Geoelectric Monitoring of the Electric Potential Field of the Lower Rio Grande before, during, and after Intermittent Streamflow, May–October, 2022
Abstract
:1. Introduction
2. Hydrogeology of the Mesilla Basin
2.1. Summary of Previous Geophysical and Hydrologic Surveys in the Mesilla Basin
2.2. Description of the Geoelectric Monitoring Site
3. Materials and Methods
3.1. Self-Potential Data Acquisition and Processing
3.2. Electric Resistivity Tomography Data Acquisition and Processing
3.3. Weather Data
3.4. Hydrographic Data
4. Results and Discussion
4.1. Pre-Streamflow Background Condition Monitoring Period
4.2. Streamflow Arrival Monitoring Period
4.3. Streamflow Monitoring Period
4.4. Post-Streamflow Monitoring Period
4.5. Analysis of Diurnal Electric Potential Fluctuations
4.6. Practical Implications for Geoelectric Monitoring of Rivers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation of Potential Evaporation from Time-Series Weather Data
References
- Brunner, P.; Cook, P.G.; Simmons, C.T. Hydrogeologic Controls on Disconnection between Surface Water and Groundwater: Hydrogeologic Controls on the Disconnect. Water Resour. Res. 2009, 45, 1–13. [Google Scholar] [CrossRef]
- Brunner, P.; Cook, P.G.; Simmons, C.T. Disconnected Surface Water and Groundwater: From Theory to Practice. Ground Water 2011, 49, 460–467. [Google Scholar] [CrossRef] [PubMed]
- McCallum, A.M.; Andersen, M.S.; Giambastiani, B.M.S.; Kelly, B.F.J.; Ian Acworth, R. River-Aquifer Interactions in a Semi-Arid Environment Stressed by Groundwater Abstraction: River-Aquifer Interactions in a Semi-Arid Environment. Hydrol. Process. 2013, 27, 1072–1085. [Google Scholar] [CrossRef]
- Lamontagne, S.; Taylor, A.R.; Cook, P.G.; Crosbie, R.S.; Brownbill, R.; Williams, R.M.; Brunner, P. Field Assessment of Surface Water-Groundwater Connectivity in a Semi-Arid River Basin (Murray-Darling, Australia). Hydrol. Process. 2014, 28, 1561–1572. [Google Scholar] [CrossRef]
- Fuchs, E.H.; Carroll, K.C.; King, J.P. Quantifying Groundwater Resilience through Conjunctive Use for Irrigated Agriculture in a Constrained Aquifer System. J. Hydrol. 2018, 565, 747–759. [Google Scholar] [CrossRef]
- Fuchs, E.H.; King, J.P.; Carroll, K.C. Quantifying Disconnection of Groundwater From Managed-Ephemeral Surface Water During Drought and Conjunctive Agricultural Use. Water Resour. Res. 2019, 55, 5871–5890. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Groundwater and Surface Water: A Single Resource; U.S. Geological Survey Circular 1139: Reston, VA, USA, 1998; pp. 1–88. [CrossRef]
- Brunner, P.; Therrien, R.; Renard, P.; Simmons, C.T.; Franssen, H.-J.H. Advances in Understanding River-Groundwater Interactions: River-Groundwater Interactions. Rev. Geophys. 2017, 55, 818–854. [Google Scholar] [CrossRef]
- Banks, E.W.; Simmons, C.T.; Love, A.J.; Shand, P. Assessing Spatial and Temporal Connectivity between Surface Water and Groundwater in a Regional Catchment: Implications for Regional Scale Water Quantity and Quality. J. Hydrol. 2011, 404, 30–49. [Google Scholar] [CrossRef]
- Pearson, A.J.; Rucker, D.F.; Tsai, C.-H.; Fuchs, E.H.; Carroll, K.C. Electrical Resistivity Monitoring of Lower Rio Grande River-Groundwater Intermittency. J. Hydrol. 2022, 613, 128325. [Google Scholar] [CrossRef]
- Wroblicky, G.J.; Campana, M.E.; Valett, H.M.; Dahm, C.N. Seasonal Variation in Surface-Subsurface Water Exchange and Lateral Hyporheic Area of Two Stream-Aquifer Systems. Water Resour. Res. 1998, 34, 317–328. [Google Scholar] [CrossRef]
