Web-Based Platforms for Landslide Risk Mitigation: The State of the Art
Abstract
:1. Introduction
2. Monitoring for Risk Mitigation, the 5 Rs, and Why Web Platforms Can Help
3. Usability and Data Visualization
4. Data Management
5. Interoperability with Other Data Sources
6. Tools for Data Analysis, Interpretation, and Alarm/Alert Triggering
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frigerio, S.; Schenato, L.; Bossi, G.; Cavalli, M.; Mantovani, M.; Marcato, G.; Pasuto, A. A Web-Based Platform for Automatic and Continuous Landslide Monitoring: The Rotolon (Eastern Italian Alps) Case Study. Comput. Geosci. 2014, 63, 96–105. [Google Scholar] [CrossRef]
- Lan, H.X.; Martin, C.D.; Froese, C.R.; Kim, T.H.; Morgan, A.J.; Chao, D.; Chowdhury, S. A Web-Based GIS for Managing and Assessing Landslide Data for the Town of Peace River, Canada. Nat. Hazards Earth Syst. Sci. 2009, 9, 1433–1443. [Google Scholar] [CrossRef]
- Culshaw, M.G. From Concept towards Reality: Developing the Attributed 3D Geological Model of the Shallow Subsurface. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 231–284. [Google Scholar] [CrossRef]
- Bernard, L.; Mäs, S.; Müller, M.; Henzen, C.; Brauner, J. Scientific Geodata Infrastructures: Challenges, Approaches and Directions. Int. J. Digit. Earth 2013, 7, 613–633. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Ornstein, P.; Rouiller, J.-D. Design of a Geodetic Database and Associated Tools for Monitoring Rock-Slope Movements: The Example of the Top of Randa Rockfall Scar. Nat. Hazards Earth Syst. Sci. 2004, 4, 187–196. [Google Scholar] [CrossRef]
- Malet, J.P.; Ulrich, P.; Déprez, A.; Masson, F.; Lissak, C.; Maquaire, O. Continuous Monitoring and Near-Real Time Processing of GPS Observations for Landslide Analysis: A Methodological Framework. In Landslide Science and Practice: Volume 2: Early Warning, Instrumentation and Monitoring; Springer: Berlin/Heidelberg, Germany, 2013; pp. 201–209. [Google Scholar]
- Liu, Q.; Lu, G.; Huang, J.; Bai, D. Development of Tunnel Intelligent Monitoring and Early Warning System Based on Micro-Service Architecture: The Case of AnPing Tunnel. Geomat. Nat. Hazards Risk 2020, 11, 1404–1425. [Google Scholar] [CrossRef]
- Baroň, I.; Supper, R. Application and Reliability of Techniques for Landslide Site Investigation, Monitoring and Early Warning—Outcomes from a Questionnaire Study. Nat. Hazards Earth Syst. Sci. 2013, 13, 3157–3168. [Google Scholar] [CrossRef]
- Guilhot, D.; del Hoyo, T.M.; Bartoli, A.; Ramakrishnan, P.; Leemans, G.; Houtepen, M.; Salzer, J.; Metzger, J.S.; Maknavicius, G. Internet-of-Things-Based Geotechnical Monitoring Boosted by Satellite InSAR Data. Remote Sens. 2021, 13, 2757. [Google Scholar] [CrossRef]
- Carri, A.; Valletta, A.; Cavalca, E.; Savi, R.; Segalini, A. Advantages of IoT-Based Geotechnical Monitoring Systems Integrating Automatic Procedures for Data Acquisition and Elaboration. Sensors 2021, 21, 2249. [Google Scholar] [CrossRef]
- Karunarathne, S.M.; Dray, M.; Popov, L.; Butler, M.; Pennington, C.; Angelopoulos, C.M. A Technological Framework for Data-Driven IoT Systems: Application on Landslide Monitoring. Comput. Commun. 2020, 154, 298–312. [Google Scholar] [CrossRef]
- Deng, L.; Smith, A.; Dixon, N.; Yuan, H. Machine Learning Prediction of Landslide Deformation Behaviour Using Acoustic Emission and Rainfall Measurements. Eng. Geol. 2021, 293, 106315. [Google Scholar] [CrossRef]
- Huang, J.; Huang, R.; Ju, N.; Xu, Q.; He, C. 3D WebGIS-Based Platform for Debris Flow Early Warning: A Case Study. Eng. Geol. 2015, 197, 57–66. [Google Scholar] [CrossRef]
