Investigative Approaches for Pollutants in Water: Aligning with Water Framework Directive Maximum Allowable Concentrations
Abstract
:1. Introduction
2. Literature Survey
3. Polycyclic Aromatic Hydrocarbons (PAHs): Sources, Properties, and Migration
3.1. Sample Preparation Approaches and Gas Chromatographic Detection of PAH
3.2. Innovative Techniques for Sample Preparation and PAH Detection: LC, GC, Spectroscopy, and Next-Generation Lab-on-a-Chip Technology
4. Assessing Pesticide Levels and Techniques for Their Detection
4.1. Cypermethrin
Cypermethrin: Chromatographic Methods
4.2. Heptachlor and Heptachlor Epoxide
Heptachlor and Heptachlor Epoxide Analysis: Gas Chromatography Insights
4.3. Dichlorvos
4.3.1. Dichlorvos Analysis: Biosensor and Nanotech Approaches
4.3.2. Dichlorvos Analysis: Gas Chromatography
5. Passive Samplers: Contemporary Insights
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heß, S.; Hof, D.; Oetken, M.; Sundermann, A. Effects of multiple stressors on benthic invertebrates using Water Framework Directive monitoring data. Sci. Total Environ. 2023, 878, 162952. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Massarelli, C.; Losacco, D.; Bisaccia, D.; Triozzi, M.; Uricchio, V.F. The monitoring of pesticides in water matrices and the analytical criticalities: A review. TrAC Trends Anal. Chem. 2021, 144, 116423. [Google Scholar] [CrossRef]
- Wiering, M.; Boezeman, D.; Crabbé, A. The water framework directive and agricultural diffuse pollution: Fighting a running battle? Water 2020, 12, 1447. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Spiliotis, M.; Ntislidou, C.; Kagalou, I.; Bobori, D.; Tsiaoussi, V.; Lazaridou, M. “One Out–All Out” Principle in the Water Framework Directive 2000—A New Approach with Fuzzy Method on an Example of Greek Lakes. Water 2021, 13, 1776. [Google Scholar] [CrossRef]
- Baran, N.; Rosenbom, A.E.; Kozel, R.; Lapworth, D. Pesticides and their metabolites in European groundwater: Comparing regulations and approaches to monitoring in France, Denmark, England and Switzerland. Sci. Total Environ. 2022, 842, 156696. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Vidal, T.; Gonçalves, F.J.; Castro, B.B.; Pereira, J.L. Challenges to water quality assessment in Europe–Is there scope for improvement of the current Water Framework Directive bioassessment scheme in rivers? Ecol. Indic. 2021, 121, 107030. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 on establishing a framework of community action in the field of water policy. Off. J. Eur. Community 2000, 327/1–327/72.
- Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur. Community 2008, 348/84–348/97.
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 on amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Community 2013, 226, 1–17.
- Spurgeon, D.; Wilkinson, H.; Civil, W.; Hutt, L.; Armenise, E.; Kieboom, N.; Sims, K.; Besien, T. Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England. Sci. Total Environ. 2022, 835, 155101. [Google Scholar] [CrossRef]
- García-Córcoles, M.; Rodríguez-Gómez, R.; de Alarcón-Gómez, B.; Çipa, M.; Martín-Pozo, L.; Kauffmann, J.-M.; Zafra-Gómez, A. Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: A review. Crit. Rev. Anal. Chem. 2019, 49, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. Modelling of Greek lakes water quality using earth observation in the Framework of the Water Framework Directive (WFD). Remote Sens. 2022, 14, 739. [Google Scholar] [CrossRef]
- Dosis, I.; Ricci, M.; Emteborg, H.; Emons, H. A journey towards whole water certified reference materials for organic substances: Measuring polycyclic aromatic hydrocarbons as required by the European Union Water Framework Directive. Anal. Bioanal. Chem. 2021, 413, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Davenport, R.; Curtis-Jackson, P.; Dalkmann, P.; Davies, J.; Fenner, K.; Hand, L.; McDonough, K.; Ott, A.; Ortega-Calvo, J.J.; Parsons, J.R. Scientific concepts and methods for moving persistence assessments into the 21st century. Integr. Environ. Assess. Manag. 2022, 18, 1454–1487. [Google Scholar] [CrossRef] [PubMed]
- Strotmann, U.; Thouand, G.; Pagga, U.; Gartiser, S.; Heipieper, H.J. Toward the future of OECD/ISO biodegradability testing-new approaches and developments. Appl. Microbiol. Biotechnol. 2023, 107, 2073–2095. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, C.; Villa, S.; Chimera, C.; Finizio, A.; Monti, G. Spatial and temporal trends in the ecological risk posed by polycyclic aromatic hydrocarbons in Mediterranean Sea sediments using large-scale monitoring data. Ecol. Indic. 2021, 129, 107923. [Google Scholar] [CrossRef]
- Balcıoğlu, E.B. Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: A critical review. Toxin Rev. 2016, 35, 98–105. [Google Scholar] [CrossRef]
- Arisekar, U.; Shakila, R.J.; Jeyasekaran, G.; Shalini, R.; Kumar, P.; Malani, A.H.; Rani, V. Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100194. [Google Scholar] [CrossRef]
- Abbas, T.; Wadhawan, T.; Khan, A.; McEvoy, J.; Khan, E. Iron turning waste media for treating Endosulfan and Heptachlor contaminated water. Sci. Total Environ. 2019, 685, 124–133. [Google Scholar] [CrossRef]
- Cruz-Alcalde, A.; Sans, C.; Esplugas, S. Priority pesticide dichlorvos removal from water by ozonation process: Reactivity, transformation products and associated toxicity. Sep. Purif. Technol. 2018, 192, 123–129. [Google Scholar] [CrossRef]
- Dobaradaran, S.; Schmidt, T.C.; Lorenzo-Parodi, N.; Kaziur-Cegla, W.; Jochmann, M.A.; Nabipour, I.; Lutze, H.V.; Telgheder, U. Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water. Environ. Pollut. 2020, 259, 113916. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, I.; Arrebola, F.; Romero-González, R.; Nieto-García, A.; Vidal, J.M.; Frenich, A.G. Solid phase microextraction and gas chromatography coupled to magnetic sector high resolution mass spectrometry for the ultra-trace determination of contaminants in surface water. J. Chromatogr. A 2017, 1518, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, M.R.; Dobaradaran, S.; Arfaeinia, H.; Samaei, M.R.; Novotny, T.E.; Rashidi, N. Polycyclic aromatic hydrocarbon (PAH) leachates from post-consumption waterpipe tobacco waste (PWTW) into aquatic environment-a primary study. Environ. Pollut. 2023, 327, 121500. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.N.; Simão, V.; Merib, J.; Carasek, E. Use of green coating (cork) in solid-phase microextraction for the determination of organochlorine pesticides in water by gas chromatography-electron capture detection. Talanta 2015, 134, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Arias, P.G.; Martínez-Pérez-Cejuela, H.; Combès, A.; Pichon, V.; Pereira, E.; Herrero-Martínez, J.M.; Bravo, M. Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection. J. Chromatogr. A 2020, 1626, 461346. [Google Scholar] [CrossRef] [PubMed]
- Aragón, Á.; Toledano, R.M.; Vázquez, A.; Villén, J.; Cortés, J.M. Analysis of polycyclic aromatic hydrocarbons in aqueous samples by large volume injection gas chromatography–mass spectrometry using the through oven transfer adsorption desorption interface. Talanta 2015, 139, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 387. [Google Scholar] [CrossRef]
