Role of Sulfate-Reducing Bacteria in the Removal of Hexavalent Chromium by Biosynthetic Iron Sulfides (FeS1+x)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Material Preparation
2.3. Batch Experiments
2.4. The Cr(Vi) Removal Kinetic Models and Adsorption Kinetic Models
2.5. Chemical Analysis and Instrumental Characterization
3. Results and Discussion
3.1. Characteristics of the Biosynthetic Iron Sulfides
3.2. Cr(Vi) Reduction under Anoxic Conditions
3.3. Role of Srb Bacteria in Cr(Vi) Removal
3.3.1. The Stabilization by SRB
3.3.2. Enhancement Content of Reductive Species by SRB
3.3.3. The Buffering Capacity of SRB
3.4. Effects of pH and FeS-to-Cr(III) Molar Ratios on Cr(VI) Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rickard, D.; Schoonen, M.A.A.; Luther, G.W. Chemistry of Iron Sulfides in Sedimentary Environments; ACS Publications: Washington, DC, USA, 1995; Volume 612, pp. 168–193. [Google Scholar] [CrossRef]
- Rickard, D.; Morse, J.W. Acid volatile sulfide (AVS). Mar. Chem. 2005, 97, 141–197. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W. Chemistry of Iron Sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.A. A New Geochemical Classification of Sedimentary Environments. J. Sediment. Res. 1981, 51. [Google Scholar] [CrossRef]
- Benning, L.G.; Wilkin, R.T.; Barnes, H. Reaction pathways in the Fe–S system below 100 °C. Chem. Geol. 2000, 167, 25–51. [Google Scholar] [CrossRef]
- Rossi, R.; Hur, A.Y.; Page, M.A.; Thomas, A.O.; Butkiewicz, J.J.; Jones, D.W.; Baek, G.; Saikaly, P.E.; Cropek, D.M.; Logan, B.E. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Res. 2022, 215, 118208. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Bose, D.; Yadav, J.; Sharma, B.; Sangli, E.; Patel, A.; Mukherjee, A.; Singh, A.A. Bioremediation and bioelectricity from Himalayan rock soil in sediment-microbial fuel cell using carbon rich substrates. Fuel 2023, 341, 127019. [Google Scholar] [CrossRef]
- Bose, D.; Mukherjee, A.; Mitra, G. Energy recovery prospects of fuel cell technologies: Sustainability and bioremediation. Aust. J. Mech. Eng. 2020, 20, 736–748. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Patwardhan, S.B.; Tripathi, S.; Mathuriya, A.S.; Gupta, P.K.; Lal, R.B.; Tusher, T.R. Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. Sustainability 2022, 14, 8379. [Google Scholar] [CrossRef]
- Maqsood, Q.; Ameen, E.; Mahnoor, M.; Sumrin, A.; Akhtar, M.W.; Bhattacharya, R.; Bose, D. Applications of Microbial Fuel Cell Technology and Strategies to Boost Bioreactor Performance. Nat. Environ. Pollut. Technol. 2022, 21, 1191–1199. [Google Scholar] [CrossRef]
- Guo, Z.; Richardson, J.J.; Kong, B.; Liang, K. Nanobiohybrids: Materials approaches for bioaugmentation. Sci. Adv. 2020, 6, eaaz0330. [Google Scholar] [CrossRef]
- Fu, X.-Z.; Wu, J.; Cui, S.; Wang, X.-M.; Liu, H.-Q.; He, R.-L.; Yang, C.; Deng, X.; Tan, Z.-L.; Li, W.-W. Self-regenerable bio-hybrid with biogenic ferrous sulfide nanoparticles for treating high-concentration chromium-containing wastewater. Water Res. 2021, 206, 117731. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhou, Y.; Rittmann, B.E. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization. Water Res. 2017, 119, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, Z.; Liao, Y.; Dang, Z.; Guo, C. Effects of Fe(II) source on the formation and reduction rate of biosynthetic mackinawite: Biosynthesis process and removal of Cr(VI). Chem. Eng. J. 2021, 421, 129723. [Google Scholar] [CrossRef]
- Enning, D.; Garrelfs, J. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar] [CrossRef]
- Bhalla, S.; Melnekoff, D.T.; Aleman, A.; Leshchenko, V.; Restrepo, P.; Keats, J.; Onel, K.; Sawyer, J.R.; Madduri, D.; Richter, J.; et al. Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, L.; Dong, F.; Hudson-Edwards, K.A. Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: Implications for acid mine drainage treatment and neutralization. Chemosphere 2017, 168, 529–538. [Google Scholar] [CrossRef]
- Hayes, K.F.; Adriaens, P.; Demond, A.H.; Olson, T.; Abriola, L.M. Reduced iron sulfide systems for removal of heavy metal ions from groundwater. Michigan Univ Ann Arbor Dept Of Civil And Environmental Engineering. 2009. Available online: https://www.researchgate.net/publication/235026487_Reduced_Iron_Sulfide_Systems_for_Removal_of_Heavy_Metal_Ions_from_Groundwater (accessed on 5 March 2023).
