Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Humic Material
2.2. Soils Identification and Sampling
2.3. Preparation of Soil Samples
2.4. Determination of Hydrophysical Properties of Soil Samples
2.5. Statistical Data Processing
3. Results and Discussion
3.1. Basic Physical Properties
3.2. Saturated Hydraulic Conductivity
3.3. Water Retention Curve
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | cross-section surface of the sample, cm2; |
AD | agricultural drought; |
AWC | available water capacity; |
CA | contact angle, °; |
D | grain diameter, m; |
FC | field capacity; |
FWC | full water capacity; |
h | water level difference during the measurement, cm; |
HA | HUMAC® Agro (Humic Acid Material); |
HSD | honest significant difference; |
ht | dynamic viscosity of water at the laboratory temperature, Pa × s; |
hw | moisture potential; |
h10 | dynamic viscosity of water at 10 °C, Pa × s; |
Ks | saturated hydraulic conductivity, cm/d; |
KT | conductivity at the laboratory temperature, cm/d; |
L | length of the soil sample, cm; |
mv | mass of water displaced by the soil, g; |
mz | mass of absolutely dry soil, g; |
SOM | soil organic matter; |
SWR | soil water repellency; |
t | time used for flow through of water volume V, d; |
TP | threshold point; |
Vs | volume of undisturbed dry sample, cm3; |
Vds | volume of absolutely dry soil, cm3; |
Vs | volume of undisturbed dry sample, cm3; |
PWP | permanent wilting point; |
WRC | water retention curve; |
θv | volumetric moisture, %; |
ρd | dry bulk density, g/cm3; |
ρs | particle density, g/cm3; |
Φ | porosity, %; |
–COOH | carboxyl groups; |
–C6H3O2 | quinonyl groups; |
–NH2 | amino groups; |
–OH | hydroxyl groups; |
References
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Reich, P.; Eswaran, H. Soil and Trouble. Science 2004, 304, 1614–1615. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO Soils Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Lal, R. Challenges and Opportunities in Soil Organic Matter Research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Rončák, P.; Šurda, P. Water balance estimation under a changing climate in the Turiec River basin. Acta Hydrol. Slovaca 2019, 20, 160–165. [Google Scholar] [CrossRef]
- Lal, R. Soils and Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Carvalho, M.L.; Tuzzin de Moraes, M.; Cerri, C.E.P.; Cherubin, M.R. Biochar Amendment Enhances Water Retention in a Tropical Sandy Soil. Agriculture 2020, 10, 62. [Google Scholar] [CrossRef]
- Botková, N.; Vitková, J.; Šurda, P.; Massas, I.; Zafeiriou, I.; Gaduš, J.; Rodrigues, F.C.; Borges, P.F.S. Impact of biochar particle size and feedstock type on hydro-physical properties of sandy soil. J. Hydrol. Hydromech. 2023, 7, 345–355. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Li, X.; Kang, J.; Xiang, X.; Shi, H.; Ren, X. Effect of Biochar on Soil-Water Characteristics of Soils: A Pore-Scale Study. Water 2023, 15, 1909. [Google Scholar] [CrossRef]
- Toková, L.; Botková, N.; Vitková, J.; Botyanszká, L.; Skic, K.; Gryta, A. Impact of the biochar fraction sizes on the selected hydrophysical properties of silty loam soil. Acta Hydrol. Slovaca 2023, 24, 9–13. [Google Scholar] [CrossRef]