- Barco-Bonilla, N.; Romero-González, R.; Plaza-Bolaños, P.; Fernández-Moreno, J.L.; Frenich, A.G.; Vidal, J.L.M. Comprehensive analysis of polycyclic aromatic hydrocarbons in wastewater using stir bar sorptive extraction and gas chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta 2011, 693, 62–71. [Google Scholar] [CrossRef]
- Siemers, A.-K.; Mänz, J.S.; Palm, W.-U.; Ruck, W.K. Development and application of a simultaneous SPE-method for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, heterocyclic PAHs (NSO-HET) and phenols in aqueous samples from German Rivers and the North Sea. Chemosphere 2015, 122, 105–114. [Google Scholar] [CrossRef]
- Nasher, E.; Heng, L.Y.; Zakaria, Z.; Surif, S. Concentrations and sources of polycyclic aromatic hydrocarbons in the seawater around Langkawi Island, Malaysia. J. Chem. 2013, 2013, 975781. [Google Scholar] [CrossRef]
- Nekhavhambe, T.J.; Van Ree, T.; Fatoki, O.S. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo Province, South Africa. Water SA 2014, 40, 415–424. [Google Scholar] [CrossRef]
- Yazdanfar, N.; Yamini, Y.; Ghambarian, M. Homogeneous liquid–liquid microextraction for determination of organochlorine pesticides in water and fruit samples. Chromatographia 2014, 77, 329–336. [Google Scholar] [CrossRef]
- Menger, F.; Gago-Ferrero, P.; Wiberg, K.; Ahrens, L. Wide-scope screening of polar contaminants of concern in water: A critical review of liquid chromatography-high resolution mass spectrometry-based strategies. Trends Environ. Anal. Chem. 2020, 28, e00102. [Google Scholar] [CrossRef]
- Bammer, V.; Apostolou, A.; Bulat, D.; Dumitrascu, O.; Effenberger, M.; Erös, T. Chemical pollution in the Danube River Basin: Critical review based on the outcomes of JDS4. J. Eur. Communities 2021, 23, 20–23. [Google Scholar]
- Kamran, M.; Dauda, M.; Basheer, C.; Siddiqui, M.N.; Lee, H.K. Highly efficient porous sorbent derived from asphalt for the solid-phase extraction of polycyclic aromatic hydrocarbons. J. Chromatogr. A 2020, 1631, 461559. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; Cirillo, T.; Fasano, E.; Nardone, A.; Esposito, F.; Triassi, M. Spatial distribution and partitioning of polychlorinated biphenyl and organochlorine pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environ. Sci. Pollut. Res. 2014, 21, 5023–5035. [Google Scholar] [CrossRef] [PubMed]
- Khademi, S.M.S.; Salemi, A.; Jochmann, M.; Joksimoski, S.; Telgheder, U. Development and comparison of direct immersion solid phase micro extraction Arrow-GC-MS for the determination of selected pesticides in water. Microchem. J. 2021, 164, 106006. [Google Scholar] [CrossRef]
- Kremser, A.; Jochmann, M.A.; Schmidt, T.C. PAL SPME Arrow—Evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal. Bioanal. Chem. 2016, 408, 943–952. [Google Scholar] [CrossRef]
- Rösch, A.; Beck, B.; Hollender, J.; Singer, H. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: A result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 2019, 411, 3151–3164. [Google Scholar]
- Tapie, N.; Devier, M.-H.; Soulier, C.; Creusot, N.; Le Menach, K.; Ait-Aissa, S.; Vrana, B.; Budzinski, H. Passive samplers for chemical substance monitoring and associated toxicity assessment in water. Water Sci. Technol. 2011, 63, 2418–2426. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, V.; Gaur, R.; Kumar, S.; Sharma, C.; Akolkar, A. Validation of HPLC method for determination of priority polycyclic aromatic hydrocarbons (PAHs) in waste water and sediments. Adv. Appl. Sci. Res. 2014, 5, 201–209. [Google Scholar]
- Foan, L.; Ricoul, F.; Vignoud, S. A novel microfluidic device for fast extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental waters–comparison with stir-bar sorptive extraction (SBSE). Int. J. Environ. Anal. Chem. 2015, 95, 1171–1185. [Google Scholar] [CrossRef]
- Ochiai, N.; Ieda, T.; Sasamoto, K.; Takazawa, Y.; Hashimoto, S.; Fushimi, A.; Tanabe, K. Stir bar sorptive extraction and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry for ultra-trace analysis of organochlorine pesticides in river water. J. Chromatogr. A 2011, 1218, 6851–6860. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, M.; Singh, V.; Pawliszyn, J. A critical review on regulatory sample preparation methods: Validating solid-phase microextraction techniques. TrAC Trends Anal. Chem. 2019, 119, 115618. [Google Scholar] [CrossRef]
- Abd El-Gawad, H. Validation method of organochlorine pesticides residues in water using gas chromatography–quadruple mass. Water Sci. 2016, 30, 96–107. [Google Scholar] [CrossRef]
- Saadati, N.; Abdullah, M.P.; Zakaria, Z.; Sany, S.B.T.; Rezayi, M.; Hassonizadeh, H. Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chem. Cent. J. 2013, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Amendola, L.; Saurini, M.T.; Lancia, E.; Cortese, M.; Zarrelli, S.; De Angelis, I.; Schenone, L.; Evangelista, S.; Di Girolamo, F. Development and validation of a gas chromatography-tandem mass spectrometry analytical method for the monitoring of ultra-traces of priority substances in surface waters. Adv. Environ. Technol. 2020, 6, 69–81. [Google Scholar]
- Ben Salem, F.; Ben Said, O.; Duran, R.; Monperrus, M. Validation of an adapted QuEChERS method for the simultaneous analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in sediment by gas chromatography–mass spectrometry. Bull. Environ. Contam. Toxicol. 2016, 96, 678–684. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Vela, N.; Martínez-Menchón, M.; Navarro, G.; Pérez-Lucas, G.; Navarro, S. Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight. J. Photochem. Photobiol. A Chem. 2012, 232, 32–40. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, J. Predicting polycyclic aromatic hydrocarbons in surface water by a multiscale feature extraction-based deep learning approach. Sci. Total Environ. 2021, 799, 149509. [Google Scholar] [CrossRef] [PubMed]
- Maletić, S.P.; Beljin, J.M.; Rončević, S.D.; Grgić, M.G.; Dalmacija, B.D. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: Sources, fate, bioavailability and remediation techniques. J. Hazard. Mater. 2019, 365, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Oura, L.E.; Zran, V.E.-S.; Kouadio, G.; Koné, H.; Konan, A.T.S.; Trokourey, A.; Yao, K.B.; Bakary, F. Abundance and Source Identification of Polycyclic Aromatic Hydrocarbons in Sediments of the Ivory Coastal Zone (Toukouzou Hozalem-Assinie). Am. J. Anal. Chem. 2023, 14, 12–27. [Google Scholar]
- Guigue, C.; Tedetti, M.; Dang, D.H.; Mullot, J.-U.; Garnier, C.; Goutx, M. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: Insights from Toulon Bay (France). Environ. Pollut. 2017, 229, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Hussar, E.; Richards, S.; Lin, Z.-Q.; Dixon, R.P.; Johnson, K.A. Human health risk assessment of 16 priority polycyclic aromatic hydrocarbons in soils of Chattanooga, Tennessee, USA. Water Air Soil Pollut. 2012, 223, 5535–5548. [Google Scholar] [CrossRef] [PubMed]
- Balmer, J.E.; Hung, H.; Yu, Y.; Letcher, R.J.; Muir, D.C. Sources and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in the Arctic. Emerg. Contam. 2019, 5, 128–142. [Google Scholar] [CrossRef]