- Huo, Y.-C.; Li, W.-W.; Chen, C.-B.; Li, C.-X.; Zeng, R.; Lau, T.-C.; Huang, T.-Y. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzym. Microb. Technol. 2016, 95, 236–241. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Hou, J.; Miao, L.; Zhang, F.; Zeng, R.J.; Xing, B. In situ prepared algae-supported iron sulfide to remove hexavalent chromium. Environ. Pollut. 2020, 274, 115831. [Google Scholar] [CrossRef]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Varadharajan, C.; Beller, H.R.; Bill, M.; Brodie, E.L.; Conrad, M.E.; Han, R.; Irwin, C.; Larsen, J.T.; Lim, H.-C.; Molins, S.; et al. Reoxidation of Chromium(III) Products Formed under Different Biogeochemical Regimes. Environ. Sci. Technol. 2017, 51, 4918–4927. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Díaz, C.E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012, 223–224, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Terry, J.; Jurisson, S.S. Pertechnetate immobilization with amorphous iron sulfide. Radiochim. Acta 2008, 96, 823–833. [Google Scholar] [CrossRef]
- Guy, M.; Mathieu, M.; Anastopoulos, I.P.; Martínez, M.G.; Rousseau, F.; Dotto, G.L.; de Oliveira, H.P.; Lima, E.C.; Thyrel, M.; Larsson, S.H.; et al. Process Parameters Optimization, Characterization, and Application of KOH-Activated Norway Spruce Bark Graphitic Biochars for Efficient Azo Dye Adsorption. Molecules 2022, 27, 456. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, G.S.; Guy, M.; Mathieu, M.; Jebrane, M.; Lima, E.C.; Thyrel, M.; Dotto, G.L.; Larsson, S.H. A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surfaces A: Physicochem. Eng. Asp. 2022, 642, 128626. [Google Scholar] [CrossRef]
- González-Hourcade, M.; dos Reis, G.S.; Grimm, A.; Dinh, V.M.; Lima, E.C.; Larsson, S.H.; Gentili, F.G. Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J. Clean. Prod. 2022, 348, 131280. [Google Scholar] [CrossRef]
- Leupin, O.X.; Hug, S.J.; Badruzzaman, A.B.M. Arsenic Removal from Bangladesh Tube Well Water with Filter Columns Containing Zerovalent Iron Filings and Sand. Environ. Sci. Technol. 2005, 39, 8032–8037. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.-B.; Zeng, R.J. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example. J. Hazard. Mater. 2017, 333, 275–284. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Li, T.; Wang, W.; Wang, W.; Yu, G. Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chem. Eng. J. 2018, 347, 782–790. [Google Scholar] [CrossRef]
- Picard, A.; Gartman, A.; Clarke, D.R.; Girguis, P.R. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim. et Cosmochim. Acta 2017, 220, 367–384. [Google Scholar] [CrossRef]
- Veeramani, H.; Scheinost, A.C.; Monsegue, N.; Qafoku, N.P.; Kukkadapu, R.; Newville, M.; Lanzirotti, A.; Pruden, A.; Murayama, M.; Hochella, J.M.F. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite. Environ. Sci. Technol. 2013, 47, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-Y.; Cheng, Q.-W.; Sha, C.; Chen, Y.-X.; Naraginti, S.; Yong, Y.-C. Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(VI). Chem. Eng. J. 2019, 379, 122404. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, J.H.; Hayes, K.F. Characterization of synthetic nanocrystalline mackinawite: Crystal structure, particle size, and specific surface area. Geochim. et Cosmochim. Acta 2008, 72, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Herbert, R.B.; Benner, S.G.; Pratt, A.R.; Blowes, D.W. Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria. Chem. Geol. 1998, 144, 87–97. [Google Scholar] [CrossRef]