- Gamage, D.N.; Mapa, R.B.; Dharmakeerthi, R.S.; Biswas, A. Effect of rice-husk biochar on selected soil properties in tropical alfisols. Soil Res. 2016, 54, 302–310. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Tao, J.; Yao, R. Integrated Application of Inorganic Fertilizer with Fulvic Acid for Improving Soil Nutrient Supply and Nutrient Use Efficiency of Winter Wheat in a Salt-Affected Soil. Appl. Soil Ecol. 2022, 170, 104255. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Modification of Chemical and Hydrophysical Properties of Two Texturally Differentiated Soils due to Varying Magnitudes of Added Biochar. Soil Tillage Res. 2016, 164, 34–44. [Google Scholar] [CrossRef]
- Andrenelli, M.; Maienza, A.; Genesio, L.; Miglietta, F.; Pellegrini, S.; Vaccari, F.; Vignozzi, N. Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. Agric. Water Manag. 2016, 163, 190–196. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a Colombian savanna oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, P.; Xing, Y.; Zhang, D.; Li, S. Investigating Soil Water Retention and Water Content in Retrogressive Thaw Slumps in the Qinghai-Tibet Plateau, China. Water 2024, 16, 571. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Chau, H.-W.; Muttil, N. A Field Study to Investigate the Hydrological Characteristics of Newly Established Biochar-Amended Green Roofs. Water 2024, 16, 482. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y.; Shiono, T. Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci. 2016, 181, 20–28. [Google Scholar] [CrossRef]
- Trubetskaya, O.E.; Trubetskoj, O.A.; Claire Richard, G.V. Determination of hydrophobicity and optical properties of soil humic acids isolated by different methods. J. Geochem. Explor. 2013, 132, 84–89. [Google Scholar] [CrossRef]
- Cihlář, Z.; Vojtová, L.; Michlovská, L.; Kučerík, J. Preparation and hydration characteristics of carbodiimide crosslinked lignite humic acids. Geoderma 2016, 274, 10–17. [Google Scholar] [CrossRef]
- Cihlář, Z.; Vojtová, L.; Conte, P.; Nasir, S.; Kučerík, J. Hydration and Water Holding Properties of Cross-Linked Lignite Humic Acids. Geoderma 2014, 230–231, 151–160. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Li, Y.; Gao, B.; Tang, Y.; Xie, J.; Zhao, H. Remediation of Saline-Sodic Soil Using Organic and Inorganic Amendments: Physical, Chemical, and Enzyme Activity Properties. J. Soils Sediments 2020, 20, 1454–1467. [Google Scholar] [CrossRef]
- Demir, Y.; Doğan Demir, A. The effect of organic matter applications on the saturated hydraulic conductivity and available water-holding capacity of sandy soils. Appl. Ecol. Environ. Res. 2019, 17, 3137–3146. [Google Scholar] [CrossRef]
- Lado, M.; Paz, A.; Ben-Hur, M. Organic Matter and Aggregate-Size Interactions in Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2004, 68, 234–242. [Google Scholar] [CrossRef]
- Skic, K.; Adamczuk, A.; Boguta, P.; Gryta, A.; Masoudi Soltani, S.; Ignatova, S.; Józefaciuk, G. New Insight into Organomineral Interactions in Soils. The Impact of Clay-Size Peat-Derived Organic Species on the Structure and the Strength of Soil Silt Aggregates. Agriculture 2023, 13, 2241. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; McLaughlin, N.B.; Mi, J.; Chen, Q.; Liu, J. Effect of Synthetic and Natural Water Absorbing Soil Amendment Soil Physical Properties under Potato Production in a Semi-Arid Region. Soil Tillage Res. 2015, 148, 31–39. [Google Scholar] [CrossRef]
