Estimating Stage-Frequency Curves for Engineering Design in Small Ungauged Arctic Watersheds
Abstract
1. Introduction
Study Area
2. Materials and Methods
2.1. Snow Accumulation and Ablation
2.2. Snowmelt Runoff
2.3. Stage Frequency and Uncertainty
- is the edge of a confidence interval around the expected value for a given α,
- S is the standard deviation of the metric,
- is the mean of the metric, and N is the sample size. α was set at 10% (setting confidence intervals at 90%) and the error tolerance was set at 2%.
3. Results
3.1. Snow Accumulation and Ablation
3.2. Snowmelt Runoff
3.3. Stage Frequency and Uncertainty
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schramm, I.; Boike, J.; Bolton, W.R.; Hinzman, L.D. Application of TopoFlow, a spatially distributed hydrological model, to the Imnavait Creek watershed. Alaska. J. Geophys. Res. Biogeosci. 2007, 112, G4. [Google Scholar] [CrossRef]
- Pohl, S.; Davison, B.; Marsh, P.; Pietroniro, A. Modelling spatially distributed snowmelt and meltwater runoff in a small Arctic catchment with a hydrology land-surface scheme (WATCLASS). Atmosphere-Ocean 2005, 43, 193–211. [Google Scholar] [CrossRef]
- Kane, D.L.; Hinzman, L.D.; Benson, C.S.; Liston, G.E. Snow hydrology of a headwater Arctic basin: 1. Physical measurements and process studies. Water Resour. Res. 1991, 27, 1099–1109. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Kane, D.L. Snow hydrology of a headwater Arctic basin: 2. Conceptual analysis and computer modeling. Water Resour. Res. 1991, 27, 1111–1121. [Google Scholar] [CrossRef]
- Soulis, E.D.; Snelgrove, K.R.; Kouwen, N.; Seglenieks, F.; Verseghy, D.L. Towards Closing the Vertical Water Balance in Canadian Atmospheric Models: Coupling of the Land Surface Scheme CLASS with the Distributed Hydrological Model WATFLOOD. Atmosphere-Ocean 2000, 38, 251–269. [Google Scholar] [CrossRef]
- Bui, M.T.; Lu, J.; Nie, L. A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region. Geosciences 2020, 10, 401. [Google Scholar] [CrossRef]
- Xia, Z.; Woo, M. Theoretical analysis of snow-dam decay. J. Glaciol. 1992, 38, 191–199. [Google Scholar] [CrossRef]
- Liston, G.E.; Elder, K. A distributed snow-evolution modeling system (SnowModel). J. Hydrometeorol. 2006, 7, 1259–1276. [Google Scholar] [CrossRef]
- Liston, G.E.; Mernild, S.H. Greenland Freshwater Runoff. Part I: A Runoff Routing Model for Glaciated and Nonglaciated Landscapes (HydroFlow). J. Clim. 2012, 25, 5997–6014. [Google Scholar] [CrossRef]
- McCarthy, K.A. Overview of Environmental and Hydrogeologic Conditions at Barrow, Alaska; US Department of the Interior, US Geological Survey: Washington, DC, USA, 1994. [Google Scholar]
- Braddock, J.F.; McCarthy, K.A. Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region. Environ. Sci. Technol. 1996, 30, 2626–2633. [Google Scholar] [CrossRef]
- Dingman, S.L.; Barry, R.G.; Weller, G.; Benson, C.S.; LeDrew, E.F.; Goodwin, C.W. Climate, Snow Cover, Microclimate, and Hydrology. In An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska; Brown, J., Miller, P.C., Tieszen, L.L., Bunnell, F.L., Eds.; U.S./IBP Synthesis Series 12; Dowden, Hutchinson & Ross, Inc.: Stroudsburg, PA, USA, 1980; pp. 30–78. Available online: https://www.arlis.org/docs/vol1/B/5564803.pdf (accessed on 1 May 2024).
- Liljedahl, A.K.; Hinzman, L.D.; Kane, D.L.; Oechel, W.C.; Tweedie, C.E.; Zona, D. Tundra water budget and implications of precipitation underestimation. Water Resour. Res. 2017, 53, 6472–6486. [Google Scholar] [CrossRef]
- Brown, J.; Dingman, S.L.; Lewellen, R.I. Hydrology of a Drainage Basin on the Alaskan Coastal Plain; Research Report 240; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1968. [Google Scholar]
- Douglas, T.A.; Sturm, M.; Blum, J.D.; Polashenski, C.; Stuefer, S.; Hiemstra, C.; Steffen, A.; Filhol, S.; Prevost, R. A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed. Environ. Sci. Technol. 2017, 51, 11145–11155. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.; Forster, R.R.; Deeb, E.J.; Liston, G.E.; Skiles, S.M.; Marshall, H.P. Interpreting Sentinel-1 SAR backscatter signals of snowpack surface melt/freeze, warming, and ripening, through field measurements and physically-based SnowModel. Remote Sens. 2022, 14, 4002. [Google Scholar] [CrossRef]
- QSI Anchorage. North Slope Borough Communities, Alaska 3DEP LiDAR Technical Data Report, 2019. Available online: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid12b/9197/supplemental/2019_North_Slope_Borough_Communities_3DEP_LiDAR_Technical_Data_Report.pdf (accessed on 6 January 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (accessed on 14 March 2022).