- Charriau, A.; Bodineau, L.; Ouddane, B.; Fischer, J.-C. Polycyclic aromatic hydrocarbons and n-alkanes in sediments of the Upper Scheldt River Basin: Contamination levels and source apportionment. J. Environ. Monit. 2009, 11, 1086–1093. [Google Scholar] [CrossRef]
- Rubio-Clemente, A.; Torres-Palma, R.A.; Peñuela, G.A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Sci. Total Environ. 2014, 478, 201–225. [Google Scholar] [CrossRef]
- Bouhroum, R.; Boulkamh, A.; Asia, L.; Lebarillier, S.; Ter Halle, A.; Syakti, A.D.; Doumenq, P.; Malleret, L.; Wong-Wah-chung, P. Concentrations and fingerprints of PAHs and PCBs adsorbed onto marine plastic debris from the Indonesian Cilacap coast and theNorth Atlantic gyre. Reg. Stud. Mar. Sci. 2019, 29, 100611. [Google Scholar] [CrossRef]
- Rubirola, A.; Quintana, J.; Boleda, M.R.; Galceran, M.T. Analysis of 32 priority substances from EU water framework directive in wastewaters, surface and drinking waters with a fast sample treatment methodology. Int. J. Environ. Anal. Chem. 2019, 99, 16–32. [Google Scholar] [CrossRef]
- Kouzayha, A.; Al Iskandarani, M.; Mokh, S.; Rabaa, A.R.; Budzinski, H.; Jaber, F. Optimization of a solid-phase extraction method using centrifugation for the determination of 16 polycyclic aromatic hydrocarbons in water. J. Agric. Food Chem. 2011, 59, 7592–7600. [Google Scholar] [CrossRef] [PubMed]
- Werres, F.; Balsaa, P.; Schmidt, T.C. Total concentration analysis of polycylic aromatic hydrocarbons in aqueous samples with high suspended particulate matter content. J. Chromatogr. A 2009, 1216, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xiao, R.; Li, J.; Yu, J.; Zhang, Y.; Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 5462–5469. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Fu, L.; Li, Z.; Liu, D.; Bai, Y.; Zhao, X. Distribution and ecological risk of substituted and parent polycyclic aromatic hydrocarbons in surface waters of the Bai, Chao, and Chaobai rivers in northern China. Environ. Pollut. 2020, 257, 113600. [Google Scholar] [CrossRef] [PubMed]
- Bizkarguenaga, E.; Ros, O.; Iparraguirre, A.; Navarro, P.; Vallejo, A.; Usobiaga, A.; Zuloaga, O. Solid-phase extraction combined with large volume injection-programmable temperature vaporization–gas chromatography–mass spectrometry for the multiresidue determination of priority and emerging organic pollutants in wastewater. J. Chromatogr. A 2012, 1247, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Grmasha, R.A.; Abdulameer, M.H.; Stenger-Kovács, C.; Al-Sareji, O.J.; Al-Gazali, Z.; Al-Juboori, R.A.; Meiczinger, M.; Hashim, K.S. Polycyclic aromatic hydrocarbons in the surface water and sediment along Euphrates River system: Occurrence, sources, ecological and health risk assessment. Mar. Pollut. Bull. 2023, 187, 114568. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, V.; Alygizakis, N.A.; Nika, M.-C.; Oswaldova, M.; Oswald, P.; Kostakis, M.; Koupa, A.; Thomaidis, N.S.; Slobodnik, J. Screening of legacy and emerging substances in surface water, sediment, biota and groundwater samples collected in the Siverskyi Donets River Basin employing wide-scope target and suspect screening. Sci. Total Environ. 2022, 805, 150253. [Google Scholar] [CrossRef]
- Carlos, E.A.; Alves, R.D.; de Queiroz, M.E.L.; Neves, A.A. Simultaneous determination of the organochlorine and pyrethroid pesticides in drinking water by single drop microextraction and gas chromatography. J. Braz. Chem. Soc. 2013, 24, 1217–1227. [Google Scholar] [CrossRef]
- Santos, L.O.; dos Anjos, J.P.; Ferreira, S.L.; de Andrade, J.B. Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS. Microchem. J. 2017, 133, 431–440. [Google Scholar] [CrossRef]
- Laurenčík, M.; Tölgyessy, P.; Kirchner, M. Determination of polycyclic aromatic hydrocarbons in freshwater mussels using simultaneous ultrasonic probe-assisted solvent extraction and sorbent clean-up followed by GC–MS analysis. Chem. Pap. 2023, 77, 4387–4397. [Google Scholar] [CrossRef]
- Laurenčík, M.; Kirchner, M.; Tölgyessy, P.; Nagyová, S. Simultaneous focused ultrasound solid–liquid extraction and dispersive solid-phase extraction clean-up for gas chromatography–tandem mass spectrometry determination of polycyclic aromatic hydrocarbons in crustacean gammarids meeting the requirements of the European Union Water Framework Directive. J. Chromatogr. A 2022, 1673, 463098. [Google Scholar] [PubMed]
- Mehdinia, A.; Khojasteh, E.; Kayyal, T.B.; Jabbari, A. Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid–liquid microextraction for determination of polycyclic aromatic hydrocarbons. J. Chromatogr. A 2014, 1364, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Olivella, M.À. Polycyclic aromatic hydrocarbons in rainwater and surface waters of Lake Maggiore, a subalpine lake in Northern Italy. Chemosphere 2006, 63, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Montuori, P.; Triassi, M. Polycyclic aromatic hydrocarbons loads into the Mediterranean Sea: Estimate of Sarno River inputs. Mar. Pollut. Bull. 2012, 64, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Sarria-Villa, R.; Ocampo-Duque, W.; Páez, M.; Schuhmacher, M. Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci. Total Environ. 2016, 540, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Ferretto, N.; Tedetti, M.; Guigue, C.; Mounier, S.; Redon, R.; Goutx, M. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis. Chemosphere 2014, 107, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Foan, L.; El Sabahy, J.; Ricoul, F.; Bourlon, B.; Vignoud, S. Development of a new phase for lab-on-a-chip extraction of polycyclic aromatic hydrocarbons from water. Sens. Actuators B Chem. 2018, 255, 1039–1047. [Google Scholar] [CrossRef]
- Del Carlo, M.; Di Marcello, M.; Perugini, M.; Ponzielli, V.; Sergi, M.; Mascini, M.; Compagnone, D. Electrochemical DNA biosensor for polycyclic aromatic hydrocarbon detection. Microchim. Acta 2008, 163, 163–169. [Google Scholar] [CrossRef]
- Liu, S.; Wei, M.; Zheng, X.; Xu, S.; Zhou, C. Highly sensitive and selective sensing platform based on π–π interaction between tricyclic aromatic hydrocarbons with thionine–graphene composite. Anal. Chim. Acta 2014, 826, 21–27. [Google Scholar] [CrossRef]
- Zheng, X.; Tian, D.; Duan, S.; Wei, M.; Liu, S.; Zhou, C.; Li, Q.; Wu, G. Polypyrrole composite film for highly sensitive and selective electrochemical determination sensors. Electrochim. Acta 2014, 130, 187–193. [Google Scholar] [CrossRef]
- Du, C.; Hu, Y.; Li, Y.; Fan, L.; Li, X. Electrochemical detection of benzo (a) pyrene in acetonitrile–water binary medium. Talanta 2015, 138, 46–51. [Google Scholar] [CrossRef]
- Kanyika-Mbewe, C.; Thole, B.; Makwinja, R.; Kaonga, C.C. Monitoring of carbaryl and cypermethrin concentrations in water and soil in Southern Malawi. Environ. Monit. Assess. 2020, 192, 595. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, B.; Tang, Q. Trace determination of dichlorvos in environmental samples by room temperature ionic liquid-based dispersive liquid-phase microextraction combined with HPLC. J. Chromatogr. Sci. 2012, 50, 702–708. [Google Scholar] [CrossRef]
- Azab, H.A.; Anwar, Z.; Rizk, M.; Khairy, G.M.; El-Asfoury, M. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex. J. Lumin. 2015, 157, 371–382. [Google Scholar] [CrossRef]