- Ma, X.; Bai, Y.; Liu, X.; Wang, Y. Analysis of Water Infiltration Characteristics and Hydraulic Parameters of Sierozem Soil under Humic Acid Addition. Water 2023, 15, 1915. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, Y.C.; Shao, F.F.; Wang, Z.X. Effects of Biochemical Fulvic Acid on Physical Properties and Water Movement Characteristics. J. Soil Water Conserv. 2021, 35, 159–171. [Google Scholar] [CrossRef]
- Zhou, L.; Monreal, C.M.; Xu, S.; McLaughlin, N.B.; Zhang, H.; Hao, G.; Liu, J. Effect of Bentonite-Humic Acid Application on the Improvement of Soil Structure and Maize Yield in a Sandy Soil of a Semi-Arid Region. Geoderma 2019, 338, 269–280. [Google Scholar] [CrossRef]
- Rizk, A.H.; Mashhour, A.M.; Abd-Elhady, E.S.E.; El-Ashri, K.M.A. The role of some humic acid products in reducing of use mineral fertilizers and improving soil properties and nutrient uptake. J. Soil. Sci. Agric. Eng. 2010, 1, 765–774. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Hassanein, A.H.A.; Mansour, S.F.; Khalefa, A.M. Effect of soil and foliar application of humic acid on growth and productivity of soybean plants grown on a calcareous soil under different levels of mineral fertilizers. J. Soil. Sci. Agric. Eng. 2011, 2, 881–890. [Google Scholar] [CrossRef]
- Nan, J.; Chen, X.; Chen, C.; Lashari, M.S.; Deng, J.; Du, Z. Impact of Flue Gas Desulfurization Gypsum and Lignite Humic Acid Application on Soil Organic Matter and Physical Properties of a Saline-Sodic Farmland Soil in Eastern China. J. Soils Sediments 2016, 16, 2175–2185. [Google Scholar] [CrossRef]
- Pena-Mendez, E.M.; Havel, J.; Patocka, J. Humic substances—Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef]
- Amirbahman, A.; Olson, T.M. The Role of Surface Conformations in the Deposition Kinetics of Humic Matter-Coated Colloids in Porous Media. Colloids Surf. A Physicochem. Eng. Asp. 1995, 95, 249–259. [Google Scholar] [CrossRef]
- Drozd, E.J.; Weber, J.; Jamroz, E.; Bekier, J. Humic Substancesin Ecosystems HSE9; IHSS: Wroclaw, Poland, 2012; p. 183. [Google Scholar]
- Piccolo, A.; Pietramellara, G.; Mbagwu, J.s.c. Effects of Coal Derived Humic Substances on Water Retention and Structural Stability of Mediterranean Soils. Soil Use Manag. 1996, 12, 209–213. [Google Scholar] [CrossRef]
- Schnitzer, M. A Lifetime Perspective on the Chemistry of Soil Organic Matter. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 68, pp. 1–58. [Google Scholar] [CrossRef]
- Ahmed, H.; Ismail, F. Effectiveness of Humic Acid Applicationin Improving Saline Soil Properties and Fodder Beet Production. J. Soil Sci. Agric. Eng. 2016, 7, 623–634. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.; Evanylo, G.; Sherony, C.; Peot, C. Biosolids Impact on Tall Fescue Drought Resistance. J. Residuals Sci. Technol. 2005, 2, 174–180. [Google Scholar]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic Substances Biological Activity at the Plant-Soil Interface. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef]
- Li, F.; Men, S.; Zhang, S.; Huang, J.; Puyang, X.; Wu, Z.; Huang, Z. Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer. J. Microbiol. Biotechnol. 2020, 30, 1310–1320. [Google Scholar] [CrossRef]
