# Seasonal Streamflow Forecast in the Tocantins River Basin, Brazil: An Evaluation of ECMWF-SEAS5 with Multiple Conceptual Hydrological Models

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Hydrological Models

#### 2.1.1. HYMOD Model

#### 2.1.2. GR4J Model

#### 2.1.3. SMAP Model

#### 2.1.4. HBV Model

#### 2.2. ECMWF-SEAS5 Data

#### 2.3. Post-Processing Procedure

#### 2.4. Performance Metrics

## 3. Case Study

#### 3.1. Overview and Data

#### 3.2. Results Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Maurer, E.P.; Lettenmaier, D.P. Potential effects of long-lead hydrologic predictability on Missouri River main-stem reservoirs. J. Clim.
**2004**, 17, 174–186. [Google Scholar] [CrossRef] - Tian, F.; Li, Y.; Zhao, T.; Hu, H.; Pappenberger, F.; Jiang, Y.; Lu, H. Evaluation of the ECMWF System 4 climate forecasts for streamflow forecasting in the Upper Hanjiang River Basin. Hydrol. Res.
**2018**, 49, 1864–1879. [Google Scholar] [CrossRef] - Graham, N.E.; Georgakakos, K.P. Toward understanding the value of climate information for multiobjective reservoir management under present and future climate and demand scenarios. J. Appl. Meteorol. Climatol.
**2010**, 49, 557–573. [Google Scholar] [CrossRef] - Xu, W.; Zhang, C.; Peng, Y.; Fu, G.; Zhou, H. A two stage B ayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts. Water Resour. Res.
**2014**, 50, 9267–9286. [Google Scholar] [CrossRef] - Ávila, L.; Mine, M.R.; Kaviski, E. Probabilistic long-term reservoir operation employing copulas and implicit stochastic optimization. Stoch. Environ. Res. Risk Assess.
**2020**, 34, 931–947. [Google Scholar] [CrossRef] - Li, H.; Liu, P.; Guo, S.; Ming, B.; Cheng, L.; Yang, Z. Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization. Appl. Energy
**2019**, 238, 863–875. [Google Scholar] [CrossRef] - DelSole, T. Predictability and information theory. Part I: Measures of predictability. J. Atmos. Sci.
**2004**, 61, 2425–2440. [Google Scholar] [CrossRef] - Bazile, R.; Boucher, M.A.; Perreault, L.; Leconte, R. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate. Hydrol. Earth Syst. Sci.
**2017**, 21, 5747–5762. [Google Scholar] [CrossRef] - Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.; Pain, C. Long lead-time daily and monthly streamflow forecasting using machine learning methods. J. Hydrol.
**2020**, 590, 125376. [Google Scholar] [CrossRef] - Tyralis, H.; Papacharalampous, G.; Langousis, A. Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms. Neural Comput. Appl.
**2021**, 33, 3053–3068. [Google Scholar] [CrossRef] - Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol.
**2011**, 399, 132–140. [Google Scholar] [CrossRef] - Zhang, H.; Yang, Q.; Shao, J.; Wang, G. Dynamic streamflow simulation via online gradient-boosted regression tree. J. Hydrol. Eng.
**2019**, 24, 04019041. [Google Scholar] [CrossRef] - Solomatine, D.P.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches. J. Hydroinform.
**2008**, 10, 3–22. [Google Scholar] [CrossRef] - Zhao, T.; Schepen, A.; Wang, Q. Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability modelling approach. J. Hydrol.
**2016**, 541, 839–849. [Google Scholar] [CrossRef] - Hadi, S.J.; Tombul, M. Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination. J. Hydrol.
**2018**, 561, 674–687. [Google Scholar] [CrossRef] - Day, G.N. Extended streamflow forecasting using NWSRFS. J. Water Resour. Plan. Manag.
**1985**, 111, 157–170. [Google Scholar] [CrossRef] - Faber, B.A.; Stedinger, J. Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. J. Hydrol.
**2001**, 249, 113–133. [Google Scholar] [CrossRef] - Sabzipour, B.; Arsenault, R.; Brissette, F. Evaluation of the potential of using subsets of historical climatological data for ensemble streamflow prediction (ESP) forecasting. J. Hydrol.
**2021**, 595, 125656. [Google Scholar] [CrossRef] - Harrigan, S.; Prudhomme, C.; Parry, S.; Smith, K.; Tanguy, M. Benchmarking ensemble streamflow prediction skill in the UK. Hydrol. Earth Syst. Sci.
