Three Fundamental Challenges to the Advancement of Stemflow Research and Its Integration into Natural Science
Abstract
1. Introduction
2. Whence Stemflow?
3. How Much Stemflow Is There?
4. Whither Stemflow?
5. Conclusions
- The water cycle is built drip-by-drip,
- by the ways that we encounter it.
- On land our senses, literal,
- study states and flows, terrestrial.
- From the heavens, be it sky or space,
- we also sense by GOES and GRACE.
- But some water, the plants still hide,
- between our Earthen and Heavenly eyes.
- In branches aloft, mysteries abide,
- where stemflow’s secrets still reside.
- Like, whence really comes this rivulet—
- which branches might deliver it?
- ‘Tis not from all that stemflow springs.
- To fathom this, one must have wings:
- either sprouted from our imagination
- or through technological innovation…
- though, perhaps the best wings spring from their collaboration.
- And, what’s its range of physical conditions—
- is sub-zero stemflow mere speculation?
- Might there be a bark–energy interplay
- that challenges what we think today,
- bathing stems in melt or the dawn’s dewy display?
- Then, whither does this water go—
- is it destined for the roots below?
- If so, who grasps its fleeting tide?
- The tree, its neighbors, or a weed beside?
- What portion drains past into the deep?
- And does all this change, site by site, week by week?
On Springs in the Forest*
[*The opposite of Ney’s ‘Der Wald und die Quellen’]
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ploey, J. De A Stemflow Equation for Grasses and Similar Vegetation. Catena 1982, 9, 139–152. [Google Scholar] [CrossRef]
- Rivera, D.N.; Van Stan, J.T. Grand Theft Hydro? Stemflow Interception and Redirection by Neighbouring Tradescantia ohiensis Raf. (Spiderwort) Plants. Ecohydrology 2020, 13, e2239. [Google Scholar] [CrossRef]
- Lin, M.; Sadeghi, S.M.M.; Van Stan, J.T. Partitioning of Rainfall and Sprinkler-Irrigation by Crop Canopies: A Global Review and Evaluation of Available Research. Hydrology 2020, 7, 76. [Google Scholar] [CrossRef]
- Saffigna, P.G.; Tanner, C.B.; Keeney, D.R. Non-Uniform Infiltration Under Potato Canopies Caused by Interception, Stemflow, and Hilling. Agron. J. 1976, 68, 337–342. [Google Scholar] [CrossRef]
- Gordon, D.A.R.; Coenders-Gerrits, M.; Sellers, B.A.; Sadeghi, S.M.M.; Van Stan II, J.T. Rainfall Interception and Redistribution by a Common North American Understory and Pasture Forb, Eupatorium capillifolium (Lam. Dogfennel). Hydrol. Earth Syst. Sci. 2020, 24, 4587–4599. [Google Scholar] [CrossRef]
- González-Martínez, T.M.; Williams-Linera, G.; Holwerda, F. Understory and Small Trees Contribute Importantly to Stemflow of a Lower Montane Cloud Forest. Hydrol. Process. 2017, 31, 1174–1183. [Google Scholar] [CrossRef]
- Price, A.G.; Watters, R.J. The Influence of the Overstory, Understory and Upper Soil Horizons on the Fluxes of Some Ions in a Mixed Deciduous Forest. J. Hydrol. 1989, 109, 185–197. [Google Scholar] [CrossRef]
- Williams, A.G.; Kent, M.; Ternan, J.L. Quantity and Quality of Bracken Throughfall, Stemflow and Litterflow in a Dartmoor Catchment. J. Appl. Ecol. 1987, 24, 217. [Google Scholar] [CrossRef]
- Martinez-Meza, E.; Whitford, W.G. Stemflow, Throughfall and Channelization of Stemflow by Roots in Three Chihuahuan Desert Shrubs. J. Arid. Environ. 1996, 32, 271–287. [Google Scholar] [CrossRef]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Baldi, G. Interception, Throughfall and Stemflow Partition in Drylands: Global Synthesis and Meta-Analysis. J. Hydrol. 2019, 568, 638–645. [Google Scholar] [CrossRef]