- Shanafield, M.; Cook, P.G. Transmission Losses, Infiltration and Groundwater Recharge through Ephemeral and Intermittent Streambeds: A Review of Applied Methods. J. Hydrol. 2014, 511, 518–529. [Google Scholar] [CrossRef]
- Gutiérrez-Jurado, K.Y.; Partington, D.; Batelaan, O.; Cook, P.; Shanafield, M. What Triggers Streamflow for Intermittent Rivers and Ephemeral Streams in Low-Gradient Catchments in Mediterranean Climates. Water Resour. Res. 2019, 55, 9926–9946. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Cockburn, C.; Lamouroux, N.; Pella, H.; Snelder, T.; Tockner, K.; Trautmann, T.; Watt, C.; Datry, T. Global Prevalence of Non-Perennial Rivers and Streams. Nature 2021, 594, 391–397. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, P.J.; Chambers, J.E.; Uhlemann, S.S.; Binley, A. Geophysical Characterisation of the Groundwater–Surface Water Interface. Adv. Water Resour. 2017, 109, 302–319. [Google Scholar] [CrossRef]
- Nyquist, J.E.; Corry, C.E. Self-Potential: The Ugly Duckling of Environmental Geophysics. Lead. Edge 2002, 21, 446–451. [Google Scholar] [CrossRef]
- Ernstson, K.; Scherer, H.U. Self-potential Variations with Time and Their Relation to Hydrogeologic and Meteorological Parameters. Geophysics 1986, 51, 1967–1977. [Google Scholar] [CrossRef]
- Perrier, F.E.; Petiau, G.; Clerc, G.; Bogorodsky, V.; Erkul, E.; Jouniaux, L.; Lesmes, D.; Macnae, J.; Meunier, J.M.; Morgan, D.; et al. A One-Year Systematic Study of Electrodes for Long Period Measurements of the Electric Field in Geophysical Environments. J. Geomagn. Geoelectr. 1997, 49, 1677–1696. [Google Scholar] [CrossRef]
- Perrier, F.; Pant, S.R. Noise Reduction in Long-Term Self-Potential Monitoring with Travelling Electrode Referencing. Pure Appl. Geophys. 2005, 162, 165–179. [Google Scholar] [CrossRef]
- Perrier, F.; Trique, M.; Aupiais, J.; Gautam, U.; Shrestha, P. Electric Potential Variations Associated with Periodic Spring Discharge in Western Nepal. Comptes Rendus De L’académie Des Sci. Ser. IIA Earth Planet. Sci. 1999, 328, 73–79. [Google Scholar] [CrossRef]
- Perrier, F.; Morat, P. Characterization of Electrical Daily Variations Induced by Capillary Flow in the Non-Saturated Zone. Pure Appl. Geophys. 2000, 157, 785–810. [Google Scholar] [CrossRef]
- Gibert, D.; Le Mouël, J.-L.; Lambs, L.; Nicollin, F.; Perrier, F. Sap Flow and Daily Electric Potential Variations in a Tree Trunk. Plant Sci. 2006, 171, 572–584. [Google Scholar] [CrossRef]
- Crespy, A.; Revil, A.; Linde, N.; Byrdina, S.; Jardani, A.; Bolève, A.; Henry, P. Detection and Localization of Hydromechanical Disturbances in a Sandbox Using the Self-Potential Method. J. Geophys. Res. Solid Earth 2008, 113, B01205. [Google Scholar] [CrossRef]
- Ikard, S.J.; Revil, A.; Jardani, A.; Woodruff, W.F.; Parekh, M.; Mooney, M. Saline Pulse Test Monitoring with the Self-Potential Method to Nonintrusively Determine the Velocity of the Pore Water in Leaking Areas of Earth Dams and Embankments. Water Resour. Res. 2012, 48, W04201. [Google Scholar] [CrossRef]
- Ikard, S.J.; Revil, A. Self-Potential Monitoring of a Thermal Pulse Advecting through a Preferential Flow Path. J. Hydrol. 2014, 519, 34–49. [Google Scholar] [CrossRef]
- Voytek, E.B.; Barnard, H.R.; Jougnot, D.; Singha, K. Transpiration- and Precipitation-induced Subsurface Water Flow Observed Using the Self-potential Method. Hydrol. Process. 2019, 33, 1784–1801. [Google Scholar] [CrossRef]