**2018**, 22, 2023–2039. [Google Scholar] [CrossRef] - Fan, F.M.; Collischonn, W.; Quiroz, K.; Sorribas, M.; Buarque, D.; Siqueira, V. Flood forecasting on the Tocantins River using ensemble rainfall forecasts and real-time satellite rainfall estimates. J. Flood Risk Manag.
**2016**, 9, 278–288. [Google Scholar] [CrossRef] - Keteklahijani, V.K.; Alimohammadi, S.; Fattahi, E. Predicting changes in monthly streamflow to Karaj dam reservoir, Iran, in climate change condition and assessing its uncertainty. Ain Shams Eng. J.
**2019**, 10, 669–679. [Google Scholar] [CrossRef] - Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev.
**2019**, 12, 1087–1117. [Google Scholar] [CrossRef] - Ferreira, G.W.; Reboita, M.S.; Drumond, A. Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America. Climate
**2022**, 10, 128. [Google Scholar] [CrossRef] - Darbandsari, P.; Coulibaly, P. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud.
**2020**, 31, 100730. [Google Scholar] [CrossRef] - Yang, D.; Herath, S.; Musiake, K. Comparison of different distributed hydrological models for characterization of catchment spatial variability. Hydrol. Process.
**2000**, 14, 403–416. [Google Scholar] [CrossRef] - Staudinger, M.; Stahl, K.; Seibert, J.; Clark, M.; Tallaksen, L. Comparison of hydrological model structures based on recession and low flow simulations. Hydrol. Earth Syst. Sci.
**2011**, 15, 3447–3459. [Google Scholar] [CrossRef] - Ghimire, U.; Agarwal, A.; Shrestha, N.K.; Daggupati, P.; Srinivasan, G.; Than, H.H. Applicability of lumped hydrological models in a data-constrained river basin of Asia. J. Hydrol. Eng.
**2020**, 25, 05020018. [Google Scholar] [CrossRef] - Jiang, T.; Chen, Y.D.; Xu, C.y.; Chen, X.; Chen, X.; Singh, V.P. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol.
**2007**, 336, 316–333. [Google Scholar] [CrossRef] - Jaiswal, R.; Ali, S.; Bharti, B. Comparative evaluation of conceptual and physical rainfall–runoff models. Appl. Water Sci.
**2020**, 10, 48. [Google Scholar] [CrossRef] - Ávila, L.; Silveira, R.; Campos, A.; Rogiski, N.; Gonçalves, J.; Scortegagna, A.; Freita, C.; Aver, C.; Fan, F. Comparative Evaluation of Five Hydrological Models in a Large-Scale and Tropical River Basin. Water
**2022**, 14, 3013. [Google Scholar] [CrossRef] - Woldemeskel, F.; McInerney, D.; Lerat, J.; Thyer, M.; Kavetski, D.; Shin, D.; Tuteja, N.; Kuczera, G. Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrol. Earth Syst. Sci.
**2018**, 22, 6257–6278. [Google Scholar] [CrossRef] - Naeini, M.R.; Analui, B.; Gupta, H.; Duan, Q.; Sorooshian, S. Three decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: Review and applications. Sci. Iran.
**2019**, 26, 2015–2031. [Google Scholar] - Boyle, D.P. Multicriteria Calibration of Hydrologic Models. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2001. [Google Scholar]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol.
**2003**, 279, 275–289. [Google Scholar] [CrossRef] - Grouillet, B.; Ruelland, D.; Vaittinada Ayar, P.; Vrac, M. Sensitivity analysis of runoff modeling to statistical downscaling models in the western Mediterranean. Hydrol. Earth Syst. Sci.
**2016**, 20, 1031–1047. [Google Scholar] [CrossRef] - Tian, Y.; Xu, Y.P.; Zhang, X.J. Assessment of climate change impacts on river high flows through comparative use of GR4J, HBV and Xinanjiang models. Water Resour. Manag.
**2013**, 27, 2871–2888. [Google Scholar] [CrossRef] - Traore, V.B.; Sambou, S.; Tamba, S.; Fall, S.; Diaw, A.T.; Cisse, M.T. Calibrating the rainfall-runoff model GR4J and GR2M on the Koulountou river basin, a tributary of the Gambia river. Am. J. Environ. Prot.
**2014**, 3, 36–44. [Google Scholar] [CrossRef] - Hublart, P.; Ruelland, D.; García De Cortázar Atauri, I.; Ibacache, A. Reliability of a conceptual hydrological model in a semi-arid Andean catchment facing water-use changes. In Proceedings of the International Association of Hydrological Sciences, Koblenz, Germany, 13–16 October2015; Volume 371, pp. 203–209. [Google Scholar]
- Lopes, J.E.G.; Braga Jr, B.; Conejo, J. SMAP–A simplified hydrologic model. In Applied Modeling in Catchment Hydrology; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1982. [Google Scholar]