- Yue, K.; De Frenne, P.; Fornara, D.A.; Van Meerbeek, K.; Li, W.; Peng, X.; Ni, X.; Peng, Y.; Wu, F.; Yang, Y.; et al. Global Patterns and Drivers of Rainfall Partitioning by Trees and Shrubs. Glob. Chang. Biol. 2021, 27, 3350–3357. [Google Scholar] [CrossRef]
- Tonello, K.C.; Campos, S.D.; de Menezes, A.J.; Bramorski, J.; Mathias, S.L.; Lima, M.T. How Is Bark Absorbability and Wettability Related to Stemflow Yield? Observations From Isolated Trees in the Brazilian Cerrado. Front. For. Glob. Chang. 2021, 4, 650665. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Gordon, D.A. Mini-Review: Stemflow as a Resource Limitation to Near-Stem Soils. Front. Plant Sci. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.M.M.; Gordon, A.G.; Van Stan, J.T. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Cham, Switzerland, 2020; pp. 49–70. [Google Scholar]
- Levia, D.F.; Germer, S. A Review of Stemflow Generation Dynamics and Stemflow-environment Interactions in Forests and Shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Ney, C.E. Der Wald und Die Quellen; F. Pietzcker: Tübingen, Germany, 1893; 101p. [Google Scholar]
- Ney, C.E. Über Die Messung Des an Den Schäften Der Bäume Herabfließenden Wassers. Mitt. Ad Forstl. Vers. Österr 1894, 17, 115. [Google Scholar]
- Friesen, J.; Van Stan, J.T. Early European Observations of Precipitation Partitioning by Vegetation: A Synthesis and Evaluation of 19th Century Findings. Geosciences 2019, 9, 423. [Google Scholar] [CrossRef]
- Riegler, W. Beobachtungen Über Die Abfuhr Meteorischen Wassers Entlang Den Hochstämmen. Mitteilungen Der Forstl. Bundes-Vers. Wien. 1881, 2, 234–246. [Google Scholar]
- Hoppe, E. Regenmessung Unter Baumkronen; W. Frick: Wien, Austria, 1896. [Google Scholar]
- Bühler, A. Die Niederschläge Im Walde. Mitt. D Schweiz. Centn Anst. F Forstl. Vers. S 1892, 2, 127–160. [Google Scholar]
- Wehmer, C. Die Dem Laubfall Voraufgehende Vermeintliche Blattentleerung. Jüst Bot. Jahresber. 1892, 1, 152–163. [Google Scholar]
- Wollny, E. Untersuchungen Über Das Verhalten Der Atmosphärischen Niederschläge Zur Pflanze Und Zum Boden. Forschungen Geb. Agric.-Phys. 1890, 13, 316–356. [Google Scholar]
- Ebermayer, E. Untersuchungs-Ergebnisse ueber die Menge und Vertheilung der Niederschlaege in den Waeldern. Forstl. Naturw. Ztschr. 1897, 6, 283–291. [Google Scholar]
- Andréassian, V. Waters and Forests: From Historical Controversy to Scientific Debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Horton, R.E. Rainfall Interception. Mon. Weather. Rev. 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Wicht, C.L. An Approach to the Study of Rainfall Interception by Forest Canopies. J. S. Afr. For. Assoc. 1941, 6, 54–70. [Google Scholar] [CrossRef]
- Gutmann, E.D. Global Modeling of Precipitation Partitioning by Vegetation and Their Applications. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 105–120. [Google Scholar]
- Murray, S.J.; Watson, I.M.; Prentice, I.C. The Use of Dynamic Global Vegetation Models for Simulating Hydrology and the Potential Integration of Satellite Observations. Prog. Phys. Geogr. 2013, 37, 63–97. [Google Scholar] [CrossRef]
- Allen, S.T.; Aubrey, D.P.; Bader, M.Y.; Coenders-Gerrits, M.; Friesen, J.; Gutmann, E.D.; Guillemette, F.; Jiménez-Rodríguez, C.; Keim, R.F.; Klamerus-Iwan, A.; et al. Key Questions on the Evaporation and Transport of Intercepted Precipitation. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 269–280. [Google Scholar]