- Hanedar, A.; Tanik, A.; Girgin, E.; Güneş, E.; Karakaya, N.; Gorgun, E.; Gökdereli, G.; Çankaya, B.F.; Kimence, T.; Karaaslan, Y. Utility of a source-related matrix in basin management studies: A practice on a sub-Basin in Turkey. Environ. Sci. Pollut. Res. 2021, 28, 50329–50343. [Google Scholar] [CrossRef]
- Kucuk, E.; Pilevneli, T.; Onder Erguven, G.; Aslan, S.; Olgun, E.Ö.; Canlı, O.; Unlu, K.; Dilek, F.B.; Ipek, U.; Avaz, G. Occurrence of micropollutants in the Yesilirmak River basin, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 24830–24846. [Google Scholar] [CrossRef]
- Canlı, O.; Çetintürk, K.; Öktem Olgun, E.E. Determination of 117 endocrine disruptors (EDCs) in water using SBSE TD–GC-MS/MS under the European Water Framework Directive. Anal. Bioanal. Chem. 2020, 412, 5169–5178. [Google Scholar] [CrossRef]
- Romagnoli, M.; Scarparo, A.; Catani, M.; Giannì, B.; Pasti, L.; Cavazzini, A.; Franchina, F.A. Development and validation of a GC× GC-ToFMS method for the quantification of pesticides in environmental waters. Anal. Bioanal. Chem. 2023, 415, 4545–4555. [Google Scholar] [CrossRef]
- Boonchiangma, S.; Ngeontae, W.; Srijaranai, S. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Talanta 2012, 88, 209–215. [Google Scholar] [CrossRef]
- Amelin, V.; Bol’Shakov, D.; Tretiakov, A. Identification and determination of synthetic pyrethroids, chlorpyriphos, and neonicotinoids in water by gas and liquid chromatography. J. Anal. Chem. 2012, 67, 354–359. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Fakhruddin, A.; Chowdhury, M.; Rahman, M.; Alam, M. Monitoring of selected pesticides residue levels in water samples of paddy fields and removal of cypermethrin and chlorpyrifos residues from water using rice bran. Bull. Environ. Contam. Toxicol. 2012, 89, 348–353. [Google Scholar] [CrossRef]
- McManus, S.-L.; Coxon, C.E.; Richards, K.G.; Danaher, M. Quantitative solid phase microextraction–Gas chromatography mass spectrometry analysis of the pesticides lindane, heptachlor and two heptachlor transformation products in groundwater. J. Chromatogr. A 2013, 1284, 1–7. [Google Scholar] [CrossRef]
- Rezaei, F.; Hosseini, M.-R.M. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid–liquid extraction for the determination of some organochlorinated pesticides in fish. Anal. Chim. Acta 2011, 702, 274–279. [Google Scholar] [CrossRef]
- Montory, M.; Ferrer, J.; Rivera, D.; Villouta, M.V.; Grimalt, J.O. First report on organochlorine pesticides in water in a highly productive agro-industrial basin of the Central Valley, Chile. Chemosphere 2017, 174, 148–156. [Google Scholar] [CrossRef]
- Carvalho, R.R.R.; Rodriguez, M.D.V.R.; Franco, E.S.; Beltrame, F.; Pereira, A.L.; Santos, V.S.; Araujo, W.; Rocha, B.A.; Rodrigues, J.L. DLLME-SFO-GC-MS procedure for the determination of 10 organochlorine pesticides in water and remediation using magnetite nanoparticles. Environ. Sci. Pollut. Res. 2020, 27, 45336–45348. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Huang, S.-D. Dispersive liquid–liquid microextraction with little solvent consumption combined with gas chromatography–mass spectrometry for the pretreatment of organochlorine pesticides in aqueous samples. J. Chromatogr. A 2009, 1216, 5171–5175. [Google Scholar] [CrossRef]
- Tankiewicz, M.; Biziuk, M. Fast, sensitive and reliable multi-residue method for routine determination of 34 pesticides from various chemical groups in water samples by using dispersive liquid–liquid microextraction coupled with gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 1533–1550. [Google Scholar] [CrossRef]
- Nascimento, M.M.; da Rocha, G.O.; de Andrade, J.B. Customized dispersive micro-solid-phase extraction device combined with micro-desorption for the simultaneous determination of 39 multiclass pesticides in environmental water samples. J. Chromatogr. A 2021, 1639, 461781. [Google Scholar] [CrossRef]
- Taghani, A.; Goudarzi, N.; Bagherian, G. Application of multiwalled carbon nanotubes for the preconcentration and determination of organochlorine pesticides in water samples by gas chromatography with mass spectrometry. J. Sep. Sci. 2016, 39, 4219–4226. [Google Scholar] [CrossRef]
- Chowdhury, A.Z.; Islam, M.N.; Moniruzzaman, M.; Gan, S.H.; Alam, M.K. Organochlorine insecticide residues are found in surface, irrigated water samples from several districts in Bangladesh. Bull. Environ. Contam. Toxicol. 2013, 90, 149–154. [Google Scholar] [CrossRef]
- Ding, T.-T.; Zhang, Y.-H.; Zhu, Y.; Du, S.-L.; Zhang, J.; Cao, Y.; Wang, Y.-Z.; Wang, G.-T.; He, L.-S. Deriving water quality criteria for China for the organophosphorus pesticides dichlorvos and malathion. Environ. Sci. Pollut. Res. 2019, 26, 34622–34632. [Google Scholar] [CrossRef]
- Hou, J.; Tian, Z.; Xie, H.; Tian, Q.; Ai, S. A fluorescence resonance energy transfer sensor based on quaternized carbon dots and Ellman’s test for ultrasensitive detection of dichlorvos. Sens. Actuators B Chem. 2016, 232, 477–483. [Google Scholar] [CrossRef]
- Özer, E.T.; Osman, B.; Parlak, B. An experimental design approach for the solid phase extraction of some organophosphorus pesticides from water samples with polymeric microbeads. Microchem. J. 2020, 154, 104537. [Google Scholar] [CrossRef]
- Qiu, C.; Cai, M. Ultra trace analysis of 17 organochlorine pesticides in water samples from the Arctic based on the combination of solid-phase extraction and headspace solid-phase microextraction–gas chromatography-electron-capture detector. J. Chromatogr. A 2010, 1217, 1191–1202. [Google Scholar] [CrossRef]
- Catalá-Icardo, M.; Lahuerta-Zamora, L.; Torres-Cartas, S.; Meseguer-Lloret, S. Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium (IV). J. Chromatogr. A 2014, 1341, 31–40. [Google Scholar] [CrossRef]
- D’souza, S.L.; Pati, R.K.; Kailasa, S.K. Ascorbic acid functionalized gold nanoparticles as a probe for colorimetric and visual read-out determination of dichlorvos in environmental samples. Anal. Methods 2014, 6, 9007–9014. [Google Scholar] [CrossRef]
- Dou, J.; Ding, A.; Cheng, L.; Sekar, R.; Wang, H.; Li, S. A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples. J. Environ. Sci. 2012, 24, 956–962. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Fournier, D.; Chaniotakis, N.A. Genetically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Biosens. Bioelectron. 2005, 20, 2347–2352. [Google Scholar] [CrossRef]
- Law, K.A.; Higson, S.P. Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Biosens. Bioelectron. 2005, 20, 1914–1924. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Z.; Liu, X.; Zhao, S.; Liu, S. Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens. Bioelectron. 2015, 64, 1–5. [Google Scholar] [CrossRef]
- Das Mercês Pereira, N.; de Oliveira, F.M.; Pereira, N.R.; Verly, R.M.; Souto, D.E.P.; Kubota, L.T.; Tanaka, A.A.; Damos, F.S. Ultrasensitive biosensor for detection of organophosphorus pesticides based on a macrocycle complex/carbon nanotubes composite and 1-methyl-3-octylimidazolium tetrafluoroborate as binder compound. Anal. Sci. 2015, 31, 29–35. [Google Scholar] [CrossRef]
- Ncube, S.; Madikizela, L.; Cukrowska, E.; Chimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. TrAC Trends Anal. Chem. 2018, 99, 101–116. [Google Scholar] [CrossRef]
- Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef]