- Fernandez, P.M.; Bloem, E.; Binley, A.; Philippe, R.S.B.A.; French, H.K. Monitoring Redox Sensitive Conditions at the Groundwater Interface Using Electrical Resistivity and Self-Potential. J. Contam. Hydrol. 2019, 226, 103517. [Google Scholar] [CrossRef] [PubMed]
- Doro, K.O.; Stoikopoulos, N.P.; Bank, C.-G.; Ferris, F.G. Self-Potential Time Series Reveal Emergent Behavior in Soil Organic Matter Dynamics. Sci. Rep. 2022, 12, 13531. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent Developments in the Direct-Current Geoelectrical Imaging Method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Rucker, D. A Coupled Electrical Resistivity-Infiltration Model for Wetting Front Evaluation. Vadose Zone J. 2009, 8, 383–388. [Google Scholar] [CrossRef]
- Blazevic, L.; Bodet, L.; Pasquet, S.; Linde, N.; Jougnot, D.; Longuevergne, L. Time-Lapse Seismic and Electrical Monitoring of the Vadose Zone during a Controlled Infiltration Experiment at the Ploemeur Hydrological Observatory, France. Water 2020, 12, 1230. [Google Scholar] [CrossRef]
- Hilbich, C. Time-Lapse Refraction Seismic Tomography for the Detection of Ground Ice Degradation. Cryosphere 2010, 4, 243–259. [Google Scholar] [CrossRef]
- Hauck, C. Frozen Ground Monitoring Using DC Resistivity Tomography. Geophys. Res. Lett. 2002, 29, 2016. [Google Scholar] [CrossRef]
- Sjödahl, P.; Dahlin, T.; Johansson, S.; Loke, M.H. Resistivity Monitoring for Leakage and Internal Erosion Detection at Hällby Embankment Dam. J. Appl. Geophys. 2008, 65, 155–164. [Google Scholar] [CrossRef]
- Sjödahl, P.; Dahlin, T.; Johansson, S. Embankment Dam Seepage Evaluation from Resistivity Monitoring Data. Near Surf. Geophys. 2009, 7, 463–474. [Google Scholar] [CrossRef]
- Rucker, D.F.; Fink, J.B.; Loke, M.H. Environmental Monitoring of Leaks Using Time-Lapsed Long Electrode Electrical Resistivity. J. Appl. Geophys. 2011, 74, 242–254. [Google Scholar] [CrossRef]
- Slater, L.D.; Sandberg, S.K. Resistivity and Induced Polarization Monitoring of Salt Transport under Natural Hydraulic Gradients. Geophysics 2000, 65, 408–420. [Google Scholar] [CrossRef]
- Trento, L.M.; Tsourlos, P.; Gerhard, J.I. Time-Lapse Electrical Resistivity Tomography Mapping of DNAPL Remediation at a STAR Field Site. J. Appl. Geophys. 2021, 184, 104244. [Google Scholar] [CrossRef]
- Acworth, R.I.; Dasey, G.R. Mapping of the Hyporheic Zone around a Tidal Creek Using a Combination of Borehole Logging, Borehole Electrical Tomography and Cross-Creek Electrical Imaging, New South Wales, Australia. Hydrogeol. J. 2003, 11, 368–377. [Google Scholar] [CrossRef]
- Mansoor, N.; Slater, L. Aquatic Electrical Resistivity Imaging of Shallow-Water Wetlands. Geophysics 2007, 72, F211–F221. [Google Scholar] [CrossRef]
- Crook, N.; Binley, A.; Knight, R.; Robinson, D.A.; Zarnetske, J.; Haggerty, R. Electrical Resistivity Imaging of the Architecture of Substream Sediments. Water Resour. Res. 2008, 44, W00D13. [Google Scholar] [CrossRef]
- Nyquist, J.E.; Freyer, P.A.; Toran, L. Stream Bottom Resistivity Tomography to Map Ground Water Discharge. Ground Water 2008, 46, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Singha, K.; Pidlisecky, A.; Day-Lewis, F.D.; Gooseff, M.N. Electrical Characterization of Non-Fickian Transport in Groundwater and Hyporheic Systems. Water Resour. Res. 2008, 44, W00D07. [Google Scholar] [CrossRef]