- Bąk, M. The Use of Automatic Measurement Techniques in the Geotechnical Monitoring System of PGE GiEK S.A., KWB Turów Branch. Int. J. Coal Sci. Technol. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Wessels, S.; Dixon, R. Geotechnical Data Aggregation and Visualisation Supporting Informed Risk Management: The One-Stop Geotech Shop. In Proceedings of the Slope Stability 2020: 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Online, 12–14 May 2020; pp. 703–712. [Google Scholar] [CrossRef]
- Šegina, E.; Peternel, T.; Urbančič, T.; Realini, E.; Zupan, M.; Jež, J.; Caldera, S.; Gatti, A.; Tagliaferro, G.; Consoli, A.; et al. Monitoring Surface Displacement of a Deep-Seated Landslide by a Low-Cost and near Real-Time GNSS System. Remote Sens. 2020, 12, 3375. [Google Scholar] [CrossRef]
- Caldera, S.; Barindelli, S.; Sansò, F.; Pardi, L. Monitoring of Structures and Infrastructures by Low-Cost GNSS Receivers. Appl. Sci. 2022, 12, 12468. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide Risk Assessment and Management: An Overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, J.; Cui, Y.; Jiang, S.-H.; Wu, S.; Ching, J. Time Capsule for Landslide Risk Assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 1–22. [Google Scholar] [CrossRef]
- Popescu, M.E.; Sasahara, K. Engineering Measures for Landslide Disaster Mitigation. Landslides-Disaster Risk Reduct. 2009, 609–631. [Google Scholar] [CrossRef]
- Son, C.H.; Baek, J.I.; Ban, Y.U.; Ha, S.R. The Effects of Mitigation Measures on Flood Damage Prevention in Korea. Sustainability 2015, 7, 16866–16884. [Google Scholar] [CrossRef]
- Schröter, K.; Ostrowski, M.; Velasco, C.; Torres, D.S.; Nachtnebel, H.P.; Kahl, B.; Beyene, M.; Rubin, C.; Gocht, M. First Crue Era-Net Common Call Effectiveness and Efficiency of Non-Structural Flood Risk Management Measures; Bundesministerium für bildung und Forschung, Minsterio de educación y ciencia, Darmstadt University of Technology-IHWP, Universitat Politècnica de Catalunya-GRAHI-UPC, University of Natural Resources and Applied Life Science (BOKU), Pro Aqua-Water & Finance: London, UK, 2009. [Google Scholar]
- Lacasse, S.; Kalsnes, B.; Vaciago, G.; Choi, Y.J.; Lam, A. A Web-Based Tool for Ranking Landslide Mitigation Measures. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE, Paris, France, 2–6 September 2013; Volume 3. [Google Scholar]
- Vaciago, G. The SafeLand Compendium of Landslide Risk Mitigation Measures. Landslide Sci. Pract. Risk Assess. Manag. Mitig. 2013, 6, 683–689. [Google Scholar]
- Bossi, G.; Schenato, L.; Marcato, G. Structural Health Monitoring of a Road Tunnel Intersecting a Large and Active Landslide. Appl. Sci. 2017, 7, 1271. [Google Scholar] [CrossRef]
- Barla, M.; Antolini, F. An Integrated Methodology for Landslides’ Early Warning Systems. Landslides 2016, 13, 215–228. [Google Scholar] [CrossRef]
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring Strategies for Local Landslide Early Warning Systems. Landslides 2019, 16, 213–231. [Google Scholar] [CrossRef]
- Fujisawa, K.; Marcato, G.; Nomura, Y.; Pasuto, A. Management of a Typhoon-Induced Landslide in Otomura (Japan). Geomorphology 2010, 124, 150–156. [Google Scholar] [CrossRef]
- Federico, A.; Popescu, M.; Elia, G.; Fidelibus, C.; Internò, G.; Murianni, A. Prediction of Time to Slope Failure: A General Framework. Environ. Earth Sci. 2012, 66, 245–256. [Google Scholar] [CrossRef]
- Giordan, D.; Wrzesniak, A.; Allasia, P. The Importance of a Dedicated Monitoring Solution and Communication Strategy for an Effective Management of Complex Active Landslides in Urbanized Areas. Sustainability 2019, 11, 946. [Google Scholar] [CrossRef]