- Kucerik, J.; Bursakova, P.; Prusová, A.; Grebikova, L.; Schaumann, G.E. Hydration of humic and fulvic acids studied by DSC. J. Therm. Anal. Calorim. 2012, 110, 451–459. [Google Scholar] [CrossRef]
- de Blas, E.; Rodríguez-Alleres, M.; Almendros, G. Speciation of lipid and humic fractions in soils under pine and eucalyptus forest in northwest Spain and its effect on water repellency. Geoderma 2010, 155, 242–248. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Gerke, H.H.; Bachmann, J.; Goebel, M.-O. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J. 2005, 69, 57–66. [Google Scholar] [CrossRef]
- Sakulthaew, C.; Watcharenwong, A.; Chokejaroenrat, C.; Rittirat, A. Leonardite-Derived Biochar Suitability for Effective Sorption of Herbicides. Water Air Soil Pollut. 2021, 232, 36. [Google Scholar] [CrossRef]
- Simsek, Y.E.; Degirmenci, L. Effect of Atmosphere and Temperature Treatment on Leoanardite for Increasing Humic Acid Yield. J. Geol. Soc. India 2018, 92, 209–214. [Google Scholar] [CrossRef]
- Sugier, D.; Kołodziej, B.; Bielińska, E. The Effect of Leonardite Application on Arnica Montana, L. Yielding and Chosen Chemical Properties and Enzymatic Activity of the Soil. J. Geochem. Explor. 2013, 129, 76–81. [Google Scholar] [CrossRef]
- Akimbekov, N.; Qiao, X.; Digel, I.; Abdieva, G.; Ualieva, P.; Zhubanova, A. The Effect of Leonardite-Derived Amendments on Soil Microbiome Structure and Potato Yield. Agriculture 2020, 10, 147. [Google Scholar] [CrossRef]
- Escalona, Y.; Petrov, D.; Galicia-Andrés, E.; Oostenbrink, C. Exploring the Macroscopic Properties of Humic Substances Using Modeling and Molecular Simulations. Agronomy 2023, 13, 1044. [Google Scholar] [CrossRef]
- Akinremi, O.O.; Janzen, H.H.; Lemke, R.L.; Larney, F.J. Response of Canola, Wheat and Green Beans to Leonardite Additions. Can. J. Soil. Sci. 2000, 80, 437–443. [Google Scholar] [CrossRef]
- ISO 17892-3; Geotechnical Investigation and Testing. Laboratory Testing of Soil, Part 3: Determination of Particle Density. ISO: Geneve, Switzerland, 2015.
- Tall, A.; Kandra, B.; Gomboš, M.; Pavelková, D. The influence of soil texture on the course of volume changes of soil. Soil Water Res. 2019, 14, 57–66. [Google Scholar] [CrossRef]
- Gomboš, M.; Tall, A.; Kandra, B.; Constantin, A.; Pavelkova, D. Changes in Crack Width on the Surface of Heavy Soils during Drought, Determined by Precise Measurement and Calculation. J. Hydrol. Hydromech. 2023, 71, 369–381. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014, Update 2015; World Soil Resources Reports, No. 106; FAO: Rome, Italy; p. 192.
- ISO 11272; Soil Quality—Determination of Dry Bulk Density. International Organization for Standardization: Geneva, Switzerland, 2017; 20p.
- 09.02 Laboratory-Permeameters Operating Instructions; Eijkelkamp Agrisearch Equipment: Giesbeek, NL, USA, 2011.
- ISO 11274; Soil Quality—Determination of the Water Retention Characteristics—Laboratory Methods. International Organization for Standardization: Geneva, Switzerland, 2019; p. 20.
- Cools, N.; De Vos, B. 1st FSCC Soil Physical Ring Test 2009 [Online]. Brusel: Instituut voor Natuur in Bosonderzoek (INBO). p. 47. Available online: https://purews.inbo.be/ws/portalfiles/portal/709625/Cools_DeVos_2010_1stFSCCSoilPhysicalRingTest.pdf (accessed on 27 February 2024).