- McCrystall, M.R.; Stroeve, J.; Serreze, M.; Forbes, B.C.; Screen, J.A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 2021, 12, 6765. [Google Scholar] [CrossRef]
- Sturm, M. 2007–2013. “Barrow Field Studies Data Collection [Data Set Series]”. Arctic Data CenterFor Specific Datasets, Search by Principal Investigator “Matthew Sturm” and Collection Year. Example Dataset: “Barrow_field_200712”. Available online: https://arcticdata.io/catalog/ (accessed on 12 March 2024).
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid, Version 61 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Milliman, T.; Seyednasrollah, B.; Young, A.M.; Hufkens, K.; Friedl, M.A.; Frolking, S.; Richardson, A.D.; Abraha, M.; Allen, D.W.; Apple, M.; et al. PhenoCam Dataset v2.0: Digital Camera Imagery from the PhenoCam Network, 2000–2018. ORNL–Distributed Active Archive Center: Oak Ridge, TN, 2019. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1689 (accessed on 11 January 2022).
- Seyednasrollah, B.; Young, A.M.; Hufkens, K.; Milliman, T.; Friedl, M.A.; Frolking, S.; Richardson, A.D. Tracking Vegetation Phenology Across Diverse Biomes using Version 2.0 of the PhenoCam Dataset. Sci. Data 2019, 6, 222. [Google Scholar] [CrossRef] [PubMed]
- U.S. Army Corps of Engineers Hydrologic Engineering Center, n.d. HEC-RAS (Version 5.0.7) [Software]. Available online: https://www.hec.usace.army.mil/software/hec-ras/ (accessed on 11 January 2022).
- Stuefer, S.L.; Arp, C.D.; Kane, D.L.; Liljedahl, A.K. Recent Extreme Runoff Observations from Coastal Arctic Watersheds in Alaska. Water Resour. Res. 2017, 53, 9145–9163. [Google Scholar] [CrossRef]
- Dewitz, J. National Land Cover Database (NLCD) 2016 Products; US Geological Survey: Washington, DC, USA, 2019. [Google Scholar]
- USACE. Creating Land Cover, Manning’s n Value, and % Impervious Layers. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest/developing-a-terrain-model-and-geospatial-layers/creating-land-cover-mannings-n-values-and-impervious-layers (accessed on 8 December 2022).
- Dilley, L. Draft Geotechnical Report. Barrow Roads: Laura Madison Road and Uivaqsaagiaq Road; Hattenburg Dilley and Linell: Anchorage, AK, USA, 2008. [Google Scholar]
- Coleman, S. Itasigrook Dam (AK00053) Barrow, Alaska Periodic Safety Inspection Report Draft; WHPacific: Anchorage, AK, USA, 2016. [Google Scholar]
- England, J.F., Jr.; Cohn, T.A.; Faber, B.A.; Stedinger, J.R.; Thomas, W.O., Jr.; Veilleux, A.G.; Kiang, J.E.; Mason, R.R., Jr. Guidelines for Determining Flood Flow Frequency—Bulletin 17C; US Geological Survey: Washington, DC, USA, 2019; No. 4-B5. [Google Scholar]
- U.S. Army Corps of Engineers Hydrologic Engineering Center, n.d. HEC-SSP (Version 2.3) [Software]. Available online: https://www.hec.usace.army.mil/software/hec-ssp/ (accessed on 18 September 2022).
- USACE (US Army Corps of Engineers). Engineering and Design: Risk-Based Analysis for Flood Damage Reduction Studies. Manual No. 1110-2-1619; US Department of the Army, US Army Corps of Engineers: Washington, DC, USA, 1996; Available online: https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1619.pdf (accessed on 19 September 2022).
- HEC (Hydrologic Engineering Center). HEC-Flood Damage Reduction Analysis: User’s Manual. CPD-72 (Version 1.4.1); US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016; Available online: https://www.hec.usace.army.mil/software/hec-fda/documentation/CPD-72_V1.4.1.pdf (accessed on 18 September 2022).