- Whitworth-Hulse, J.I.; Magliano, P.N.; Zeballos, S.R.; Aguiar, S.; Baldi, G. Global Patterns of Rainfall Partitioning by Invasive Woody Plants. Glob. Ecol. Biogeogr. 2021, 30, 235–246. [Google Scholar] [CrossRef]
- Levia, D.F.; Frost, E.E. A Review and Evaluation of Stemflow Literature in the Hydrologic and Biogeochemical Cycles of Forested and Agricultural Ecosystems. J. Hydrol. 2003, 274, 1–29. [Google Scholar] [CrossRef]
- Antoneli, V.; de Jesus, F.C.; Bednarz, J.A.; Thomaz, E.L. Stemflow and Throughfall in Agricultural Crops: A Synthesis. Ambiente e Agua-Interdiscip. J. Appl. Sci. 2021, 16, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Pan, Y.; Hu, R.; Chen, N. Global Quantitative Synthesis of Effects of Biotic and Abiotic Factors on Stemflow Production in Woody Ecosystems. Glob. Ecol. Biogeogr. 2021, 30, 1713–1723. [Google Scholar] [CrossRef]
- Parker, G.G. Throughfall and Stemflow in the Forest Nutrient Cycle. Adv. Ecol. Res. 1983, 13, 57–133. [Google Scholar]
- Ikawa, R. Literature Review of Stemflow Generation and Chemical Characteristics in Japanese Forests. J. Jpn. Assoc. Hydrol. Sci. 2007, 37, 187–200. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Livesley, S.; Baptista, M.D.; Thom, J.; Szota, C. Urban Trees as Green Infrastructure for Stormwater Mitigation and Use. In Forest-Water Interactions; Springer: Cham, Switzerland, 2020; pp. 397–432. [Google Scholar]
- Dowtin, A.L.; Cregg, B.C.; Nowak, D.J.; Levia, D.F. Towards Optimized Runoff Reduction by Urban Tree Cover: A Review of Key Physical Tree Traits, Site Conditions, and Management Strategies. Landsc. Urban Plan. 2023, 239, 104849. [Google Scholar] [CrossRef]
- Nooraei Beidokhti, A.; Moore, T.L. The Effects of Precipitation, Tree Phenology, Leaf Area Index, and Bark Characteristics on Throughfall Rates by Urban Trees: A Meta-Data Analysis. Urban For. Urban Green. 2021, 60, 127052. [Google Scholar] [CrossRef]
- Iida, S.; Wheeler, K.I.; Nanko, K.; Shinohara, Y.; Sun, X.; Sakai, N.; Levia, D.F. Canopy Structure Metrics Governing Stemflow Funnelling Differ between Leafed and Leafless States: Insights from a Large-Scale Rainfall Simulator. Hydrol. Process. 2021, 35. [Google Scholar] [CrossRef]
- Jeong, S.; Otsuki, K.; Shinohara, Y.; Inoue, A.; Ichihashi, R. Stemflow Estimation Models for Japanese Cedar and Cypress Plantations Using Common Forest Inventory Data. Agric. For. Meteorol. 2020, 290, 107997. [Google Scholar] [CrossRef]
- Levia, D.F.; Michalzik, B.; Näthe, K.; Bischoff, S.; Richter, S.; Legates, D.R. Differential Stemflow Yield from European Beech Saplings: The Role of Individual Canopy Structure Metrics. Hydrol. Process. 2015, 29, 43–51. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Iida, S.; Germer, S.; Llorens, P.; Michalzik, B.; Nanko, K.; Tischer, A.; Levia, D.F. Expressing Stemflow Commensurate with Its Ecohydrological Importance. Adv. Water Resour. 2018, 121, 472–479. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Link, T.E.; Keim, R.F.; Van Stan, J.T. Storage and Routing of Precipitation through Canopies. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Cham, Switzerland, 2020; pp. 17–34. [Google Scholar]
- Mendieta-Leiva, G.; Porada, P.; Bader, M.Y. Interactions of Epiphytes with Precipitation Partitioning. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 133–146. [Google Scholar]
- Van Stan, J.T.; Morris, C.E.; Aung, K.; Kuzyakov, Y.; Magyar, D.; Rebollar, E.A.; Remus-emsermann, M.N.; Uroz, S.; Vandenkoornhuyse, P. Precipitation Partitioning-Hydrologic Highways between Microbial Communities of the Plant Microbiome? In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Aubrey, D.P. Relevance of Precipitation Partitioning to the Tree Water and Nutrient Balance. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 147–162. [Google Scholar]