- Kandra, B.; Gomboš, M. The importance of volume changes in the determination of soil water retention curves on the East Slovakian Lowland. J. Water Land. Dev. 2020, 45, 54–60. [Google Scholar] [CrossRef]
- Van Genuchten, M.; Leij, F.; Yates, S.; Williams, J. The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils. EPA/600/2-91/065 R.S. 1991, 83, 2–91. [Google Scholar]
- Kirkham, M.B. 8—Field Capacity, Wilting Point, Available Water, and the Non-Limiting Water Range. In Principles of Soil and Plant Water Relations; Kirkham, M.B., Ed.; Academic Press: Burlington, MA, USA, 2005; pp. 101–115. [Google Scholar] [CrossRef]
- Wesseling, J.; van Wijk, W.R.; Fireman, M.; van’t Woudt, B.D.; Hagan, R.M. Land Drainage in Relation to Soils and Crops. In Drainage of Agricultural Lands; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1957; pp. 461–578. [Google Scholar] [CrossRef]
- Taylor, S.A.; Ashcroft, G.L. Physical Edaphology—The Physics of Irrigated and Nonirrigated Soils; Rev. and Edited.; W.H. Freeman: San Francisco, CA, USA, 1972. [Google Scholar]
- Briggs, L.J.; Shantz, H.L. The Wilting Coefficient and Its Indirect Determination. Bot. Gaz. 1912, 53, 20–37. [Google Scholar] [CrossRef]
- Salisbury, F.B.; Ross, C.W. Plant Physiology; Wadsworth Publishing Company: Belmont, CA, USA, 1978. [Google Scholar]
- Taylor, S.A. Use of mean soil moisture tension to evaluate the effect of soil moisture on crop yields. Soil. Sci. 1952, 74, 217. [Google Scholar] [CrossRef]
- Bachmann, J.; Goebel, M.-O.; Krueger, J.; Fleige, H.; Woche, S.K.; Dörner, J.; Horn, R. Aggregate Stability of South Chilean Volcanic Ash Soils—A Combined XPS, Contact Angle, and Surface Charge Analysis. Geoderma 2020, 361, 114022. [Google Scholar] [CrossRef]
- Goebel, M.-O.; Woche, S.K.; Abraham, P.M.; Schaumann, G.E.; Bachmann, J. Water Repellency Enhances the Deposition of Negatively Charged Hydrophilic Colloids in a Water-Saturated Sand Matrix. Colloids Surf. A Physicochem. Eng. Asp. 2013, 431, 150–160. [Google Scholar] [CrossRef]
- Papierowska, E.; Matysiak, W.; Szatyłowicz, J.; Debaene, G.; Urbanek, E.; Kalisz, B.; Łachacz, A. Compatibility of Methods Used for Soil Water Repellency Determination for Organic and Organo-Mineral Soils. Geoderma 2018, 314, 221–231. [Google Scholar] [CrossRef]
- Maronna, R.A.; Douglas, M.R.; Yohai, V.J. Front Matter. In Robust Statistics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. i–xx. [Google Scholar] [CrossRef]
- Hampel, F.R. Robust Statistics: A Brief Introduction and Overview. Res. Rep./Semin. Für Stat. Eidgenössische Tech. Hochsch. (ETH) 2001, 94. [Google Scholar] [CrossRef]