- Wagner, A.M.; Engel, C.; Ho, D.; Giovando, J.; Morriss, B.; Deeb, E. Stage Frequency Analysis from Snowmelt Runoff near Utqiaġvik, Alaska. ERDC/CRREL TR-23-16; US Army Corps of Engineers, Engineer Research and Development Center: Washington, DC, USA, 2023. [Google Scholar]
NLCD Classification | Manning’s Roughness Value |
---|---|
NoData | 0.04 |
Sedge-Herbaceous | 0.04 |
Open Water | 0.035 |
Emergent Herbaceous Wetlands | 0.06 |
Developed, Open Space | 0.035 |
Developed, Low Intensity | 0.08 |
Developed, Medium Intensity | 0.12 |
Distribution | K-S | Chi-Square | A-D |
---|---|---|---|
Generalized Pareto | 0.149 | 12.636 | 0.932 |
LP3 | 0.153 | 11.909 | 0.953 |
Triangular | 0.158 | 13.000 | 1.055 |
Ln-Normal | 0.161 | 10.818 | 0.995 |
Log10-Normal | 0.161 | 10.818 | 0.995 |
Shifted Exponential | 0.170 | 9.727 | 1.315 |
Gamma | 0.177 | 12.636 | 1.087 |
Log-Logistic | 0.181 | 10.818 | 1.424 |
Uniform | 0.186 | 28.636 | 0.988 |
Gumbel | 0.197 | 12.273 | 1.352 |
Pearson III | 0.197 | 14.818 | 1.332 |
Shifted Gamma | 0.197 | 14.818 | 1.332 |
Generalized Extreme Value | 0.200 | 19.182 | 1.365 |
Normal | 0.232 | 27.909 | 1.759 |
Exponential | 0.246 | 15.909 | 2.092 |
Logistic | 0.252 | 17.727 | 2.109 |
Year | KGE | Pearson-R | p-Bias |
---|---|---|---|
1982 | −0.20 | 0.20 | −58.39 |
1983 | −3.31 | 0.04 | −241.33 |
1984 | −0.57 | 0.16 | −111.81 |
1985 | −0.67 | 0.00 | −63.43 |
1986 | −0.86 | 0.46 | −113.52 |
1987 | −0.12 | 0.01 | −14.16 |
1988 | −0.09 | 0.10 | 43.12 |
1989 | 0.44 | 0.47 | −15.58 |
1990 | −0.05 | 0.17 | −57.99 |
1991 | −0.25 | −0.22 | −26.52 |
1992 | −2.44 | 0.12 | −276.82 |
1993 | −0.19 | 0.07 | −73.41 |
1994 | 0.48 | 0.60 | −32.83 |
1995 | 0.14 | 0.38 | −57.43 |
1996 | −0.64 | 0.06 | −131.85 |
1997 | −0.55 | 0.39 | −106.55 |
1998 | −0.74 | 0.02 | −60.18 |
1999 | 0.06 | 0.17 | 27.38 |
2000 | 0.45 | 0.47 | −7.09 |
2001 | 0.84 | 0.85 | 2.22 |
2002 | −0.23 | 0.36 | −70.74 |
2003 | −2.03 | 0.39 | −171.63 |
2004 | 0.73 | 0.79 | −1.78 |
Middle Salt Lagoon (MCM) | Tasigarook Lagoon (MCM) | |
---|---|---|
Minimum | 1.36 | 0.76 |
Maximum | 3.05 | 1.91 |
Mean | 2.13 | 1.26 |
Standard Deviation | 0.49 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engel, C.; Wagner, A.; Giovando, J.; Ho, D.; Morriss, B.; Deeb, E. Estimating Stage-Frequency Curves for Engineering Design in Small Ungauged Arctic Watersheds. Water 2024, 16, 1321. https://doi.org/10.3390/w16101321
Engel C, Wagner A, Giovando J, Ho D, Morriss B, Deeb E. Estimating Stage-Frequency Curves for Engineering Design in Small Ungauged Arctic Watersheds. Water. 2024; 16(10):1321. https://doi.org/10.3390/w16101321
Chicago/Turabian StyleEngel, Chandler, Anna Wagner, Jeremy Giovando, David Ho, Blaine Morriss, and Elias Deeb. 2024. "Estimating Stage-Frequency Curves for Engineering Design in Small Ungauged Arctic Watersheds" Water 16, no. 10: 1321. https://doi.org/10.3390/w16101321
APA StyleEngel, C., Wagner, A., Giovando, J., Ho, D., Morriss, B., & Deeb, E. (2024). Estimating Stage-Frequency Curves for Engineering Design in Small Ungauged Arctic Watersheds. Water, 16(10), 1321. https://doi.org/10.3390/w16101321