- Gillissen, J.J.; Jackman, J.A.; Sut, T.N.; Cho, N.-J. Disentangling bulk polymers from adsorbed polymers using the quartz crystal microbalance. Appl. Mater. Today 2020, 18, 100460. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nakamitsu, Y.; Zheng, Y.; Takashima, Y.; Yamaguchi, H.; Harada, A. Preparation of cyclodextrin-based porous polymeric membrane by bulk polymerization of ethyl acrylate in the presence of cyclodextrin. Polymer 2019, 177, 208–213. [Google Scholar] [CrossRef]
- Fadillah, G.; Saputra, O.A.; Saleh, T.A. Trends in polymers functionalized nanostructures for analysis of environmental pollutants. Trends Environ. Anal. Chem. 2020, 26, e00084. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Lu, S.; Zhang, T.; Jin, B.; Wang, Q.; Tang, Z.; Liu, Y.; Guo, X.; Zhou, J. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Sci. Total Environ. 2019, 651, 2497–2506. [Google Scholar] [CrossRef]
- Vrana, B.; Allan, I.J.; Greenwood, R.; Mills, G.A.; Dominiak, E.; Svensson, K.; Knutsson, J.; Morrison, G. Passive sampling techniques for monitoring pollutants in water. TrAC Trends Anal. Chem. 2005, 24, 845–868. [Google Scholar] [CrossRef]
- Díaz-González, M.; Gutiérrez-Capitán, M.; Niu, P.; Baldi, A.; Jiménez-Jorquera, C.; Fernández-Sánchez, C. Electrochemical devices for the detection of priority pollutants listed in the EU water framework directive. TrAC Trends Anal. Chem. 2016, 77, 186–202. [Google Scholar] [CrossRef]
- Comnea-Stancu, I.R.; van Staden, J.K.F.; Stefan-van Staden, R.-I. Trends in recent developments in electrochemical sensors for the determination of polycyclic aromatic hydrocarbons from water resources and catchment areas. J. Electrochem. Soc. 2021, 168, 047504. [Google Scholar] [CrossRef]
- Knoll, S.; Rösch, T.; Huhn, C. Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal. Bioanal. Chem. 2020, 412, 6149–6165. [Google Scholar] [CrossRef]
- Aemig, Q.; Hélias, A.; Patureau, D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Res. 2021, 188, 116524. [Google Scholar] [CrossRef]
- Carro, N.; López, Á.; Cobas, J.; García, I.; Ignacio, M.; Mouteira, A. Development and Optimization of a Method for Organochlorine Pesticides Determination in Mussels Based on Miniaturized Matrix Solid-Phase Dispersion Combined with Gas Chromatography–Tandem Mass Spectrometry. J. Anal. Chem. 2021, 76, 603–612. [Google Scholar] [CrossRef]
- Frøkjær, E.E.; Hansen, H.R.; Hansen, M. Non-targeted and suspect screening analysis using ion exchange chromatography-Orbitrap tandem mass spectrometry reveals polar and very mobile xenobiotics in Danish drinking water. Chemosphere 2023, 339, 139745. [Google Scholar] [CrossRef]
- Kaçikoç, M.; Censur, M. Environmental monitoring of pesticide residues in surface waters of Buyuk Menderes River. Sigma J. Eng. Nat. Sci./Mühendislik Fen Bilim. Derg. 2022, 40, 762–771. [Google Scholar] [CrossRef]
- Tóth, G.; Háhn, J.; Szoboszlay, S.; Harkai, P.; Farkas, M.; Radó, J.; Göbölös, B.; Kaszab, E.; Szabó, I.; Urbányi, B. Spatiotemporal analysis of multi-pesticide residues in the largest Central European shallow lake, Lake Balaton, and its sub-catchment area. Environ. Sci. Eur. 2022, 34, 50. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Zhang, Q.; Zhang, C.; Liu, Y.; Tu, K.; Tu, J. Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnol. Lett. 2012, 34, 869–874. [Google Scholar] [CrossRef]
- Bapat, G.; Labade, C.; Chaudhari, A.; Zinjarde, S. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv. Colloid Interface Sci. 2016, 237, 1–14. [Google Scholar] [CrossRef]
- Liu, H.; Jin, P.; Zhu, F.; Nie, L.; Qiu, H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. TRAC Trends Anal. Chem. 2021, 134, 116132. [Google Scholar] [CrossRef]
- Pico, Y.; Alfarhan, A.H.; Barcelo, D. How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar. TrAC Trends Anal. Chem. 2020, 122, 115720. [Google Scholar] [CrossRef]
- Khazri, A.; Sellami, B.; Dellali, M.; Corcellas, C.; Eljarrat, E.; Barceló, D.; Beyrem, H.; Mahmoudi, E. Diastereomeric and enantiomeric selective accumulation of cypermethrin in the freshwater mussel Unio gibbus and its effects on biochemical parameters. Pestic. Biochem. Physiol. 2016, 129, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Ait-Aissa, S.; Antczak, P.; Backhaus, T.; Barceló, D.; Seiler, T.-B.; Brion, F.; Busch, W.; Chipman, K.; de Alda, M.L. Future water quality monitoring—Adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 2015, 512, 540–551. [Google Scholar] [CrossRef]
- Yamini, Y.; Safari, M. Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids. Microchem. J. 2019, 146, 134–141. [Google Scholar] [CrossRef]
- Mills, G.A.; Gravell, A.; Vrana, B.; Harman, C.; Budzinski, H.; Mazzella, N.; Ocelka, T. Measurement of environmental pollutants using passive sampling devices–an updated commentary on the current state of the art. Environ. Sci. Process. Impacts 2014, 16, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Flora, S.J. Arsenic and dichlorvos: Possible interaction between two environmental contaminants. J. Trace Elem. Med. Biol. 2016, 35, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kumar, J.; Melo, J.S.; Sandaka, B.P. Progressive development in biosensors for detection of dichlorvos pesticide: A review. J. Environ. Chem. Eng. 2021, 9, 105067. [Google Scholar] [CrossRef]
- Ivanov, Y.; Marinov, I.; Portaccio, M.; Lepore, M.; Mita, D.G.; Godjevargova, T. Flow-injection system with site-specific immobilization of acetylcholinesterase biosensor for amperometric detection of organophosphate pesticides. Biotechnol. Biotechnol. Equip. 2012, 26, 3044–3053. [Google Scholar] [CrossRef]
- Gallé, T.; Frelat, M.; Huck, V.; Bayerle, M.; Pittois, D.; Braun, C. Quantitative use of passive sampling data to derive a complete seasonal sequence of flood event loads: A case study for maize herbicides in Luxembourg. Environ. Sci. Process. Impacts 2020, 22, 294–304. [Google Scholar] [CrossRef]
- Schreiner, V.C.; Bakanov, N.; Kattwinkel, M.; Könemann, S.; Kunz, S.; Vermeirssen, E.L.; Schäfer, R.B. Sampling rates for passive samplers exposed to a field-relevant peak of 42 organic pesticides. Sci. Total Environ. 2020, 740, 140376. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.C.; Fones, G.R.; Vrana, B.; Mills, G.A. Applications for passive sampling of hydrophobic organic contaminants in water—A review. Crit. Rev. Anal. Chem. 2021, 51, 20–54. [Google Scholar] [CrossRef]
- Taylor, A.C.; Fones, G.R.; Mills, G.A. Trends in the use of passive sampling for monitoring polar pesticides in water. Trends Environ. Anal. Chem. 2020, 27, e00096. [Google Scholar] [CrossRef]
- Valenzuela, E.F.; Menezes, H.C.; Cardeal, Z.L. Passive and grab sampling methods to assess pesticide residues in water. A review. Environ. Chem. Lett. 2020, 18, 1019–1048. [Google Scholar] [CrossRef]
- Garnier, A.; Montigny, C.; Causse, L.; Spinelli, S.; Avezac, M.; Otazaghine, B.; Gonzalez, C. Synthesis of an organotin specific molecularly imprinted polymer for organotin passive sampling in seawater. Water 2022, 14, 1786. [Google Scholar] [CrossRef]