- Zeleke, T.B.; Grevers, M.C.J.; Si, B.C.; Mermut, A.R.; Beyene, S. Effect of Residue Incorporation on Physical Properties of the Surface Soil in the South Central Rift Valley of Ethiopia. Soil. Tillage Res. 2004, 77, 35–46. [Google Scholar] [CrossRef]
- Ahmad, I.; Ali, S.; Hassan, F.; Ijaz, S.; Abbas, Z.; Ahmad, M.; Shakeel, A. Use of Coal Derived Humic Acid as Soil Conditioner for Soil Physical Properties and Its Impact on Wheat Crop Yield. Int. J. Biosci. 2015, 5, 81–89. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Yousefi, A.; Daryashenas, A. The Effect of Addition of Different Amounts and Types of Organic Materials on Soil Physical Properties and Yield of Wheat. Plant Soil 2002, 247, 295–301. [Google Scholar] [CrossRef]
- Harper, R.J.; Gilkes, R.J. Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence. Aust. J. Soil. Sci. 1994, 32, 1109–1124. [Google Scholar] [CrossRef]
- McKissock, I.; Walker, E.L.; Gilkes, R.J.; Carter, D.J. The influence of clay type on reduction of water repellency by applied clays: A review of some West Australian work. J. Hydrol. 1999, 231–232, 323–332. [Google Scholar] [CrossRef]
- Lichner, L.; Dlapa, P.; Doerr, S.H.; Mataix-Solera, J. Evaluation of different clay mineralogies as additives for soil water repellency alleviation. Appl. Clay Sci. 2006, 31, 238–248. [Google Scholar] [CrossRef]
- Steenhuis, T.S.; Hunt, A.G.; Parlange, J.Y.; Ewing, R.P. Assessment of the application of percolation theory to a water repellent soil. Aust. J. Soil Res. 2005, 43, 357–360. [Google Scholar] [CrossRef]
- Liu, Z.L.; Dugan, B.; Masiello, C.A.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef]
- Khalil, H.M.; Ali, L.K.M.; Mahmoud, A.A. Impact of applied humic and fulvic acids on the soil physic-chemical properties and cucumber productivity under protected cultivation conditions. J. Soil Sci. Agric. Eng. 2011, 2, 183–201. [Google Scholar] [CrossRef]
Parameter | Dimension | Value (Measured) | Value (Published Data) |
---|---|---|---|
Particle density | g/cm3 | 1.88 | - |
Dry bulk density | g/cm3 | 1.45 | 1.4 4–1.6 1 |
Wet bulk density | g/cm3 | 1.72 | - |
Porosity | % | 22.84 | 7.4 2 |
Gravimetric moisture | wt. % | 20.01 | 48.7 3; 11.8 4; 8.12 5 |
Volumetric moisture | vol. % | 29.08 | - |
Contact angle | 103.71 | - |
cm | 0 | 10 | 51 | 102 | 337 | 1020 | 2549 | 15296 | 107 * |
kPa | 0 | 1 | 5 | 10 | 33 | 100 | 250 | 1500 | 106 * |
pF | 0.0 | 1.0 | 1.7 | 2.0 | 2.5 | 3.0 | 3.4 | 4.2 | 7.0 * |
Soil Type | HA Content in Soil Samples (g/100 cm3) | Measured Ks (cm/d) Measurement Replications | Ks Average (cm/d) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Clayey soil | 0 | 1.93 | 1.71 | 1.70 | 1.47 | 1.72 | 1.37 | 1.81 | 1.69 |
0 | 1.81 | 1.81 | 1.67 | 1.39 | 1.51 | 1.21 | 1.66 | ||
