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Abstract: The reduction of Cr(VI) by biosynthesis iron sulfides (FeS1+x) under anoxic conditions
has been studied extensively. However, the role of sulfate-reducing bacteria (SRB) when FeS1+x

containing SRB removes contaminants during in situ remediation still needs further study. The
secondary kinetic constant of biosynthetic FeS1+x with the presence of SRB (called BS-FeS1+x) was
1.72 times that of FeS1+x with the absence of SRB (called BNS-FeS1+x) under FeS1+x:Cr(VI) molar
ratio = 10:1, indicating that SRB had a promoting effect on the removal of Cr(VI). Additionally, XPS
showed that 5.7% of Cr(VI) remained in the solid phase in the BS-FeS1+x system, indicating BS-FeS1+x

could not only remove Cr(VI) by reduction but also by adsorption. Meanwhile, the Cr(VI) removal
efficiency of BS-FeS1+x was 100% under anoxic conditions with FeS1+x:Cr(VI) molar ratio = 1:1, which
was higher than BNS-SRB (93.4%). SRB could enhance the Cr(VI) removal efficiency, which was
possibly due to the constant release of S(-II) and the improvement of the stability and dispersion and
the buffering effect. This discovery provided an inspiring idea of the application of biosynthetic iron
sulfides to in situ remediation.

Keywords: iron sulfides; SRB bacteria; Cr(VI); stabilization; buffering capacity

1. Introduction

The first form of iron sulfide formed by sulfate-reducing bacteria (SRB) under anoxic
conditions is mackinawite (FeS) [1–5]. FeS is widely used in environmental remediation
because of its unique physical and chemical properties, which can reduce and convert
various pollutants under anoxic conditions, including halogenated solvents, high-valence
inorganic pollutants and radioactive nuclear elements.

Due to biomaterials’ advantages such as high reaction efficiency and environmental
benignity, biomaterials are widely used in various catalysts for environmental remediation;
for example, some research used microbial fuel cells to treat wastewater [6–10]. However,
in previous studies, chemically synthesized materials were typically used, which could
not be recycled in situ by newly grown microorganisms [11,12]. SRB like Desulfovibrio
vulgaris could indirectly reduce Fe(III) by reducing sulfate to S2− and binding to Fe2+, or
by producing S2− and then binding to each other [13,14]. Some SRB, such as Shewanella
oneidensis MR-1, produce FeS by directly reducing sulfite and Fe(III) [13,15,16], and some
SRB, such as Desulfovibrio capillatus, use iron citrate and Na2S2O3 to produce FeS. Stud-
ies have shown that biosynthesis of FeS by SRB has two-and-a-half times the adsorption
capacity of As(III) than chemical synthesis, owing to the higher porosity of biosynthe-
sized FeS [17,18]. Huo et al. [19] found that the dechlorination rate of biosynthesis was
4.8 times that of chemical synthesis due to the smaller and better dispersed particle size
of FeS synthesized by Shewanella putrefaciens strain CN32. Additionally, biosynthesized
FeS contained more disulfide bonds (S-S) and structural Fe(II), which could significantly
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improve pollutant removal capacity. At present, most research has only focused on the
difference in properties between biosynthesis and chemical synthesis, but the role of SRB
in biosynthesis was ignored. Moreover, Wu et al. [20] found that some natural substances
could enhance FeS stability and provide buffering capacity. Hence, in the in situ remedia-
tion process, SRB will also attend to the removal reaction; therefore, through this study, we
wanted to examine the role of SRB in the removal of hexavalent chromium by biosynthetic
iron sulfides.

Among many heavy metal contaminants, hexavalent chromium (Cr(VI)) is considered
a preferred study pollutant because it is widely present in natural water, with high fluidity
and toxicity [21,22] Chromium exists mainly in natural environmental media (water, soil and
underground) in two chemical valence states: one is Cr(III), and the other is Cr(VI) [23,24].
Previous studies have investigated the removal of Cr(VI) by multiple materials (e.g., ac-
tivated carbon and organic matter), but further treatment of adsorbed Cr(VI) or reduced
Cr(III) ions is also required. FeS has a strong chromium removal effect, so it is widely used;
meanwhile, biosynthesis is closer to nature and more environmentally friendly. Thus, it is
very necessary to study the removal of Cr(VI) by biosynthetic FeS.

It is interesting to know how the SRB in iron sulfides affect the Cr(VI) removal ef-
ficiency. The purpose of this study is to use SRB existing in the natural environment
for FeS1+x synthesis and solve three main problems: 1. explore the characterization and
analysis difference between biological FeS1+x and traditional chemical synthesis of FeS1+x;
2. investigate the role of SRB when biosynthetic FeS1+x remove the Cr(VI); 3. study the
mechanism of the SRB effect on pollutant removal, which could provide scientific guidance
for subsequent in situ remediation of Cr(VI) contamination.