- Nguyen, M.T.; De Baat, M.L.; Van Der Oost, R.; Van Den Berg, W.; De Voogt, P. Comparative field study on bioassay responses and micropollutant uptake of POCIS, Speedisk and SorbiCell polar passive samplers. Environ. Toxicol. Pharmacol. 2021, 82, 103549. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.; Kochleus, C.; Spira, D.; Möhlenkamp, C.; Bachtin, J.; Meinecke, S.; Vermeirssen, E.L. Passive sampler phases for pesticides: Evaluation of AttractSPE™ SDB-RPS and HLB versus Empore™ SDB-RPS. Environ. Sci. Pollut. Res. 2021, 28, 11697–11707. [Google Scholar] [CrossRef] [PubMed]
- Fuchte, H.E.; Schäffer, A.; Booij, K.; Smith, K.E. Kinetic passive sampling: In situ calibration using the contaminant mass measured in parallel samplers with different thicknesses. Environ. Sci. Technol. 2020, 54, 15759–15767. [Google Scholar] [CrossRef]
- Mathon, B.; Ferreol, M.; Togola, A.; Lardy-Fontan, S.; Dabrin, A.; Allan, I.; Staub, P.-F.; Mazzella, N.; Miège, C. Polar organic chemical integrative samplers as an effective tool for chemical monitoring of surface waters–results from one-year monitoring in France. Sci. Total Environ. 2022, 824, 153549. [Google Scholar] [CrossRef]
- Berho, C.; Robert, S.; Coureau, C.; Coisy, E.; Berrehouc, A.; Amalric, L.; Bruchet, A. Estimating 42 pesticide sampling rates by POCIS and POCIS-MIP samplers for groundwater monitoring: A pilot-scale calibration. Environ. Sci. Pollut. Res. 2020, 27, 18565–18576. [Google Scholar] [CrossRef]
- Gong, X.; Li, K.; Wu, C.; Wang, L.; Sun, H. Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Environ. Anal. Chem. 2018, 17, 23–33. [Google Scholar] [CrossRef]
- Carafa, R.; Gallé, T.; Massarin, S.; Huck, V.; Bayerle, M.; Pittois, D.; Braun, C. Combining Polar Organic Chemical Integrative Samplers (POCIS) with Toxicity Testing on Microalgae to Evaluate the Impact of Herbicide Mixtures in Surface Waters. Environ. Toxicol. Chem. 2022, 41, 2667–2678. [Google Scholar] [CrossRef]
- Tarábek, P.; Vrana, B.; Chalupková, K.; Bednáriková, A.; Okšová, L.; Bystrický, P.; Leonova, N.; Konovalova, O. Examining the applicability of polar organic chemical integrative sampler for long-term monitoring of groundwater contamination caused by currently used pesticides. Sci. Total Environ. 2023, 903, 165905. [Google Scholar] [CrossRef] [PubMed]
- Farrow, L.G.; Morton, P.A.; Cassidy, R.; Floyd, S.; McRoberts, W.C.; Doody, D.G.; Jordan, P. Evaluation of Chemcatcher® passive samplers for pesticide monitoring using high-frequency catchment scale data. J. Environ. Manag. 2022, 324, 116292. [Google Scholar] [CrossRef]
- Bernard, M.; Boutry, S.; Guibal, R.; Morin, S.; Lissalde, S.; Guibaud, G.; Saüt, M.; Rebillard, J.-P.; Mazzella, N. Multivariate Tiered Approach to Highlight the Link between Large-Scale Integrated Pesticide Concentrations from Polar Organic Chemical Integrative Samplers and Watershed Land Uses. J. Agric. Food Chem. 2023, 71, 3152–3163. [Google Scholar] [CrossRef] [PubMed]
- Smedes, F.; Bakker, D.; de Weert, J. The Use of Passive Sampling in WFD Monitoring; Deltares Project; Rijkswaterstaat Centre for Water Management: Delft, The Netherlands, 2010. [Google Scholar]
- Valenzuela, E.F.; Menezes, H.C.; Cardeal, Z.L. New passive sampling device for effective monitoring of pesticides in water. Anal. Chim. Acta 2019, 1054, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Miege, C.; Schiavone, S.; Dabrin, A.; Coquery, M.; Mazzella, N.; Berho, C.; Ghestem, J.-P.; Togola, A.; Gonzalez, C.; Gonzalez, J.-L. An in situ intercomparison exercise on passive samplers for monitoring metals, polycyclic aromatic hydrocarbons and pesticides in surface waters. TrAC Trends Anal. Chem. 2012, 36, 128–143. [Google Scholar] [CrossRef]
- Harman, C.; Tollefsen, K.-E.; Bøyum, O.; Thomas, K.; Grung, M. Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). Chemosphere 2008, 72, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Vrana, B.; Klučárová, V.; Benická, E.; Abou-Mrad, N.; Amdany, R.; Horáková, S.; Draxler, A.; Humer, F.; Gans, O. Passive sampling: An effective method for monitoring seasonal and spatial variability of dissolved hydrophobic organic contaminants and metals in the Danube river. Environ. Pollut. 2014, 184, 101–112. [Google Scholar] [CrossRef]
- Khairy, M.; Muir, D.; Teixeira, C.; Lohmann, R. Spatial trends, sources, and air–water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers. Environ. Sci. Technol. 2014, 48, 9315–9324. [Google Scholar] [CrossRef]
- Ahrens, L.; Daneshvar, A.; Lau, A.E.; Kreuger, J. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A 2015, 1405, 1–11. [Google Scholar] [CrossRef]
- Jeong, Y.; Kwon, H.-a.; Jeon, H.P.; Schäffer, A.; Smith, K. Quantitative evaluation of polyethersulfone and polytetrafluoroethylene membrane sorption in a polar organic chemical integrative sampler (POCIS). Environ. Pollut. 2020, 266, 115224. [Google Scholar] [CrossRef]
- Cerrato, I.; Molina-Balmaceda, A.; Arismendi, D.; Ahumada, I.; Richter, P. Cork-based passive samplers for monitoring triclosan in water samples. Green Anal. Chem. 2022, 1, 100008. [Google Scholar] [CrossRef]
No. | Name of Priority Substance | 1 CAS Number | 2 AA-EQS Inland Surface Waters | AA-EQS Other Surface Waters | 3 MAC-EQS Inland Surface Waters | MAC-EQS Other Surface Waters | 4 US EPA MCL |
---|---|---|---|---|---|---|---|
1 | Dichlorvos | 62-73-7 | 6 × 10−4 | 6 × 10−5 | 7 × 10−4 | 7 × 10−5 | - |
2 | Heptachlor | 76-44-8 | 2 × 10−7 | 1 × 10−8 | 3 × 10−4 | 3 × 10−5 | 0.4 |
3 | Heptachlor epoxide | 1024-57-3 | 2 × 10−7 | 1 × 10−8 | 3 × 10−4 | 3 × 10−5 | 0.2 |
4 | Cypermethrin | 52315-07-8 | 8 × 10−5 | 8 × 10−6 | 6 × 10−4 | 6 × 10−5 | - |
5 | α-Cypermethrin | 67375-30-8 | 8 × 10−5 | 8 × 10−6 | 6 × 10−4 | 6 × 10−5 | - |
6 | β-Cypermethrin | 65731-84-2 | 8 × 10−5 | 8 × 10−6 | 6 × 10−4 | 6 × 10−5 | - |
7 | θ-Cypermethrin | 71697-59-1 | 8 × 10−5 | 8 × 10−6 | 6 × 10−4 | 6 × 10−5 | - |
8 | ζ-Cypermethrin | 52315-07-8 | 8 × 10−5 | 8 × 10−6 | 6 × 10−4 | 6 × 10−5 | - |
9 | Naphthalene | 91-20-3 | 2 | 2 | 130 | 130 | 0.2 |
10 | Fluoranthene | 206-44-0 | 6.3 × 10−3 | 6.3 × 10−3 | 0.12 | 0.12 | 0.2 |
11 | Anthracene | 204-371-1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |
12 | Benzo(a)pyrene | 50-32-8 | 1.7 × 10−4 | 1.7 × 10−4 | 0.27 | 0.027 | 0.2 |
13 | Benzo(b)fluoranthene | 205-99-2 | Footnote 5 | Footnote 5 | 0.017 | 0.017 | 0.2 |
14 | Benzo(g,h,i)perylene | 191-24-2 | Footnote 5 | Footnote 5 | 8.2 × 10−3 | 8.2 × 10−4 | 0.2 |
15 | Benzo(k)fluoranthene | 207-08-9 | Footnote 5 | Footnote 5 | 0.017 | 0.017 | 0.2 |
16 | Indeno(1,2,3-c,d)pyrene | 193-39-5 | Footnote 5 | Footnote 5 | Not applicable | Not applicable | 0.2 |
Thematic Areas | Specific Terms |
---|---|
Water Framework Directive | Water pollutuion, water analysis, maximum allowable concentration extration methods, maximum allowable concentration chromatography, liquid chromatography, gas chromatography, mass spectrometry, spectroscopy, electrochemical methods, biosensors. |
Polyycyclic aromatic hydrocarbons (PAH) | Water pollutuion, water analysis, maximum allowable concentration extration methods, maximum allowable concentration chromatography, liquid chromatography, gas chromatography, mass spectrometry, spectroscopy, electrochemical methods, biosensors, naphthalene, anthracene, fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene. |
Pesticides | Water pollutuion, water analysis, maximum allowable concentration extration methods, maximum allowable concentration chromatography, liquid chromatography, gas chromatography, mass spectrometry, spectroscopy, electrochemical methods, biosensors, cypermethryn, dichlorvos, heptachlor, heptachlor epoxide. |