- Du, J.; Bao, J.; Lu, C.; Werner, D. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Res. 2016, 102, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Mi, N.; He, C.; He, H.; Zhang, Y.; Zhang, Y.; Yin, L.; Li, J.; Yang, S.; Li, S.; et al. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI). Sep. Purif. Technol. 2020, 240, 116623. [Google Scholar] [CrossRef]
- Sun, Y.; Lou, Z.; Yu, J.; Zhou, X.; Lv, D.; Zhou, J.; Baig, S.A.; Xu, X. Immobilization of mercury (II) from aqueous solution using Al2O3-supported nanoscale FeS. Chem. Eng. J. 2017, 323, 483–491. [Google Scholar] [CrossRef]
- Mullet, M.; Boursiquot, S.; Ehrhardt, J.-J. Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids Surfaces A: Physicochem. Eng. Asp. 2004, 244, 77–85. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Keller, A.A. Interactions between Algal Extracellular Polymeric Substances and Commercial TiO2 Nanoparticles in Aqueous Media. Environ. Sci. Technol. 2016, 50, 12258–12265. [Google Scholar] [CrossRef]
- Khan, S.S.; Mukherjee, A.; Chandrasekaran, N. Impact of exopolysaccharides on the stability of silver nanoparticles in water. Water Res. 2011, 45, 5184–5190. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, Y.; Liao, Y.; Huang, J.; Dang, Z.; Guo, C. Removal of hexavalent chromium using biogenic mackinawite (FeS)-deposited kaolinite. J. Colloid Interface Sci. 2020, 572, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Q.; Zeng, Y.; Zhang, J.; Lu, G.; Dang, Z.; Guo, C. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. Ecotoxicol. Environ. Saf. 2019, 176, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Parikh, A.; Madamwar, D. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 2006, 97, 1822–1827. [Google Scholar] [CrossRef]
- Wang, L.-L.; Wang, L.-F.; Ren, X.-M.; Ye, X.-D.; Li, W.-W.; Yuan, S.-J.; Sun, M.; Sheng, G.-P.; Yu, H.-Q.; Wang, X.-K. pH Dependence of Structure and Surface Properties of Microbial EPS. Environ. Sci. Technol. 2012, 46, 737–744. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef]
- Awual, R.; Suzuki, S.; Taguchi, T.; Shiwaku, H.; Okamoto, Y.; Yaita, T. Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem. Eng. J. 2014, 242, 127–135. [Google Scholar] [CrossRef]
- Butler, E.C.; Hayes, K.F. Kinetics of the Transformation of Halogenated Aliphatic Compounds by Iron Sulfide. Environ. Sci. Technol. 2000, 34, 422–429. [Google Scholar] [CrossRef]
- Gong, Y.; Gai, L.; Tang, J.; Fu, J.; Wang, Q.; Zeng, E.Y. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci. Total Environ. 2017, 595, 743–751. [Google Scholar] [CrossRef]
- Shi, M.; Li, J.; Li, X.; Liang, D.; Guo, C.; Zheng, J.; Deng, B. Reductive Immobilization of Hexavalent Chromium by Polysulfide-Reduced Lepidocrocite. Ind. Eng. Chem. Res. 2019, 58, 11920–11926. [Google Scholar] [CrossRef]
- Bae, S.; Sihn, Y.; Kyung, D.; Yoon, S.; Eom, T.; Kaplan, U.; Kim, H.; Schäfer, T.; Han, S.; Lee, W. Molecular Identification of Cr(VI) Removal Mechanism on Vivianite Surface. Environ. Sci. Technol. 2018, 52, 10647–10656. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-B.; Zhang, W.-X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154–2156. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, H.; Han, S.; Jiang, Z.; Chen, X. The synthesis of nano-silver/sodium alginate composites and their antibacterial properties. RSC Adv. 2014, 5, 2378–2382. [Google Scholar] [CrossRef]