2. Materials and Methods
2.1. Chemicals

Pure (>99%) ferrous sulfate heptahydrate (FeSO4·7H2O), acetic acid, sodium acetate,
HNO3, acetic acid, ammonium acetate, zinc acetate, sulfuric acid (H2SO4), hydroxylamine
hydrochloride, etc., were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China. Na2S·9H2O, K2Cr2O7, o-phenanthroline reagent, HCl, NaOH, diphenylcarbohy-
dramine, perferramine sulfate, and N-N-dimethyl-p-phenylenediamine were purchased
from Aladdin Chemistry Co. Ltd., Shanghai, China. All water used in the experiment was
deionized water.

2.2. Material Preparation

The preparation of chemical FeS nanoparticles followed a modified method from
Liu et al. [25]; after weighing out 31.591 g of FeSO4·7H2O, it was dissolved in 250 mL of
deionized water. Then, 27.273 g of sodium sulfide octahydrate was dissolved in 250 mL of
deionized water; after, the ferrous sulfate solution was poured into a 1 L brown bottle. Next,
the above solution was put in a magnetic stirrer for stirring at a speed of 1000 r/min, and
the prepared sodium sulfide solution was added dropwise to the ferrous sulfate solution.
Finally, the pellets, prepared as above, were dried, and centrifuged at 7000 rpm for 10 min;
the supernatant was removed and new oxygen-free water was added. The samples were
dried and centrifuged at 7000 rpm for 10 min to remove the supernatant. The obtained
chemical FeS was stored in an anoxic environment prior to use.

The SRB (Sulfovibrio vulgaris ATCC 7757) Manassas, VA, US was purchased from the
China Microbial Culture Center (CGMCC®), Beijing, China. A quantity of 0.3 mL of suitably
functional liquid medium was aspirated with a sterile pipette and gently shaken to dissolve
the lyophilized bacteria into suspension. The entire bacterial suspension was transplanted
in the medium at 37 ◦C. Then, 1 mL of SRB in the logarithmic growth phase solution was
injected into an anaerobic flask and was placed in a constant-temperature incubator at
37 ◦C for about 6 days.

The preparation of biosynthetic FeS was performed by dissolving 5 g of ferrous sulfate
heptahydrate in anoxic water, slowly injecting the SRB into an anaerobic bottle, and then
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placing it in a constant-temperature incubator at 100 rpm, 37 ◦C for about 6 days. The
samples were dried and centrifuged at 10,000 rpm to discard the supernatant. The obtained
biosynthesized FeS was stored in anoxic conditions at 0 °C.

2.3. Batch Experiments

The role of SRB in the in situ remediation was studied by a set of two control groups.
The system that retained SRB without centrifugation or other steps after the synthesis of
FeS was called BS-FeS1+x. The next group was referred to as BNS-FeS1+x, which was treated
by multiple pre-processing steps to remove the SRB.

A quantity of 20 mL of 11.4 mM Cr(VI) solution was placed into a 200 mL anoxic bottle;
the headspace was filled with high-purity nitrogen to ensure the anoxic environment of
the bottle. The initial pH of the solution was adjusted to 5.0, 7.0 and 9.0 with 1 M HCl and
5 M NaOH solutions. Unless otherwise stated, there were no buffers added in the batch
experiments to control the solution pH.

In order to explore the role of SRB, this study used 11.4 mM BS-FeS1+x and BNS-FeS1+x
to remove Cr(VI). The addition of a buffer (HEPES) group was set as comparative experi-
ments in both chemical synthesis and biosynthesis. Since SRB might have the capacity to
remove Cr(VI) alone, we also removed Cr(VI) with SRB. Different concentrations of FeS1+x
solution (1.14, 5.7, and 11.4 mM) were added to an anoxic flask and placed on a magnetic
stirrer at 200 rpm in order to study the efficiency of FeS1+x in the repair of wastewater
containing Cr(VI). Periodically, the aqueous suspensions (2 mL) were withdrawn from
the bottles and filtered through 0.22 µm membranes (Navigator, China) to determine the
concentration of Cr(VI).

2.4. The Cr(Vi) Removal Kinetic Models and Adsorption Kinetic Models

Pseudo-first-order (Equation (1)) and second-order kinetic (Equation (2)) models were
adopted to investigate the removal kinetics of Cr(VI) by FeS. The formulae were represented as

ln(qe − qt) = ln qe − k1t (1)

t
qt

=
1

k2q2
e
+

t
qe

(2)

where qe is the removal capacity (mg/g); qt represents the equilibrium removal quantity
(mg/g); k1 and k2 represent the constant of pseudo-first-order kinetic (min−1) and pseudo-
second-order kinetic (g/(mg·min)); and t represents the reaction time (min).