- Musgrave, H.; Binley, A. Revealing the Temporal Dynamics of Subsurface Temperature in a Wetland Using Time-Lapse Geophysics. J. Hydrol. 2011, 396, 258–266. [Google Scholar] [CrossRef]
- Ward, A.S.; Gooseff, M.N.; Singha, K. Imaging Hyporheic Zone Solute Transport Using Electrical Resistivity. Hydrol. Process. 2010, 24, 948–953. [Google Scholar] [CrossRef]
- Koehn, W.J.; Tucker-Kulesza, S.E.; Steward, D.R. Conceptualizing Groundwater-Surface Water Interactions within the Ogallala Aquifer Region Using Electrical Resistivity Imaging. J. Environ. Eng. Geophys. 2019, 24, 185–199. [Google Scholar] [CrossRef]
- Koehn, W.J.; Tucker-Kulesza, S.E.; Steward, D.R. Characterizing Streambed Heterogeneity across Shifts in River Discharge through Temporal Changes in Electrical Resistivity. J. Environ. Eng. Geophys. 2020, 25, 581–587. [Google Scholar] [CrossRef]
- McLachlan, P.; Chambers, J.; Uhlemann, S.; Sorensen, J.; Binley, A. Electrical Resistivity Monitoring of River–Groundwater Interactions in a Chalk River and Neighboring Riparian Zone. Near Surf. Geophys. 2020, 18, 385–398. [Google Scholar] [CrossRef]
- Shanafield, M.; Gutiérrrez-Jurado, K.; White, N.; Hatch, M.; Keane, R. Catchment-Scale Characterization of Intermittent Stream Infiltration; a Geophysics Approach. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005330. [Google Scholar] [CrossRef]
- Rucker, D.F.; Tsai, C.-H.; Carroll, K.C.; Brooks, S.; Pierce, E.M.; Ulery, A.; Derolph, C. Bedrock Architecture, Soil Texture, and Hyporheic Zone Characterization Combining Electrical Resistivity and Induced Polarization Imaging. J. Appl. Geophys. 2021, 188, 104306. [Google Scholar] [CrossRef]
- Teeple, A.P. Geophysics and Geochemistry-Based Assessment of the Geochemical Characteristics and Groundwater-Flow System of the U.S. Part of the Mesilla Basin/Conejos-Médanos Aquifer System in Doña Ana County, New Mexico, and El Paso County, Texas, 2010–2012; Scientific Investigations Report 2017–5028; U.S. Geological Survey: Reston, VA, USA, 2017; pp. 1–183. [CrossRef]
- Ikard, S.; Teeple, A.; Humberson, D. Gradient Self-Potential Logging in the Rio Grande to Identify Gaining and Losing Reaches across the Mesilla Valley. Water 2021, 13, 1331. [Google Scholar] [CrossRef]
- Robertson, A.J.; Matherne, A.-M.; Pepin, J.D.; Ritchie, A.B.; Sweetkind, D.S.; Teeple, A.P.; Granados-Olivas, A.; García-Vásquez, A.C.; Carroll, K.C.; Fuchs, E.H.; et al. Mesilla/Conejos-Médanos Basin: U.S.-Mexico Transboundary Water Resources. Water 2022, 14, 134. [Google Scholar] [CrossRef]
- Phillips, F.M.; Mills, S.; Hendrickx, M.H.; Hogan, J. Environmental Tracers Applied to Quantifying Causes of Salinity in Arid-Region Rivers: Results from the Rio Grande Basin, Southwestern USA. In Developments in Water Science; Elsevier BV: Amsterdam, The Netherlands, 2003; Volume 50, pp. 327–334. [Google Scholar] [CrossRef]
- Pepin, J.D.; Robertson, A.J.; Kelley, S.A. Salinity Contributions from Geothermal Waters to the Rio Grande and Shallow Aquifer System in the Transboundary Mesilla (United States)/Conejos-Médanos (Mexico) Basin. Water 2021, 14, 33. [Google Scholar] [CrossRef]
- Crilley, D.M.; Matherne, A.M.; Thomas, N.; Falk, S.E. Seepage Investigations of the Rio Grande from below Leasburg Dam, Leasburg, New Mexico, to above American Dam, El Paso, Texas, 2006–2013; Scientific Investigations Report 2019-5140; U.S. Geological Survey: Reston, VA, USA, 2013; pp. 1–34. [CrossRef]