Passive samplers | Water pollutuion, water analysis, maximum allowable concentration extration methods, maximum allowable concentration chromatography, liquid chromatography, gas chromatography, mass spectrometry, spectroscopy, electrochemical methods, biosensors, polycyclic aromatic hydrocarbons, pesticides. |
1 Instrumentation | Analytes | Sample | Extraction Type | Mode | 2 LOD | 3 LOQ | References |
---|---|---|---|---|---|---|---|
GC-MS (Rxi-PAH) | PAH | Water | PAL SPME Arrow | Thermal desroption | 0.1 × 10−3 to 0.8 × 10−3 μg/L | 0.4 × 10−3 to 0.0026 μg/L | [21] |
GC-HRMS (TR-DIOXIN-5MS) | PCB, PAH, and BDE | Surface water | SPME | Thermal desroption | / | 0.1 × 10−3 to 0.05 μg/L | [22] |
GC-MS (HP-5MS) | PAH | Water | LLE, sonication, PAL SPME Arrow | Liquid injection (splitless), thermal desorption | 0.05 to 0.23 μg/kg (flavored tobaccos and their wastes); 0.03 to 0.17 μg/kg (traditional tobaccos and their wastes); 0.1 × 10−3 to 0.8 × 10−3 μg/L (liquid samples) | 0.12 to 0.72 μg/kg (flavored tobaccos and their wastes); 0.11 to 0.55 μg/kg (traditional tobaccos and their wastes); 0.4 × 10−3 to 0.0025 μg/L (liquid samples) | [23] |
GC-ECD (Zebron ZB-5MS) | OCP | Water | SPME | Liquid injection (splitless) | 0.3 to 3.0 μg/L | 1.0 to 10.0 μg/L | [24] |
HPLC-UV (C18) | OPPs and their oxon-derivatives | Water | Selective SPE and MIP | Liquid injection | 0.07 to 0.12 μg/L | 0.23 to 0.41 μg/L | [25] |
GC-FID/MS (5% phenylmethylsilicone) | PAH | Aqueous samples | Large-volume sampling | Large-volume injection using the through oven transfer adsorption–desorption | 0.0215 to 0.211 μg/L | 0.0717 to 0.7033 μg/L | [26] |
GC×GC-TOF-MS (Rxi-5SilMS and Rxi-200) | PAH | Water and sediment | LLE followed by SPE | Liquid injection (splitless) | / | / | [27] |
GC-QqQ-MS/MS (VF-17MS Factor Four) | PAH | Wastewater | SBSE and SPE | Large-volume injection (split/splitless) | 0.001 to 0.01 μg/L | 0.005 to 0.1 μg/L | [28] |
GC-MS (Optima 5-MS) and LC-MS/MS | PAH, alkylated PAH, heterocyclic PAH (NSO-HET), and phenols | Water | LLE followed by SPE | Liquid injection | / | 0.5 × 10−3 to 2.3 × 10−3 μg/L for EPA-PAH; 0.4 × 10−3 to 2.4 × 10−3 μg/L for alkylated PAH; 0.2 × 10−3 to 0.8 × 10−3 μg/L for S-HET; 0.6 × 10−3 to 9.8 × 10−3 μg/L for O-HET; 0.2 × 10−3 to 2.1 × 10−3 μg/L for basic N-HET | [29] |
GC-FID (TR-5MS) | PAH | Seawater | Ultrasonic extraction followed by column chromatography | Liquid injection (splitless) | 0.010 to 0.49 μg/L | / | [30] |
GC-FID (Elite-5HT) | PAH | Water and sediment | LLE (water), Soxhlet extraction (sediment) | Liquid injection | 44 to 4290 μg/L | / | [31] |
GC-ECD (chrompack CP-Sil 8 CB fused-silica) | OCP | Water and fruit | HLLME | Liquid injection (split) | 0.001 to 0.03 μg/L (water), 0.005 to 0.1 μg/L (fruit) | / | [32] |
GC-MS (Rxi-5 Sil-MS) | PAH | Water | SPE | Liquid injection | 0.004 to 0.026 μg/L | 0.011 to 0.078 μg/L | [35] |
GC-ECD (CPSil8 CB) | OCP and PCB | Water and sediment | Sonication (suspended particulate phase), SPE (water), sonication (sediments) | Liquid injection (split) | 0.005 × 10−3 to 0.044 × 10−3 μg/L (suspended particulate phase), 0.004 × 10−3 to 0.110 × 10−3 μg/L (water), 0.2 × 10−3 to 4.4 μg/kg (sediments) | / | [36] |
GC-MS (DB-5) | Dichlorvos, cybutryne, terbutryn, and quinoxyfen | Water | PAL DI-SPME Arrow | Liquid injection (splitless) | 0.7 to 0.554 μg/L | 0.23 to 1.960 μg/L | [37] |
GC-MS (Rxi-PAH) | PAH | Water | PAL SPME Arrow | Thermal desroption | 0.9 × 10−3 to 0.0036 μg/L | / | [38] |
GC-APCI-MS/MS (Rtx-5MS) | OPP | Surface water | LLE | Liquid injection (splitless) | 1.25 × 10−5 to 1.25 × 10−4 μg/L | / | [39] |
HPLC-UV (LC-PAH Supelcosil) | PAH | Wastewater and sediment | LLE (wastewater), sonication (sediments) | Liquid injection | 0.01 to 0.51 μg/L | 0.03 to 1.71 μg/L | [41] |
Microfluidic devices (PDMS) and HPLC with fluorescence detection | PAH | Water | SBSE | Liquid desorption | / | 0.4 × 10−3 to 0.029 μg/L (microfluidic device) | [42] |
GC×GC-TOF-MS (Rxi-5SilMS and Rxi-200) | OCP | Water | SBSE | Liquid injection (splitless) | 0.01 × 10−3 to 0.044 × 10−3 μg/L | / | [43] |
GC-MS/MS (DB-5MS) | 33 WFD priority substances | Wastewater, surface and drinking water | DLLME | PTV | 0.1 × 10−3 to 2.6 × 10−3 μg/L | 0.3 × 10−3 to 8.8 × 10−3 μg/L | [60] |
GC-MS (HP-5MS) | 16 EPA PAH | Water | SPE | Liquid injection | / | / | [61] |
GC-MS (Zebron ZB 5) | PAH | Aqueous samples and sediment | SPE (aqueous samples), LLE (sediments) | Liquid injection (splitless) | / | 0.001 to 0.005 μg/L | [62] |
GC-MS (DB-5MS) | 16 EPA PAH | Water | SPE | Liquid injection (splitless) | 0.002 to 0.0085 μg/L | / | [63] |
GC-MS (DB-17MS) | PAH and PAH derivatives | Surface water | SPE | Liquid injection | 0.1 × 10−3 to 0.4 × 10−3 μg/L | 0.2 × 10−3 to 0.0188 μg/L | [64] |
GC-MS (HP-5MS) | PCB, PBB, pesticides, PAH, phthalate esters, alkylphenols, and bisphenol A | Wastewater | SPE | PTV | / | 0.001 to 0.198 μg/L | [65] |
GC-MS (HP-5MS) | PAH | Surface water and sediment | SPE (water), microwave digestion (sediments) followed by column chromatography | Liquid injection | 0.04 × 10−3 to 0.65 × 10−3 μg/L (water); 0.09 to 0.65 μg/kg (sediments) | / | [66] |
UHPLC-ESI-qTOF-MS/MS (Acclaim RSLC C18 column), GC-EI-MS (HP-5MS), Headspace-GC-EI-MS (DB-624MS), GC-NCI-MS (HP-5MS), ICP-MS | Metals, bisphenol A, bis(2-ethylhexyl) phthalate, prometryn, BDE, PAH, PCB, and degradation products of DDT | Surface water and sediment | Ultrasonic-assisted extraction | Water and sediment | / | / | [67] |
GC-ECD (Rtx-5MS) | OCP and pyrethroid pesticides | Water | SDME | Liquid injection (split ratio—1:5) | 0.003 to 0.6 μg/L | 0.01 to 2 μg/L | [68] |
GC-ECD (Rtx-5MS) | PAH, nitro-PAH, and quinones | Surface and groundwater | SDME | Liquid injection (splitless) | 0.01 to 0.02 μg/L | 0.05 to 0.08 μg/L | [69] |
GC-MS (Select PAH) | PAH | Tissues of freshwater mussels—Unionidae | FUSLE and DSPE | Liquid injection (splitless) | 0.25 to 0.79 μg/kg | 0.76 to 2.4 μg/kg | [70] |
GC-MS (Select PAH) | PAH | Crustacean gammarids | FUSLE and DSPE | Liquid injection (splitless) | 0.036 to 0.17 μg/kg | 0.12 to 0.56 μg/kg | [71] |
GC-FID | PAH | Seawater | Magnetic SPE (gold immobilized magnetic mesoporous silica nanoparticles) coupled with DLLME | Liquid injection | 0.002 to 0.004 μg/L | / | [72] |
GC-MS (SGE 25QC3/HT8) | PAH | Surface water | ASE | Liquid injection | [73] | ||
GC-MS (SPB 20) | 16 PAHs | Water and sediment | Column chromatography (suspended particulate phase), SPE (water), sonication (sediments) | Liquid injection | 0.01 × 10−3 to 0.1 × 10−3 μg/L (water); 0.03 × 10−3 to 0.2 × 10−3 μg/L (suspended particulate matter); 0.01 to 0.15 μg/kg (sediment) | 0.02 × 10−3 to 0.15 × 10−3 μg/L (water); 0.06 × 10−3 to 0.3 × 10−3 μg/L (suspended particulate matter); 0.03 to 0.2 μg/kg (sediment) | [74] |
HPLC-UV with fluorescence detection (C18), GC-MS (XTI-5) | PAH | Water and sediment | SPE (water), sonication (sediment) | Liquid injection | 0.0021 to 0.102 μg/L (water); 0.4 to 26.5 μg/kg (sediment) | / | [75] |
Fluorescence spectroscopy and GC-MS | PAH and pesticide | Sub-surface water | SPE | Liquid injection | 0.02 to 1.29 μg/L (fluorescence spectroscopy) | 0.07 to 4.3 μg/L (fluorescence spectroscopy) | [76] |