General-order (GO) models—see Equation (3)—were used to fit the kinetic data [26–28].
The corresponding equations were summarized as follows:

qt = qe −
qe[

kN ·(qe)
n−1·t·(n − 1) + 1

]n−1 (3)

where t is the contact time (min), and qt, qe are the amounts of adsorbate adsorbed at
time t. kN is the general-order rate constant ((mg·g−1)n−1·min−1); n is the order of the
general-order model (dimensionless).

2.5. Chemical Analysis and Instrumental Characterization

Periodically, samples were withdrawn to analyze the total S(-II) and Fe(II). The aque-
ous Cr(VI) and Fe(II) were filtered immediately and measured through a 0.22 µm membrane
(Navigator, China) by a UV–vis spectrophotometer (SP-756P, Shanghai spectrum). Cr(VI),
S(-II) and Fe(II) were measured at 540, 665 and 510 nm wavelength, respectively. Fe(II) was
sampled and mixed with 1 mL of acetate buffer and 0.4 mL of 0.5% 1,10-phenanthroline,
then quantified at 510 nm after 10 min [29,30]. Specifically, S(-II) was sampled and mixed
with 1 mL of 0.2% 4-amino-dimethylaniline and 0.2 mL of 0.25 M ammonium ferric sulfate,
then quantified at 665 nm after 10 min [29]. Cr(VI) concentration was determined using
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5 g/L of 1,5-diphenylcarbazide at 510 nm [31]. The solid samples of each period were col-
lected after centrifugation at 10,000 rpm for 5 min. Then, they were washed with deionized
water and stored under anoxic conditions for further analysis. After the Cr(VI) removal
experiment, the remaining solid was collected and saved in the same steps. The structure
and distribution of FeS were analyzed using scanning electron microscopy (SEM) (Hitachi,
S-4800). An X-ray powder diffractometer (XRD) (D/max-RB) was used to analyze the
mineral composition of samples. X-ray photoelectron spectroscopy (XPS) (Thermo Kalpha,
Waltham, MA, USA) was employed to investigate the surface composition of particles.

3. Results and Discussion
3.1. Characteristics of the Biosynthetic Iron Sulfides

The synthesized FeS1+x showed different morphological characteristics as time in-
creased (Figure 1) [32]. Within 2 days, biosynthesized FeS1+x presented multiple prismatic
clusters (Figure 1a). Probably, a small amount of vivianite was formed during the syn-
thesis process [14]. Then, after the sixth day, it exhibited unique morphological features
and rosette-like particle form (Figure 1b) because as the bacteria continued to metabolize
and grow, the use of elemental P led to the collapse and dissolution of vivianite [33,34].
Previous research using TEM has shown that FeS1+x produced by different SRB showed
different growth states; for example, obvious iron flocs with unclear edges were formed
in the Shewanella oneidensis MR-1 group on day three [20]. Thus, in further studies, we
need more precise instruments to characterize this phenomenon. Studies have shown that
during FeS biosynthesis, sulfur-mediated iron reduction depended on the release rate of
biological S2− [14]. It was quite different from the morphology of chemically synthesized
FeS, which was usually in the form of irregularly shaped crystalline or lamellar nanoparti-
cles or layered particles [14]. Biosynthetic FeS1+x was not a single ferrous sulfide particle
formed during the synthesis process but also a variety of pyrites minerals and elemental
sulfur. It has been reported that both biological and chemical synthesis processes were very
susceptible to the formation of vivianite due to free phosphate.
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Figure 1. Scanning electron microscopy of biosynthetic FeS1+x in (a) 2 days and (b) 6 days.

XRD presented the diffraction peaks of mackinawite (FeS) accompanied by a small
quantity of peaks of vivianite, S8 and Fe3S4 (Figure 2). The crystalline form of FeS was
very poor [35] because of the dissimilatory bacterial reduction of sulfate. SRB used sulfate
as external electron acceptors to obtain energy and nutrients by oxidizing low-molecular-
weight organic compounds (e.g., lactic acid, lactic acid, acetate). Lactic acid was an electron
donor, and acetic acid was released when lactic acid was incompletely oxidized. Water
hydrogen sulfide (or disulfide) and water ferrous material could react and precipitate to
amorphous iron sulfide [36]. The amount of vivianite formed was smaller, which could be
ascribed to the competition of free S2− and PO4

3−. Meanwhile, Picard et al. [32] found that
un-inactivated microorganisms would continuously produce S2−, which is more conducive
to the formation of FeS.
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3.2. Cr(Vi) Reduction under Anoxic Conditions