- Operador Nacional do Sistema Elétrico. Amplicação do Modelo SMAP/ONS Para Previsão de vazõEs no âmbito do SIN; ONS 0097/2018-RV3; Operador Nacional do Sistema Elétrico: Rio de Janeiro, Brazil, 2018.
- Cavalcante, M.R.G.; da Cunha Luz Barcellos, P.; Cataldi, M. Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: Part I—Calibration watershed through hydrological SMAP model. Nat. Hazards
**2020**, 102, 1117–1134. [Google Scholar] [CrossRef] - da Cunha Luz Barcellos, P.; Cataldi, M. Flash flood and extreme rainfall forecast through one-way coupling of WRF-SMAP models: Natural hazards in Rio de Janeiro state. Atmosphere
**2020**, 11, 834. [Google Scholar] [CrossRef] - Maciel, G.M.; Cabral, V.A.; Marcato, A.L.M.; Júnior, I.C.S.; Honório, L.D.M. Daily Water Flow Forecasting via Coupling Between SMAP and Deep Learning. IEEE Access
**2020**, 8, 204660–204675. [Google Scholar] [CrossRef] - Singh, V.P. (Ed.) Computer Models of Watershed Hydrology; Water Res. Publ.: Highlands Ranch, CO, USA, 1992; pp. 443–476. [Google Scholar]
- Aghakouchak, A.; Habib, E. Application of a conceptual hydrologic model in teaching hydrologic processes. Int. J. Eng. Educ.
**2010**, 26, 963–973. [Google Scholar] - Andréasson, J.; Bergström, S.; Carlsson, B.; Graham, L.P.; Lindström, G. Hydrological change–climate change impact simulations for Sweden. AMBIO J. Hum. Environ.
**2004**, 33, 228–234. [Google Scholar] [CrossRef] - Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol.
**2012**, 456, 12–29. [Google Scholar] [CrossRef] - Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol.
**1970**, 10, 282–290. [Google Scholar] [CrossRef] - Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng.
**1999**, 4, 135–143. [Google Scholar] [CrossRef] - Hersbach, H. Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather. Forecast.
**2000**, 15, 559–570. [Google Scholar] [CrossRef] - Trambauer, P.; Werner, M.; Winsemius, H.; Maskey, S.; Dutra, E.; Uhlenbrook, S. Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa. Hydrol. Earth Syst. Sci.
**2015**, 19, 1695–1711. [Google Scholar] [CrossRef] - Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett.
**2006**, 27, 861–874. [Google Scholar] [CrossRef] - Agência Nacional de Águas. Plano Estratégico de Recursos Hídricos da Bacia Hidrográfica dos Rios Tocantins e Araguaia: Relatório e síntese; Agência Nacional de Águas: Brasília, Brazil, 2009; p. 256.
- Fan, F.M.; Schwanenberg, D.; Collischonn, W.; Weerts, A. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil. J. Hydrol. Reg. Stud.
**2015**, 4, 196–227. [Google Scholar] [CrossRef] - Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z.
**2013**, 22, 711–728. [Google Scholar] [CrossRef] - Junqueira, R.; Viola, M.R.; de Mello, C.R.; Vieira-Filho, M.; Alves, M.V.; Amorim, J.D.S. Drought severity indexes for the Tocantins River Basin, Brazil. Theor. Appl. Climatol.
**2020**, 141, 465–481. [Google Scholar] [CrossRef] - McNaughton, K.; Jarvis, P. Using the Penman-Monteith equation predictively. Agric. Water Manag.
**1984**, 8, 263–278. [Google Scholar] [CrossRef] - Belotti, J.; Mendes, J.J.; Leme, M.; Trojan, F.; Stevan, S.L.; Siqueira, H. Comparative study of forecasting approaches in monthly streamflow series from Brazilian hydroelectric plants using Extreme Learning Machines and Box & Jenkins models. J. Hydrol. Hydromech.
**2021**, 69, 180–195. [Google Scholar] - Lima, C.H.; Lall, U. Climate informed monthly streamflow forecasts for the Brazilian hydropower network using a periodic ridge regression model. J. Hydrol.
**2010**, 380, 438–449. [Google Scholar] [CrossRef] - Crochemore, L.; Ramos, M.H.; Pappenberger, F.; Perrin, C. Seasonal streamflow forecasting by conditioning climatology with precipitation indices. Hydrol. Earth Syst. Sci.
**2017**, 21, 1573–1591. [Google Scholar] [CrossRef]