- Nowak, D.J.; Coville, R.; Endreny, T.A.; Abdi, R.; Van Stan, J.T. Valuing Urban Tree Impacts on Precipitation Partitioning. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Cham, Switzerland, 2020; pp. 253–268. [Google Scholar]
- Hildebrandt, A.; Al Aufi, M.; Amerjeed, M.; Shammas, M.; Eltahir, E.A.B. Ecohydrology of a Seasonal Cloud Forest in Dhofar: 1. Field Experiment. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Bittencourt, P.R.L.; de V. Barros, F.; Eller, C.B.; Müller, C.S.; Oliveira, R.S. The Fog Regime in a Tropical Montane Cloud Forest in Brazil and Its Effects on Water, Light and Microclimate. Agric. For. Meteorol. 2019, 265, 359–369. [Google Scholar] [CrossRef]
- McJannet, D.; Marano, J.; Petheram, C.; Tavener, N.; Greenwood, D. Quantifying Rainfall and Cloud Water Interception in Upland Forests of Norfolk Island. Hydrol. Process. 2023, 37, e14945. [Google Scholar] [CrossRef]
- McJannet, D.; Wallace, J.; Reddell, P. Precipitation Interception in Australian Tropical Rainforests: II. Altitudinal Gradients of Cloud Interception, Stemflow, Throughfall and Interception. Hydrol. Process. Int. J. 2007, 21, 1703–1718. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T.; Tamaki, M. Comparative Field Study on Precipitation, Throughfall, Stemflow, Fog Water, and Atmospheric Aerosol and Gases at Urban and Rural Sites in Japan. Sci. Total Environ. 2006, 366, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Shure, D.J.; Lewis, A.J. Dew Formation and Stem Flow on Common Ragweed (Ambrosia artemisiifolia). Ecology 1973, 54, 1152–1155. [Google Scholar] [CrossRef]
- Herwitz, S.R.; Levia, D.F. Mid-winter Stemflow Drainage from Bigtooth Aspen (Populus grandidentata Michx.) in Central Massachusetts. Hydrol. Process. 1997, 11, 169–175. [Google Scholar] [CrossRef]
- Miller, D.H. Transport of Intercepted Snow from Trees during Snow Storms; Res. Paper PSW-RP-033; US Department of Agriculture, Forest Service, Pacific Southwest. Forest & Range Experiment Station: Berkeley, CA, USA, 1966; Volume 33, 30p.
- Rowe, P.B.; Hendrix, T.M. Interception of Rain and Snow by Second-growth Ponderosa Pine. Trans. Am. Geophys. Union 1951, 32, 903–908. [Google Scholar]
- Levia, D.F. Differential Winter Stemflow Generation under Contrasting Storm Conditions in a Southern New England Broad-leaved Deciduous Forest. Hydrol. Process. 2004, 18, 1105–1112. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W. Leaf Surface Structures Enable the Endemic Namib Desert Grass Stipagrostis sabulicola to Irrigate Itself with Fog Water. J. R. Soc. Interface 2012, 9, 1965–1974. [Google Scholar] [CrossRef]
- Wang, L.; Kaseke, K.F.; Ravi, S.; Jiao, W.; Mushi, R.; Shuuya, T.; Maggs-Kölling, G. Convergent Vegetation Fog and Dew Water Use in the Namib Desert. Ecohydrology 2019, 12, e2130. [Google Scholar] [CrossRef]
- Ilek, A.; Siegert, C.M.; Wade, A. Hygroscopic Contributions to Bark Water Storage and Controls Exerted by Internal Bark Structure over Water Vapor Absorption. Trees 2021, 35, 831–843. [Google Scholar] [CrossRef]
- Ilek, A.; Kucza, J.; Morkisz, K. Hygroscopicity of the Bark of Selected Forest Tree Species. iForest 2017, 10, 220–226. [Google Scholar] [CrossRef]
- Levia, D.F.; Underwood, S.J. Snowmelt Induced Stemflow in Northern Hardwood Forests: A Theoretical Explanation on the Causation of a Neglected Hydrological Process. Adv. Water Resour. 2004, 27, 121–128. [Google Scholar] [CrossRef]