- Ekker, R.; Kværne, K.; Os, A.; Humstad, T.; Wartiainen, A.; Eide, V.; Hansen, R.K. RegObs-Public Database for Submitting and Sharing Observations. In Proceedings of the Proceeding the International Snow Science Workshop, Grenoble-Chamonix Mont-Blanc, France, 7–11 October 2013. [Google Scholar]
- Piovesan, F.; Di Torino, P. Beyond Standards and Regulations: Obstacles to Local Open Government Data Initiatives in Italy and France. Soc. Dyn. Open Data 2017, 35. [Google Scholar] [CrossRef]
- Bustillos Ardaya, A.; Evers, M.; Ribbe, L. What Influences Disaster Risk Perception? Intervention Measures, Flood and Landslide Risk Perception of the Population Living in Flood Risk Areas in Rio de Janeiro State, Brazil. Int. J. Disaster Risk Reduct. 2017, 25, 227–237. [Google Scholar] [CrossRef]
- Krgli, I.K.; Devoli, G.; Colleuille, H.; Boje, S.; Sund, M.; Engen, I.K. The Norwegian Forecasting and Warning Service for Rainfall- and Snowmelt-Induced Landslides. Nat. Hazards Earth Syst. Sci. 2018, 18, 1427–1450. [Google Scholar] [CrossRef]
- Harrison, S.E.; Johnson, P.A. Crowdsourcing the Disaster Management Cycle. Int. J. Inf. Syst. Crisis Response Manag. 2016, 8, 17–40. [Google Scholar] [CrossRef]
- Offutt, J. Quality Attributes of Web Software Applications. IEEE Softw. 2002, 19, 25–32. [Google Scholar] [CrossRef]
- ISO 9241-11:2018-Ergonomics of Human-System Interaction—Part 11: Usability: Definitions and Concepts. Available online: https://www.iso.org/standard/63500.html (accessed on 17 March 2023).
- McKay, E. UI Is Communication; Elsevier Inc.: Amsterdam, The Netherlands, 2013; ISBN 9780123969804. [Google Scholar]
- Berger, C.R.; Roloff, M.E.; Ewoldsen, D.R. The Handbook of Communication Science, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2010; pp. 1–575. [Google Scholar]
- MacEachren, A.M. How Maps Work: Representation, Visualization, and Design; Guilford Press: New York, NY, USA, 1995; p. 513. [Google Scholar]
- Michailidou, E.; Eraslan, S.; Yesilada, Y.; Harper, S. Automated Prediction of Visual Complexity of Web Pages: Tools and Evaluations. Int. J. Hum. Comput. Stud. 2021, 145, 102523. [Google Scholar] [CrossRef]
- Engeset, R.V.; Pfuhl, G.; Orten, C.; Hendrikx, J.; Hetland, A. Colours and Maps for Communicating Natural Hazards to Users with and without Colour Vision Deficiency. Int. J. Disaster Risk Reduct. 2022, 76, 103034. [Google Scholar] [CrossRef]
- Reinecke, K.; Yeh, T.; Miratrix, L.; Mardiko, R.; Zhao, Y.; Liu, J.; Gajos, K.Z. Predicting Users’ First Impressions of Website Aesthetics with a Quantification of Perceived Visual Complexity and Colorfulness. In Conference on Human Factors in Computing Systems—Proceedings; Guilford Press: New York, NY, USA, 2013; pp. 2049–2058. [Google Scholar] [CrossRef]
- Iadanza, C.; Trigila, A.; Starace, P.; Dragoni, A.; Biondo, T.; Roccisano, M. IdroGEO: A Collaborative Web Mapping Application Based on REST API Services and Open Data on Landslides and Floods in Italy. ISPRS Int. J. Geo-Inf. 2021, 10, 89. [Google Scholar] [CrossRef]
- Murphy, J.F.A. The General Data Protection Regulation (GDPR). Ir. Med. J. 2018, 111, 747. [Google Scholar] [PubMed]
- Tehrani, F.S.; Calvello, M.; Liu, Z.; Zhang, L.; Lacasse, S. Machine Learning and Landslide Studies: Recent Advances and Applications. Nat. Hazards 2022, 114, 1197–1245. [Google Scholar] [CrossRef]
- Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the Time of Failure of Landslides at Slope-Scale: A Literature Review. Earth Sci. Rev. 2019, 193, 333–349. [Google Scholar] [CrossRef]
- Titti, G.; Mantovani, M.; Bossi, G. Detecting Change of Patterns in Landslide Displacements Using Machine Learning, an Example Application. Underst. Reducing Landslide Disaster Risk 2021, 6, 215–221. [Google Scholar] [CrossRef]
