloom-forming in Taihu Lake. Environ. Monit. China 2009, 25, 23–26. [Google Scholar]
- Righetti, D.; Vogt, M.; Gruber, N.; Psomas, A.; Zimmermann, N.E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 2019, 5, eaau6253. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, X.G.; Cheng, S.P. Phytoplankton community structure and water quality assessment in an ecological restoration area of Baiyangdian Lake, China. Environ. Sci. Technol. 2021, 18, 1529–1536. [Google Scholar] [CrossRef]
Season | Statistical Item | Lab | YSI |
---|---|---|---|
Dry season | Sample size | 178 | 178 |
Maximum value | 243.31 | 63.99 | |
Minimum value | 0.11 | 0.02 | |
Mean value | 51.20 | 10.38 | |
Standard deviation | 57.65 | 12.28 | |
Variance | 3323.00 | 150.80 | |
Rainy season | Sample size | 187 | 187 |
Maximum value | 1037.21 | 38.1 | |
Minimum value | 0.88 | 0.06 | |
Mean value | 62.48 | 5.92 | |
Standard deviation | 106.45 | 7.43 | |
Variance | 11,331.92 | 55.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Duan, L.; Li, D.; Zhang, Y.; Yuan, Z.; Li, H.; Zhang, H. Comparative Study on the Determination of Chlorophyll-a in Lake Phytoplankton by a YSI Multi-Parameter Water Quality Meter and Laboratory Spectrophotometric Method. Water 2024, 16, 1350. https://doi.org/10.3390/w16101350
Wang J, Duan L, Li D, Zhang Y, Yuan Z, Li H, Zhang H. Comparative Study on the Determination of Chlorophyll-a in Lake Phytoplankton by a YSI Multi-Parameter Water Quality Meter and Laboratory Spectrophotometric Method. Water. 2024; 16(10):1350. https://doi.org/10.3390/w16101350
Chicago/Turabian StyleWang, Jie, Lizeng Duan, Donglin Li, Yuwei Zhang, Zheng Yuan, Huayu Li, and Hucai Zhang. 2024. "Comparative Study on the Determination of Chlorophyll-a in Lake Phytoplankton by a YSI Multi-Parameter Water Quality Meter and Laboratory Spectrophotometric Method" Water 16, no. 10: 1350. https://doi.org/10.3390/w16101350
APA StyleWang, J., Duan, L., Li, D., Zhang, Y., Yuan, Z., Li, H., & Zhang, H. (2024). Comparative Study on the Determination of Chlorophyll-a in Lake Phytoplankton by a YSI Multi-Parameter Water Quality Meter and Laboratory Spectrophotometric Method. Water, 16(10), 1350. https://doi.org/10.3390/w16101350