**Figure 3.**Location of the Tocantins River Basin and hydrological regimes at six hydropower plants. Black line represents monthly mean streamflow. Red shaded areas represent the 10th and 90th quantiles.

**Figure 4.**(

**a**) Comparison of the hindcast and observed daily climatology; (

**b**) Cumulative precipitation between the observed data, the hindcast daily climatology, the raw ensemble mean, and the corrected ensemble mean for the period between 1 March 2017 and 30 September 2017.

**Figure 6.**Hydrographs obtained for the seasonal forecasts (corrected and uncorrected) using ECMWF-SEAS5 by all hydrological models for the period 2017–2019 at the Estreito UHE.

**Figure 7.**Error bars (with a 95% confidence level) of the PBIAS obtained for each hydrological model as a function of the lead time. The points represent the median.

**Figure 8.**Error bars (with a 95% confidence level) of the NSE obtained for each hydrological model as a function of the lead time. The points represent the median.

**Figure 9.**Error bars (with a 95% confidence level) of the NSElog obtained for each hydrological model as a function of the lead time. The points represent the median.

**Figure 10.**Error bars (with a 95% confidence level) of the DM obtained for each hydrological model as a function of the lead time. The points represent the median.

**Figure 11.**Plots of relative error versus forecasted streamflow at three hydropower plants. Red dots represent the error of the uncorrected forecasts, whereas black dots represent the errors of the corrected forecasts.

**Figure 12.**Error bars of the continuous ranked probability skill score (CRPSS) as a function of the lead time for each hydrological model. The points and error bars denote the medians and the 95% confidence levels (CLs).

**Figure 13.**ROC curves for the Lajeado inflows with different thresholds (Q90, Q75, Q50, Q25, and Q10). The black line represents the random guess prediction.

**Figure 14.**Comparison of the AUC for the corrected and uncorrected forecasts for all hydrological models, considering Q90, Q75, Q25, and Q10 as thresholds.

**Table 1.**Characteristics of the model structure of the conceptual hydrologic models. P: Daily precipitation; PET: Potential evapotranspiration; LMT: Long-term monthly temperature; LMPET: Long-term monthly potential evapotranspiration.

Model Feature | GR4J | HYMOD | HBV | SMAP |
---|---|---|---|---|

Parameters | 4 | 5 | 11 | 11 |

Input data | P; PET | P; PET | P; T; LMT; LMPET | P; PET |

Conceptual storage | Production soil storage | Soil moisture layer | Soil moisture layer | Upper soil reservoir |

Routing soil storage | Quick flow reservoirs | Upper-zone storage | Second upper-soil reservoir | |

Slow flow reservoir | Lower-zone storage | Lower soil reservoir | ||

Ground storage | ||||

Type of flows | Fast flow | Surface flow | Surface flow | Surface flow |

Slow flow | Ground water flow | Base flow | Base flow |

Forecasted Outcome | Observed Outcome | |
---|---|---|

True | False | |

True | True positive (A) | False positive (B) |

False | False negative (C) | True negative (D) |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ávila, L.; Silveira, R.; Campos, A.; Rogiski, N.; Freitas, C.; Aver, C.; Fan, F.
Seasonal Streamflow Forecast in the Tocantins River Basin, Brazil: An Evaluation of ECMWF-SEAS5 with Multiple Conceptual Hydrological Models. *Water* **2023**, *15*, 1695.
https://doi.org/10.3390/w15091695

**AMA Style**

Ávila L, Silveira R, Campos A, Rogiski N, Freitas C, Aver C, Fan F.
Seasonal Streamflow Forecast in the Tocantins River Basin, Brazil: An Evaluation of ECMWF-SEAS5 with Multiple Conceptual Hydrological Models. *Water*. 2023; 15(9):1695.
https://doi.org/10.3390/w15091695

**Chicago/Turabian Style**

Ávila, Leandro, Reinaldo Silveira, André Campos, Nathalli Rogiski, Camila Freitas, Cássia Aver, and Fernando Fan.
2023. "Seasonal Streamflow Forecast in the Tocantins River Basin, Brazil: An Evaluation of ECMWF-SEAS5 with Multiple Conceptual Hydrological Models" *Water* 15, no. 9: 1695.
https://doi.org/10.3390/w15091695