- Yuan, P.; Fan, M.; Yang, D.; He, H.; Liu, D.; Yuan, A.; Zhu, J.; Chen, T. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater. 2009, 166, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhou, J.; Cao, Z.; Xu, J.; Liu, Y.; Li, Y.; Yang, K.; Lou, Z.; Lou, L.; Xu, X. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere 2019, 224, 306–315. [Google Scholar] [CrossRef]
Pseudo-Frist-Order Kinetic | Pseudo-Secondary Kinetic | General-Order Models | Experiment Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k1 (min−1) | qe (mg/g) | R2 | k2 (min(mg/g)−1) | qe (mg/g) | R2 | kn | n | t0.5 | t0.95 | qe (mg/g) | |
BS-FeS1+x | 2.01 × 10−1 | 24.38 | 0.972 | 2.59 × 10−2 | 73.52 | 0.998 | 0.017 | 2.19 | 0.43 | 7.61 | 59.28 |
BNS-FeS1+x | 2.00 × 10−1 | 31.31 | 0.976 | 1.50 × 10−2 | 62.42 | 0.996 | 0.0099 | 2.15 | 0.96 | 18.29 | 57.83 |
Type | Elements | B.E.(eV) | Species | Relative Fraction(%) |
---|---|---|---|---|
BS-FeS1+x | Fe 2p3/2 | 710.6 eV | Fe(II)-S | 45.3 |
712.6 eV, 718.0 eV, 713.9 eV | Fe(III) | 19.5 | ||
724.6 eV | FeOOH | 35.2 | ||
S 2p3/2 | 163.5 eV | Sn(-II) | 15.9 | |
160.4 eV | S(-II) | 5.5 | ||
168.7 eV | SO42‾ | 78.6 | ||
Cr 2p1/2 | 579.6 eV | Cr(VI) | 5.7 | |
576.5 eV, 578.4 eV, 586.4 eV | Cr(III) | 94.3 |
Type | Pseudo-Secondary Kinetic | General-Order Models | |||||
---|---|---|---|---|---|---|---|
k2 (min(mg/g)−1) | qe (mg/g) | R2 | kn | n | t0.5 | t0.95 | |
chemical synthesis FeS suspension | 1.37 × 10−2 | 61.31 | 0.995 | 0.0098 | 2.14 | 0.67 | 24.77 |
chemical synthesis FeS dry particles | 1.00 × 10−2 | 60.18 | 0.993 | 0.022 | 1.86 | 1.94 | 32.57 |
Sample | pH | Reaction Time | Removal Capability (mg/g) | References |
---|---|---|---|---|
FeS a | 5.5 | 72 h | 38.6 | [20] |
FeS@Fe0 a | 5.6 | 1 h | 66.7 | [20] |
Fe/FeS a | 5 | 48 h | 69.7 | [43] |
BS-FeS1+x | 5 | 2 h | 73.52 | This study |
BNS-FeS1+x | 5 | 2 h | 62.42 | This study |
pH | k2 (min(mg/g)−1) | qe (mg/g) | R2 | kn | n | t0.5 | t0.95 |
---|---|---|---|---|---|---|---|
5.0 | 2.59 × 10−2 | 73.52 | 0.998 | 0.017 | 2.19 | 0.43 | 7.61 |
7.0 | 1.53 × 10−2 | 60.86 | 0.996 | 0.0019 | 2.77 | 0.50 | 24.32 |
9.0 | 0.94 × 10−2 | 62.22 | 0.992 | 0.031 | 1.57 | 2.59 | 42.34 |
FeS:Cr(VI) | |||||||
10:1 | 2.59 × 10−2 | 73.52 | 0.998 | 0.017 | 2.19 | 0.43 | 7.61 |
5:1 | 0.45 × 10−2 | 62.56 | 0.998 | 0.245 | 0.945 | 3.32 | 13.51 |
1:1 | 0.73 × 10−1 | 50.45 | 0.997 | 0.018 | 2.78 | 3.59 | 234.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Li, Z.; Xia, J.; Miao, L.; Wu, J.; Lv, B. Role of Sulfate-Reducing Bacteria in the Removal of Hexavalent Chromium by Biosynthetic Iron Sulfides (FeS1+x). Water 2023, 15, 1589. https://doi.org/10.3390/w15081589
Hou J, Li Z, Xia J, Miao L, Wu J, Lv B. Role of Sulfate-Reducing Bacteria in the Removal of Hexavalent Chromium by Biosynthetic Iron Sulfides (FeS1+x). Water. 2023; 15(8):1589. https://doi.org/10.3390/w15081589
Chicago/Turabian StyleHou, Jun, Zhenyu Li, Jun Xia, Lingzhan Miao, Jun Wu, and Bowen Lv. 2023. "Role of Sulfate-Reducing Bacteria in the Removal of Hexavalent Chromium by Biosynthetic Iron Sulfides (FeS1+x)" Water 15, no. 8: 1589. https://doi.org/10.3390/w15081589
APA StyleHou, J., Li, Z., Xia, J., Miao, L., Wu, J., & Lv, B. (2023). Role of Sulfate-Reducing Bacteria in the Removal of Hexavalent Chromium by Biosynthetic Iron Sulfides (FeS1+x). Water, 15(8), 1589. https://doi.org/10.3390/w15081589