Microfluidic silicon/glass chips (PDMS, porous SiOCH), HPLC with fluorescence detection | PAH | Water | SBSE | Liquid desorption | / | 0.01 to 1.0 μg/L (microfluidic device) | [77] |
Electrochemical DNA biosensor, HPLC with fluorescence detection | PAH | Mytilus galloprovincialis | Solid–liquid extraction followed by column chromatography | Liquid desorption | / | / | [78] |
Sensing platform based on π–π interaction with thionine-graphene composite electrochemical method | 16 PAH with priority on phenanthrene and anthracene | Liquid sample containing 16 PAHs | / | / | 1.7823 × 10−5 μg/L | 1.7823 × 10−10 to 0.17823 μg/L | [79] |
Polypyrrole-composite-film-based electrochemical method | PAH | 0.1 mol/L sodium acetate-acetic acid solution (pH 5.0) containing PAH | / | / | 1.0 × 10−13 μg/L | / | [80] |
Electrochemical detection (polished glassy carbon electrode) | Benzo(a)pyrene | Acetonitrile–water binary medium | / | / | 1.6905 × 10−6 μg/L | / | [81] |
HPLC-DAD (Acclaim 120-C18) | Carbaryl and cypermethrin | Water and soil | LLE (water), liquid–solid extraction (soil) | Liquid injection | / | / | [82] |
HPLC-UV (Alltima C18) | Dichlorvos | Water | DLLME | Liquid injection | 0.2 μg/L | / | [83] |
HPLC-UV (Alltima C18) | Dichlorvos | Water | Ionic-liquid-based dispersive liquid-phase microextraction | Liquid injection | 0.2 μg/L | / | [83] |
Fluorescence spectroscopy | OPP (chlorpyrifos, malathion, endosulfan, and heptachlor) | Water | / | Quartz cell, excitation wavelength at 365 nm | 1.6478 × 10−4 to 4.1504 × 10−4 μg/L | / | [84] |
GC-MS (for organic compounds, narrow-bore fused-silica capillary column), ICP-MS (for metals) | WFD 45 priority substances | Water | LLE (for organic substances), microwave extraction (for metals) | / | 0.01 × 10−3 to 1 μg/L (for organic substances); 0.1 × 10−3 to 1 μg/L (for metals) | 0.01 × 10−3 to 0.3 μg/L (for organic substances); 0.03 × 10−3 to 0.03 μg/L (for metals) | [85] |
Methods for organic compounds: LC-MS/MS, GC-MS, GC-MS/MS; methods for elements: ICP-MS method | WFD Priority Substances (45 priority substances and 250 specific pollutants) | Water | SBSE for organic compounds | Liquid injections | 0.005 × 10−3 to 2 μg/L (for organic compounds); 0.021 to 100 μg/L (for elements) | / | [86] |
GC-MS/MS (HP-5MS) | 117 endocrine disruptors according to the WFD | Water | SBSE | PTV with thermal desorption | 0.01 × 10−3 to 0.005 μg/L | 0.12 × 10−3 to 0.05 μg/L | [87] |
GC×GC-TOF-MS (Rxi-5SilMS and Rxi-17SilMS) | 53 pesticides | Surface and groundwater | SPE | Liquid injection (split ratio—1:10) | 0.3 × 10−3 to 0.0022 μg/L | 0.0011 to 0.0072 μg/L | [88] |
HPLC (Waters Atlantis T3) with 484 tunable absorbance detector | Pyrethroid pesticides (tetramethrin, fenpropathrin, cypermethrin, deltamethrin, fenvalerate, and permethrin) | Fruit juice | DLLME | Liquid injection | 2 to 5 μg/L | 5 to 10 μg/L | [89] |
GC-TOF-MS (DB-17MS), GC-ECD (RtxPesticides fused silica), HPLC-DAD (Terra RP18) | Synthetic pyrethroids, chlorpyriphos, and neonicotinoids | Surface water | LLE | Liquid injection (splitless for GC) | 0.05 to 0.3 μg/L (for GC), 0.03 to 0.3 μg/L (for HPLC) | / | [90] |
HPLC | Pesticide residue | Water | LLE | Liquid injection | 0.01 μg/L | / | [91] |
GC-MS (ZB-5) | OCP (lindane, heptachlor, and heptachlor epoxide isomers) | Groundwater | SPME | Liquid injection (splitless) | / | 0.03 to 0.1 μg/L | [92] |
GC-ECD (HP-5) | OCP | Fish | Miniaturized matrix solid-phase dispersion, homogeneous LLE | Liquid injection (split ratio—1:100) | 0.4 to 1.2 μg/kg | 1.3 to 4 μg/kg | [93] |
GC-ECD (5% diphenylpolymethylsiloxane) and NI-GC-MS (5% phenyl methyl polysiloxane) | OCP | Water | SPE | Liquid injection (splitless) | / | / | [94] |
GC-MS (TR-5MS) | 10 OCP | Water | DLLME-SFO | Liquid injection (splitless) | 0.06 to 3.00 μg/L | 0.20 to 10.00 μg/L | [95] |
GC-MS (HP-5MS) | OCP | Aqueous samples | DLLME | Liquid injection (pulse splitless) | 0.4 × 10−3 to 0.0025 μg/L | / | [96] |
GC-MS (Zebron ZB-Multiresidue-1 fused silica) | 34 pesticides | Water | DLLME | Liquid injection (splitless) | 0.0032 to 0.0174 μg/L | 0.0096 to 0.052 μg/L | [97] |
GC-MS (Rtx-5MS) | 39 pesticides | Water | DMSPE | Liquid injection | 0.51 to 0.0224 μg/L | 0.00171 to 0.0745 μg/L | [98] |
GC-MS (HP-5MS) | OCP | Water | Microextraction in packed syringe | Liquid injection (splitless) | 0.02 to 0.19 μg/L | / | [99] |
GC-MS (TR-5MS) | Organochlorine insecticide residues | Water | LLE | Liquid injection | / | / | [100] |
HPLC-UV (ZORBAX Eclipse XDB-C18) | OPP (dichlorvos and malathion) | Water | SPE | Liquid injection | 0.1 to 0.4 μg/L | / | [101] |
Colorimetric analysis (quaternized carbon dots and Ellman’s test) | Dichlorvos | Juice | / | / | 1.31 × 10−11 to 5.6 × 10−6 μg/L | / | [102] |
GC-MS (HP-5MS) | OPP | Water | SPE | Liquid injection | 0.002 to 0.597 μg/L | 0.006 to 1.990 μg/L | [103] |
GC-ECD (HP-5) | 17 OCP | Water | SPE and HS-SPME | Liquid injection, thermal desroption | 0.0018 to 0.027 μg/L | / | [104] |
HPLC-DAD-CL (Kinetex C18) | Organothiophosphorus pesticides | Water | SPE | Liquid injection | 0.8 to 6 μg/L (without SPE); 1.2 to 8 μg/L (without SPE; DAD); 0.015 to 0.08 μg/L (250 mL SPE); 0.006 to 0.03 μg/L (1000 mL SPE) | 2.7 to 20 μg/L (without SPE); 4 to 27 μg/L (without SPE; DAD); 0.05 to 0.30 μg/L (250 mL SPE); 0.017 to 0.1 μg/L (1000 mL SPE) | [105] |
UV-spectrophotometry (ascorbic acid functionalized gold nanoparticles) | Dichlorvos | Water, apple juice, and wheat | Solid–liquid extraction | / | 9.4887 × 10−3 μg/L | / | [106] |
Screen-printed, amperometric biosensor | OPP | Water | / | / | 4 to 7 μg/L | / | [107] |
Acetylcholinesterase-based biosensor | Dichlorvos | Potential for different samples | / | / | 2.20976 × 10−12 μg//L | / | [108] |
Flow injection analyzer (acetylcholinesterase micro-electrode arrays) | OPP (dichlorvos, parathion, and azinphos) | Pesticide solution | / | / | 2.20976 × 10−12 to 3.17324 × 10−11 μg/L | / | [109] |
Electrochemical measurements (graphene/CdSe@ZnS or graphene/CdSe@ZnS/AChE electrode as the working electrode) | OPP | Fruit | Solid–liquid extraction | / | 2.75195 × 10−9 to 2.20976 × 10−7 μg/L | / | [110] |
Acetylcholinesterase-based biosensor | OPP (fenitrothion, dichlorvos, and malathion) | Water | / | / | 4.41952 × 10−8 to 2.31251 × 10−7 μg/L | / | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koljančić, N.; Špánik, I. Investigative Approaches for Pollutants in Water: Aligning with Water Framework Directive Maximum Allowable Concentrations. Water 2024, 16, 27. https://doi.org/10.3390/w16010027
Koljančić N, Špánik I. Investigative Approaches for Pollutants in Water: Aligning with Water Framework Directive Maximum Allowable Concentrations. Water. 2024; 16(1):27. https://doi.org/10.3390/w16010027
Chicago/Turabian StyleKoljančić, Nemanja, and Ivan Špánik. 2024. "Investigative Approaches for Pollutants in Water: Aligning with Water Framework Directive Maximum Allowable Concentrations" Water 16, no. 1: 27. https://doi.org/10.3390/w16010027
APA StyleKoljančić, N., & Špánik, I. (2024). Investigative Approaches for Pollutants in Water: Aligning with Water Framework Directive Maximum Allowable Concentrations. Water, 16(1), 27. https://doi.org/10.3390/w16010027