0 | 1.91 | 2.03 | 1.79 | 1.91 | 1.60 | 1.75 | 1.74 | ||
1 | 1.88 | 1.93 | 1.78 | 1.78 | 1.62 | 1.11 | 1.71 | 1.60 | |
1 | 1.65 | 1.85 | 1.60 | 1.69 | 1.51 | 1.74 | 1.66 | ||
1 | 1.56 | 1.65 | 1.49 | 1.44 | 1.46 | 1.13 | 1.45 | ||
6 | 1.06 | 0.93 | 1.19 | 1.17 | 1.19 | 1.13 | 0.91 | 1.09 | |
6 | 1.10 | 1.12 | 1.17 | 1.14 | 1.13 | 1.18 | 1.05 | ||
6 | 1.12 | 1.11 | 1.08 | 1.10 | 1.08 | 1.10 | 0.89 | ||
Sandy soil | 0 | 1835 | 1830 | 1859 | 1798 | 1765 | 1861 | 1825 | 2054 |
0 | 2230 | 2317 | 2126 | 2053 | 2193 | 2122 | 2174 | ||
0 | 2308 | 2147 | 2147 | 2124 | 2152 | 2104 | 2164 | ||
1 | 1671 | 1581 | 1669 | 1654 | 1508 | 1657 | 1623 | 1819 | |
1 | 2061 | 2018 | 1838 | 2006 | 1893 | 1916 | 1955 | ||
1 | 1900 | 1954 | 1924 | 1908 | 1689 | 1892 | 1878 | ||
6 | 1806 | 2104 | 1843 | 1861 | 1888 | 2060 | 1927 | 1730 | |
6 | 1548 | 1504 | 1413 | 1591 | 1469 | 1578 | 1517 | ||
6 | 1746 | 1626 | 1788 | 1838 | 1724 | 1759 | 1747 |
Summary Statistics | HA content in Soil Samples (g/100 cm3) | |||||
---|---|---|---|---|---|---|
Clayey Soil | Sandy Soil | |||||
0 | 1 | 6 | 0 | 1 | 6 | |
Count | 21 | 21 | 21 | 21 | 21 | 21 |
Average | 1.69 | 1.60 | 1.09 | 2054.00 | 1818.81 | 1730.33 |
Median | 1.72 | 1.65 | 1.11 | 2124.00 | 1892.00 | 1747.00 |
Standard deviation | 0.20 | 0.21 | 0.09 | 177.41 | 162.17 | 189.23 |
Minimum | 1.21 | 1.11 | 0.89 | 1765.00 | 1508.00 | 1413.00 |
Maximum | 2.03 | 1.93 | 1.19 | 2317.00 | 2061.00 | 2104.00 |
Range | 0.82 | 0.82 | 0.30 | 552.00 | 553.00 | 691.00 |
Lower quartile | 1.60 | 1.49 | 1.08 | 1859.00 | 1669.00 | 1578.00 |
Upper quartile | 1.81 | 1.74 | 1.14 | 2164.00 | 1924.00 | 1843.00 |
Interquartile range | 0.21 | 0.25 | 0.06 | 305.00 | 255.00 | 265.00 |
Soil Type | HA Content in Soil Samples (g/100 cm3) | Soil Water Potential hw (Applied Pressures during the Samples Drying) | ||||||||
cm | 0 | 51 | 102 | 336 | 1019 | 2548 | 7136 | 14,271 | ||
kPa | 0 | 5 | 10 | 33 | 100 | 250 | 700 | 1400 | ||
pF | 0.0 | 1.7 | 2.0 | 2.5 | 3.0 | 3.4 | 3.9 | 4.2 | ||
Soil Volumetric Moistures θv (%) | ||||||||||
Clayey soil | 0 | 56.79 | 51.95 | 50.71 | 47.76 | 44.17 | 40.72 | 39.88 | 40.35 | |
0 | 56.59 | 53.25 | 51.08 | 47.31 | 43.94 | 39.99 | 39.82 | 41.14 | ||
0 | 57.29 | 52.36 | 52.50 | 49.14 | 45.53 | 42.99 | 42.19 | 41.73 | ||
0 | 56.99 | 53.29 | 52.39 | 47.93 | 43.67 | 41.70 | 39.96 | 40.42 | ||
0 | 56.99 | 53.59 | 52.29 | 46.89 | 43.11 | 38.46 | 38.12 | 38.05 | ||
1 | 57.69 | 52.99 | 52.46 | 47.88 | 43.69 | 41.27 | 39.88 | 42.26 | ||
1 | 58.39 | 54.21 | 54.16 | 47.88 | 44.14 | 39.57 | 39.47 | 40.09 | ||
1 | 58.29 | 54.48 | 51.71 | 47.73 | 43.41 | 38.96 | 39.16 | 40.04 | ||
1 | 58.19 | 52.77 | 52.25 | 47.71 | 44.00 | 39.21 | 38.61 | 39.13 | ||