- Raleigh, M.S.; Gutmann, E.D.; Van Stan, J.T.; Burns, S.P.; Blanken, P.D.; Small, E.E. Challenges and Capabilities in Estimating Snow Mass Intercepted in Conifer Canopies with Tree Sway Monitoring. Water Resour. Res. 2022, 58, e2021WR030972. [Google Scholar] [CrossRef]
- Herwitz, S.R. Infiltration-excess Caused by Stemflow in a Cyclone-prone Tropical Rainforest. Earth Surf. Process Landf. 1986, 11, 401–412. [Google Scholar] [CrossRef]
- Madakumbura, G.D.; Kim, H.; Utsumi, N.; Shiogama, H.; Fischer, E.M.; Seland, Ø.; Scinocca, J.F.; Mitchell, D.M.; Hirabayashi, Y.; Oki, T. Event-to-Event Intensification of the Hydrologic Cycle from 1.5 °C to a 2 °C Warmer World. Sci. Rep. 2019, 9, 3483. [Google Scholar] [CrossRef]
- Creed, I.F.; Hwang, T.; Lutz, B.; Way, D. Climate Warming Causes Intensification of the Hydrological Cycle, Resulting in Changes to the Vernal and Autumnal Windows in a Northern Temperate Forest. Hydrol. Process. 2015, 29, 3519–3534. [Google Scholar] [CrossRef]
- Gloor, M.; Brienen, R.J.W.; Galbraith, D.; Feldpausch, T.R.; Schöngart, J.; Guyot, J.-L.; Espinoza, J.C.; Lloyd, J.; Phillips, O.L. Intensification of the Amazon Hydrological Cycle over the Last Two Decades. Geophys. Res. Lett. 2013, 40, 1729–1733. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Hildebrandt, A.; Friesen, J.; Metzger, J.C.; Yankine, S.A. Spatial Variablity and Temporal Stability of Local Net Precipitation Patterns. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Cham, Switzerland, 2020; pp. 89–104. [Google Scholar]
- Lian, X.; Zhao, W.; Gentine, P. Recent Global Decline in Rainfall Interception Loss Due to Altered Rainfall Regimes. Nat. Commun. 2022, 13, 7642. [Google Scholar] [CrossRef]
- Guo, L.; Mount, G.J.; Hudson, S.; Lin, H.; Levia, D. Pairing Geophysical Techniques Improves Understanding of the Near-Surface Critical Zone: Visualization of Preferential Routing of Stemflow along Coarse Roots. Geoderma 2020, 357, 113953. [Google Scholar] [CrossRef]
- Di Prima, S.; Fernandes, G.; Marras, E.; Giadrossich, F.; Stewart, R.D.; Abou Najm, M.R.; Winiarski, T.; Mourier, B.; Angulo-Jaramillo, R.; Comegna, A.; et al. Evaluating Subsurface Flow Connectivity in a Pine-Covered Hillslope with Stemflow Infiltration and Ground-Penetrating Radar Surveys. J. Hydrol. 2023, 620, 129527. [Google Scholar] [CrossRef]
- Pinos, J.; Flury, M.; Latron, J.; Llorens, P. Routing Stemflow Water through the Soil via Preferential Flow: A Dual-Labelling Approach with Artificial Tracers. Hydrol. Earth Syst. Sci. 2023, 27, 2865–2881. [Google Scholar] [CrossRef]
- Hemr, O.; Vichta, T.; Brychtová, M.; Kupec, P.; Žižlavská, N.; Tomášová, G.; Deutscher, J. Stemflow Infiltration Hotspots Near-Tree Stems along a Soil Depth Gradient in a Mixed Oak–Beech Forest. Eur. J. For. Res. 2023, 142, 1385–1400. [Google Scholar] [CrossRef]
- Spencer, S.A.; van Meerveld, H.J. Double Funnelling in a Mature Coastal British Columbia Forest: Spatial Patterns of Stemflow after Infiltration. Hydrol. Process. 2016, 30, 4185–4201. [Google Scholar] [CrossRef]
- Llorens, P.; Latron, J.; Carlyle-Moses, D.E.; Näthe, K.; Chang, J.L.; Nanko, K.; Iida, S.; Levia, D.F. Stemflow Infiltration Areas into Forest Soils around American Beech (Fagus grandifolia Ehrh.) Trees. Ecohydrology 2022, 15, e2369. [Google Scholar] [CrossRef]
- Friesen, J. Flow Pathways of Throughfall and Stemflow through the Subsurface. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 215–228. [Google Scholar]