- Dunbar, J.B.; Murphy, W.L.; Ballard, R.F.; McGill, T.E.; Peyman-Dove, L.D.; Bishop, M.J. Condition Assessment of U.S. International Boundary and Water Commission, Texas and New Mexico Levees—Report 2; U.S. Army Corps of Engineers, Engineering Research and Development Center: Vicksburg, MS, USA, 2004; p. 121. [Google Scholar]
- Zohdy, A.A.R.; Bisdorf, R.J.; Gates, J.S. Schlumberger Soundings in the Lower Mesilla Valley of the Rio Grande, Texas and New Mexico; Open-File Report 76-324; U.S. Geological Survey: Reston, VA, USA, 1976; pp. 1–77. [CrossRef]
- Cubbage, B.; Noonan, G.E.; Rucker, D.F. A Modified Wenner Array for Efficient Use of Eight-Channel Resistivity Meters. Pure Appl. Geophys. 2017, 174, 2705–2718. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. Multiple-Gradient Array Measurements for Multichannel 2D Resistivity Imaging. Near Surf. Geophys. 2006, 4, 113–123. [Google Scholar] [CrossRef]
- Dey, A.; Morrison, H.F. Resistivity modeling for arbitrarily shaped two-dimensional structures. Geophys. Prospect. 1979, 27, 106–136. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Loke, M.H.; Acworth, I.; Dahlin, T. A Comparison of Smooth and Blocky Inversion Methods in 2D Electrical Imaging Surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yi, M.-J.; Park, S.-G.; Kim, J.G. 4-D Inversion of DC Resistivity Monitoring Data Acquired over a Dynamically Changing Earth Model. J. Appl. Geophys. 2009, 68, 522–532. [Google Scholar] [CrossRef]
- Rucker, D.F.; Crook, N.; Winterton, J.; McNeill, M.; Baldyga, C.A.; Noonan, G.; Fink, J.B. Real-time Electrical Monitoring of Reagent Delivery during a Subsurface Amendment Experiment. Near Surf. Geophys. 2014, 12, 151–163. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. A 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Businger, J.A. Some Remarks on Penman’s Equations for the Evapotranspiration. NJAS Wagening. J. Life Sci. 1956, 4, 77–80. [Google Scholar] [CrossRef]
- Penman, H.L. Evaporation: An Introductory Survey. NJAS Wagening. J. Life Sci. 1956, 4, 9–29. [Google Scholar] [CrossRef]
- Van Bavel, C.H.M. Potential Evaporation: The Combination Concept and Its Experimental Verification. Water Resour. Res. 1966, 2, 455–467. [Google Scholar] [CrossRef]
- Brutsaert, W. Evaporation into the Atmosphere; Springer: Dordrecht, The Netherlands, 1982; ISBN 978-90-481-8365-4. [Google Scholar]
- Todd, R.W.; Evett, S.R.; Howell, T.A. The Bowen Ratio-Energy Balance Method for Estimating Latent Heat Flux of Irrigated Alfalfa Evaluated in a Semi-Arid, Advective Environment. Agric. For. Meteorol. 2000, 103, 335–348. [Google Scholar] [CrossRef]
- Ikard, S.J.; Carroll, K.C.; Rucker, D.F.; Teeple, A.P.; Payne, J.D.; Tsai, C.H.; Fuchs, E.H.; Jamil, A. Time-Lapse Self-Potential, Electrical Resistivity Tomography, Streamflow, Groundwater-Level, and Climate Datasets Acquired 21 May 2022 through 4 October 2022, in the Lower Rio Grande, Southeastern New Mexico; U.S. Geological Survey Data Release: Denver, CO, USA, 2023.
- Turnipseed, D.P.; Sauer, V.B. Discharge Measurements at Gaging Stations; Techniques and Methods Book 3, Chapter A8; U.S. Geological Survey: Reston, VA, USA, 2010; pp. 1–87. [CrossRef]
- Cunningham, W.L.; Schalk, C.W. Groundwater Technical Procedures of the U.S. Geological Survey; Techniques and Methods 1–A1; U.S. Geological Survey: Reston, VA, USA, 2011; pp. 1–151.