1 | 57.69 | 52.76 | 52.61 | 49.04 | 45.04 | 41.87 | 40.15 | 40.57 | ||
6 | 56.69 | 53.29 | 52.57 | 47.85 | 44.48 | 40.83 | 39.74 | 40.21 | ||
6 | 57.99 | 53.16 | 52.79 | 47.66 | 43.57 | 40.56 | 38.88 | 38.46 | ||
6 | 56.89 | 54.06 | 52.99 | 48.07 | 44.38 | 41.09 | 39.45 | 39.21 | ||
6 | 57.39 | 53.89 | 51.03 | 48.38 | 44.14 | 40.33 | 39.37 | 38.96 | ||
6 | 56.69 | 52.94 | 50.52 | 47.78 | 43.45 | 40.51 | 39.24 | 38.69 | ||
Sandy soil | 0 | 36.86 | 11.58 | 3.11 | 1.83 | 1.54 | 1.40 | 0.15 | 0.07 | |
0 | 36.16 | 12.46 | 3.15 | 2.21 | 1.73 | 1.45 | 0.14 | 0.06 | ||
0 | 36.68 | 11.62 | 3.04 | 1.89 | 1.59 | 1.42 | 0.16 | 0.07 | ||
0 | 36.11 | 13.65 | 3.57 | 2.51 | 2.02 | 1.54 | 0.15 | 0.06 | ||
0 | 35.98 | 12.98 | 3.21 | 1.87 | 1.59 | 1.42 | 0.09 | 0.30 | ||
1 | 35.31 | 14.42 | 3.75 | 2.69 | 2.23 | 1.79 | 0.16 | 0.06 | ||
1 | 37.66 | 13.52 | 3.52 | 2.30 | 1.99 | 1.75 | 0.17 | 0.07 | ||
1 | 37.25 | 12.25 | 3.47 | 2.58 | 2.29 | 1.78 | 0.34 | 0.16 | ||
1 | 36.81 | 14.49 | 3.89 | 2.87 | 2.21 | 1.80 | 0.20 | 0.08 | ||
1 | 37.83 | 14.80 | 3.77 | 2.64 | 2.25 | 1.84 | 0.15 | 0.06 | ||
6 | 37.89 | 17.26 | 5.55 | 3.89 | 3.45 | 3.08 | 0.49 | 0.23 | ||
6 | 39.70 | 15.39 | 5.30 | 3.82 | 3.44 | 3.01 | 0.80 | 0.43 | ||
6 | 38.90 | 15.75 | 5.53 | 4.00 | 3.50 | 3.10 | 0.85 | 0.46 | ||
6 | 39.20 | 15.74 | 5.52 | 4.34 | 3.93 | 3.26 | 1.10 | 0.64 | ||
6 | 39.00 | 15.07 | 5.42 | 3.84 | 3.45 | 3.14 | 0.93 | 0.53 |
Soil Type | HA Content in Soil Samples (g/100 cm3) | Parameters [62] | |||
---|---|---|---|---|---|
θr | θs | α | n | ||
Clayey soil | 0 | 0.366 a | 0.567 a | 0.018 a | 1.350 a |
1 | 0.366 a | 0.577 b | 0.016 a | 1.382 a | |
6 | 0.342 a | 0.569 a | 0.017 a | 1.303 a | |
Sandy soil | 0 | 0.010 a | 0.364 a | 0.029 a | 3.510 a |
1 | 0.013 a,b | 0.370 a | 0.027 a | 3.559 a | |
6 | 0.023 b | 0.390 b | 0.029 a | 3.139 b | |
HA | - | 0.267 | 0.716 | 0.189 | 1.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandra, B.; Tall, A.; Vitková, J.; Procházka, M.; Šurda, P. Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils. Water 2024, 16, 1338. https://doi.org/10.3390/w16101338
Kandra B, Tall A, Vitková J, Procházka M, Šurda P. Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils. Water. 2024; 16(10):1338. https://doi.org/10.3390/w16101338
Chicago/Turabian StyleKandra, Branislav, Andrej Tall, Justína Vitková, Michal Procházka, and Peter Šurda. 2024. "Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils" Water 16, no. 10: 1338. https://doi.org/10.3390/w16101338
APA StyleKandra, B., Tall, A., Vitková, J., Procházka, M., & Šurda, P. (2024). Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils. Water, 16(10), 1338. https://doi.org/10.3390/w16101338