- Ow, L.F.; Ghosh, S. Growth of Street Trees in Urban Ecosystems: Structural Cells and Structural Soil. J. Urban Ecol. 2017, 3, jux017. [Google Scholar] [CrossRef][Green Version]
- Lantini, L.; Alani, A.M.; Giannakis, I.; Benedetto, A.; Tosti, F. Application of Ground Penetrating Radar for Mapping Tree Root System Architecture and Mass Density of Street Trees. Adv. Transp. Stud. 2019, 3, 51–62. [Google Scholar][Green Version]
- Smith, I.A.; Templer, P.H.; Hutyra, L.R. Water Sources for Street Trees in Mesic Urban Environments. Sci. Total Environ. 2023, 908, 168411. [Google Scholar] [CrossRef]
- Andersson, T. Influence of Stemflow and Throughfall from Common Oak (Quercusrobur) on Soil Chemistry and Vegetation Patterns. Can. J. For. Res. 1991, 21, 917–924. [Google Scholar] [CrossRef]
- Yu, H.; Fan, J.; Niu, Y.; Zhu, W.; Huang, J. Review on the Influence of Bushwood Stem Flow and Root-Induced Preferential Flow on the “Soil Fertile Island Effect” of Nebkha. Acta Agrestia Sin. 2019, 27, 1–7. [Google Scholar]
- Ptatscheck, C.; Milne, P.C.; Traunspurger, W. Is Stemflow a Vector for the Transport of Small Metazoans from Tree Surfaces down to Soil? BMC Ecol. 2018, 18, 43. [Google Scholar] [CrossRef]
- Qualls, R.G. Role of Precipitation Partitioning in Litter Biogeochemistry. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 163–182. [Google Scholar]
- Moore, L.D.; Van Stan, J.T.; Gay, T.E.; Rosier, C.; Wu, T. Alteration of Soil Chitinolytic Bacterial and Ammonia Oxidizing Archaeal Community Diversity by Rainwater Redistribution in an Epiphyte-Laden Quercus virginiana Canopy. Soil. Biol. Biochem. 2016, 100, 33–41. [Google Scholar] [CrossRef]
- Porada, P.; Giordani, P. Bark Water Storage Plays Key Role for Growth of Mediterranean Epiphytic Lichens. Front. For. Glob. Chang. 2021, 4, 668682. [Google Scholar] [CrossRef]
- de Albuquerque, N.M.; Ruiz-Esparza, J.; da Rocha, P.A.; Beltrão-Mendes, R.; Ferrari, S.F. Spontaneous Ingestion of Water by a Free-Ranging Maned Sloth, Bradypus Torquatus, in the Ibura National Forest, Northeastern Brazil. Behaviour 2021, 158, 177–193. [Google Scholar] [CrossRef]
- Mella, V.S.A.; Orr, C.; Hall, L.; Velasco, S.; Madani, G. An Insight into Natural Koala Drinking Behaviour. Ethology 2020, 126, 858–863. [Google Scholar] [CrossRef]
- Sharma, N.; Huffman, M.A.; Gupta, S.; Nautiyal, H.; Mendonça, R.; Morino, L.; Sinha, A. Watering Holes: The Use of Arboreal Sources of Drinking Water by Old World Monkeys and Apes. Behav. Process. 2016, 129, 18–26. [Google Scholar] [CrossRef]
- Delgado-Martínez, C.M.; Cudney-Valenzuela, S.J.; Mendoza, E. Camera Trapping Reveals Multispecies Use of Water-filled Tree Holes by Birds and Mammals in a Neotropical Forest. Biotropica 2022, 54, 262–267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Stan, J.T., II; Pinos, J. Three Fundamental Challenges to the Advancement of Stemflow Research and Its Integration into Natural Science. Water 2024, 16, 117. https://doi.org/10.3390/w16010117
Van Stan JT II, Pinos J. Three Fundamental Challenges to the Advancement of Stemflow Research and Its Integration into Natural Science. Water. 2024; 16(1):117. https://doi.org/10.3390/w16010117
Chicago/Turabian StyleVan Stan, John T., II, and Juan Pinos. 2024. "Three Fundamental Challenges to the Advancement of Stemflow Research and Its Integration into Natural Science" Water 16, no. 1: 117. https://doi.org/10.3390/w16010117
APA StyleVan Stan, J. T., II, & Pinos, J. (2024). Three Fundamental Challenges to the Advancement of Stemflow Research and Its Integration into Natural Science. Water, 16(1), 117. https://doi.org/10.3390/w16010117