- Di, B.; Stamatopoulos, C.A.; Stamatopoulos, A.C.; Liu, E.; Balla, L. Proposal, Application and Partial Validation of a Simplified Expression Evaluating the Stability of Sandy Slopes under Rainfall Conditions. Geomorphology 2021, 395, 107966. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, J.; Zhang, L.M.; Tang, W.H. Stability Analysis of Rainfall-Induced Slope Failure: A Review. Proc. Inst. Civ. Eng.-Geotech. Eng. 2015, 164, 299–316. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Davies, O.; Rouainia, M.; Glendinning, S.; Cash, M.; Trento, V. Investigation of a Pore Pressure Driven Slope Failure Using a Coupled Hydro-Mechanical Model. Eng. Geol. 2014, 178, 70–81. [Google Scholar] [CrossRef]
- Macciotta, R.; Hendry, M.; Martin, C.D. Developing an Early Warning System for a Very Slow Landslide Based on Displacement Monitoring. Nat. Hazards 2016, 81, 887–907. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Hu, X.; Bobet, A.; Yong, R.; Ez Eldin, M.A.M. Model Testing of the Spatial–Temporal Evolution of a Landslide Failure. Bull. Eng. Geol. Environ. 2017, 76, 323–339. [Google Scholar] [CrossRef]
- Catelan, F.T.; Bossi, G.; Marcato, G. Self-Sustaining Landslide Mitigation Strategy through Long-Term Monitoring. Water 2022, 14, 3824. [Google Scholar] [CrossRef]
- Rodriguez, J.; Deane, E.; Hendry, M.T.; Macciotta, R.; Evans, T.; Gräpel, C.; Skirrow, R. Practical Evaluation of Single-Frequency DGNSS for Monitoring Slow-Moving Landslides. Landslides 2021, 18, 3671–3684. [Google Scholar]
- Yang, W.; Wang, Y.; Wang, Y.; Ma, C.; Ma, Y. Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images. Landslides 2020, 17, 659–668. [Google Scholar] [CrossRef]
- Cai, J.; Liu, G.; Jia, H.; Zhang, B.; Wu, R.; Fu, Y.; Xiang, W.; Mao, W.; Wang, X.; Zhang, R. A New Algorithm for Landslide Dynamic Monitoring with High Temporal Resolution by Kalman Filter Integration of Multiplatform Time-Series InSAR Processing. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102812. [Google Scholar] [CrossRef]
- Su, Y.; Fu, J.; Duan, G. Landslide Displacement Prediction Based on Multivariate LSTM Model. Int. J. Environ. Res. Public Health 2023, 20, 1167. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, D.; Zhang, S.; Zhu, X.; He, C.; Qi, X.; Zhao, K.; Xiu, D.; Ju, N. Successful Implementations of a Real-Time and Intelligent Early Warning System for Loess Landslides on the Heifangtai Terrace, China. Eng. Geol. 2020, 278, 105817. [Google Scholar] [CrossRef]
- Bossi, G.; Marcato, G. Planning Landslide Countermeasure Works through Long Term Monitoring and Grey Box Modelling. Geosciences 2019, 9, 185. [Google Scholar] [CrossRef]
- Springman, S.M.; Thielen, A.; Kienzler, P.; Friedel, S. A Long-Term Field Study for the Investigation of Rainfall-Induced Landslides. Geotechnique 2013, 63, 1177. [Google Scholar] [CrossRef]
- Smarsly, K.; Georgieva, K.; König, M. An Internet-Enabled Wireless Multi-Sensor System for Continuous Monitoring of Landslide Processes. IACSIT Int. J. Eng. Technol. 2014, 6, 520. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossi, G.; Schenato, L.; Marcato, G. Web-Based Platforms for Landslide Risk Mitigation: The State of the Art. Water 2023, 15, 1632. https://doi.org/10.3390/w15081632
Bossi G, Schenato L, Marcato G. Web-Based Platforms for Landslide Risk Mitigation: The State of the Art. Water. 2023; 15(8):1632. https://doi.org/10.3390/w15081632
Chicago/Turabian StyleBossi, Giulia, Luca Schenato, and Gianluca Marcato. 2023. "Web-Based Platforms for Landslide Risk Mitigation: The State of the Art" Water 15, no. 8: 1632. https://doi.org/10.3390/w15081632
APA StyleBossi, G., Schenato, L., & Marcato, G. (2023). Web-Based Platforms for Landslide Risk Mitigation: The State of the Art. Water, 15(8), 1632. https://doi.org/10.3390/w15081632