- Valois, R.; Cousquer, Y.; Schmutz, M.; Pryet, A.; Delbart, C.; Dupuy, A. Characterizing Stream-Aquifer Exchanges with Self-Potential Measurements. Groundwater 2018, 56, 437–450. [Google Scholar] [CrossRef]
- Ikard, S.J.; Teeple, A.P.; Payne, J.D.; Stanton, G.P.; Banta, J.R. New Insights on Scale-Dependent Surface-Groundwater Exchange from a Floating Self-Potential Dipole. J. Environ. Eng. Geophys. 2018, 23, 261–287. [Google Scholar] [CrossRef]
- Ikard, S.J.; Briggs, M.A.; Lane, J.W. Investigation of Scale-Dependent Groundwater/Surface-Water Exchange in Rivers by Gradient Self-Potential Logging: Numerical Modeling and Field Experiments. J. Environ. Eng. Geophys. 2021, 26, 83–98. [Google Scholar] [CrossRef]
- Corwin, R.F.; Hoover, D.B. The Self-potential Method in Geothermal Exploration. Geophysics 1979, 44, 226–245. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a Ground Water Tracer. Ground Water 2005, 43, 951–968. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988; pp. 1–572. [Google Scholar]
- Wang, J.; Salvucci, G.D.; Bras, R.L. An Extremum Principle of Evaporation. Water Resour. Res. 2004, 40, W09303. [Google Scholar] [CrossRef]
- Jury, W.A.; Horton, R. Soil Physics, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 1–370. [Google Scholar]
- Heine, R.W. Comparison of Monthly Piche Readings with the Penman Aerodynamic Term in the New Zealand Climate Network. Agric. Meteorol. 1981, 25, 67–74. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vouraki, K.; Kerkides, P. Piche Evaporimeter Data as a Substitute for Penman Equation’s Aerodynamic Term. Agric. For. Meteorol. 1996, 82, 83–92. [Google Scholar] [CrossRef]
- Fitzpatrick, E.A.; Stern, W.R. Estimates of Potential Evaporation Using Alternative Data in Penman’s Formula. Agric. Meteorol. 1966, 3, 225–239. [Google Scholar] [CrossRef]
- Murray, F.W. On the Computation of Saturated Vapor Pressure. J. Appl. Meteorol. 1967, 6, 203–205. [Google Scholar] [CrossRef]
Variable | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Surface air temperature, in degrees Celsius | 9.3 | 42 | 27.2 | 11.0 |
Soil temperature, in degrees Celsius | 21.2 | 41.5 | 31.6 | 7.7 |
Precipitation, in millimeters per day | 0 | 16.5 | 0.03 | 0.4 |
Relative humidity, in percent | 5.3 | 94.9 | 46.7 | 22.9 |
Vapor pressure, in kilopascals | 0.2 | 2.7 | 1.5 | 0.5 |
Average wind speed, in meters per second | 0 | 98.3 | 17.2 | 3.5 |
Net solar radiation, in kilowatts per meter squared | 0.0 | 882.6 | 184.3 | 228.4 |
Potential evaporation, in millimeters per day | 0 | 31.0 | 6.6 | 8.1 |
Barometric pressure, in kilopascals | 87.2 | 89.4 | 88.5 | 0.3 |
Variable | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Streamflow, in cubic meters per second | 0 | 53.1 | 19.5 | 9.4 |
GW-level elevation, in meters above NAVD88 | 1155.8 | 1156.4 | 1156.1 | 0.13 |
Depth to GW, in meters | 4.6 | 5.2 | 5 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikard, S.J.; Carroll, K.C.; Rucker, D.F.; Teeple, A.P.; Tsai, C.-H.; Payne, J.D.; Fuchs, E.H.; Jamil, A. Geoelectric Monitoring of the Electric Potential Field of the Lower Rio Grande before, during, and after Intermittent Streamflow, May–October, 2022. Water 2023, 15, 1652. https://doi.org/10.3390/w15091652
Ikard SJ, Carroll KC, Rucker DF, Teeple AP, Tsai C-H, Payne JD, Fuchs EH, Jamil A. Geoelectric Monitoring of the Electric Potential Field of the Lower Rio Grande before, during, and after Intermittent Streamflow, May–October, 2022. Water. 2023; 15(9):1652. https://doi.org/10.3390/w15091652
Chicago/Turabian StyleIkard, Scott J., Kenneth C. Carroll, Dale F. Rucker, Andrew P. Teeple, Chia-Hsing Tsai, Jason D. Payne, Erek H. Fuchs, and Ahsan Jamil. 2023. "Geoelectric Monitoring of the Electric Potential Field of the Lower Rio Grande before, during, and after Intermittent Streamflow, May–October, 2022" Water 15, no. 9: 1652. https://doi.org/10.3390/w15091652