The Cr(VI) removal efficiency of BS-FeS1+x reached 68.5% within 1 min; the removal
amount per unit mass was Qm = 55.18 mg/g, and the equilibrium removal efficiency was
100% in 15 min (Figure 3). Meanwhile, Cr(VI) could be completely removed under the
anoxic conditions, indicating that BS-FeS1+x had a good removal performance on Cr(VI).
It has been reported that FeS featured a rapid Cr(VI) removal rate before the first half an
hour, followed by slower removal in the next several hours [37]. By comparing the R2
of the fitted model with the theoretically calculated qe and the actual qe, the pseudo-first-
level fitted R2 of the BS-FeS1+x was 0.972, and the theoretical removal equivalent qe was
24.38 mg/g (Figure 3 and Table 1). It was found that the removal kinetics of BS-FeS1+x on
Cr(VI) were more fitted with the pseudo-secondary kinetic model, which was consistent
with the kinetic results of removing Cr(VI) with FeS in other studies [34,38]. The pseudo-
secondary kinetic constant k2 of the BS-FeS1+x was 2.59 × 10−2 (min(mg/g)−1) R2 = 0.998,
and the theoretical removal equivalent was 73.52 mg/g. Further evaluating the kinetic
process, t0.5 and t0.95 were studied. The values were calculated from the best model (general-
order model). These values correspond to the times (min) when 50% and 95% of saturation
(qe) are attained, respectively (Table 1). The t0.5 and t0.95 of BS-FeS1+x and BNS-FeS1+x were
0.43, 7.61 and 0.96, 18.29 min, respectively. This result also proved that BS-FeS1+x had a
good Cr(VI) adsorption capacity.
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Figure 3. Kinetics of removal of Cr(VI) by biosynthesis of FeS1+x. (a): the amount of Cr(VI) removed
by BS-FeS1+x and BNS-FeS1+x; (b): pseudo-first-order kinetic; (c): pseudo-secondary kinetic model
fitting of BS-FeS1+x and BNS-FeS1+x removal Cr(VI); (d): adsorption kinetic models of Cr(VI). Reaction
conditions: FeS1+x dosage concentration was 11.4 mM; Cr(VI) dosage concentration was 1.14 mM;
initial pH was 5.0; reaction time was 2 h; and speed was 200 rpm. BS-FeS1+x: biosynthesis of iron
sulfides containing SRB. BNS-FeS1+x: biosynthesis of iron sulfide dry particles without SRB. Data
were plotted as means of duplicates. and the error bars indicate the standard deviation.

It still had 5.7% Cr(VI) in the solid phase of BS-FeS1+x after anoxic 2 h, indicating that
BS-FeS1+x could not only remove Cr(VI) by reduction but also by adsorption (Figure 4
and Table 2). In addition, the larger the porosity of BS-FeS1+x, the stronger the adsorption
effect [39]. The higher porosity and the presence of SRB both contributed to the better
Cr(VI) removal efficiency of BS-FeS1+x. SRB could make FeS more uniformly dispersed on
cells and secreted extracellular polymeric substances (EPS) as an intermediate, which might
also improve the electron transport. EPS had a strong buffering capacity and contained
more disulfide bonds (S-S) and structural Fe(II) due to the rich functional groups, which
could improve the reducing effect of Cr(VI) [18,19].

The changes in Fe(II) and S(-II) were measured to determine the transfer of Fe(II)
and S(-II) during the removal of Cr(VI) by BS-FeS1+x. Fe(II) and S(-II) in BS-FeS1+x would
be rapidly oxidized according to the formula and the theoretical calculation. BS-FeS1+x
could theoretically reduce 1.05 mM of Cr(VI) at 10 min, while in this study, it removed
1.06 mM of Cr(VI), indicating that SRB might play an important role in removing Cr(VI).
Additionally, it was found that the S(-II) concentration was 12.46 mM, which was greater
than the theoretical value of 11.4 mM (Figure 5). It could be ascribed to the release of S
during biosynthesis reaction [34].
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Table 1. Kinetic constants for the removal and adsorption of Cr(VI) using biosynthesis of FeS1+x.

Pseudo-Frist-Order Kinetic Pseudo-Secondary Kinetic General-Order Models Experiment Data

k1 (min−1) qe (mg/g) R2 k2 (min(mg/g)−1) qe (mg/g) R2 kn n t0.5 t0.95 qe (mg/g)

BS-FeS1+x 2.01 × 10−1 24.38 0.972 2.59 × 10−2 73.52 0.998 0.017 2.19 0.43 7.61 59.28
BNS-FeS1+x 2.00 × 10−1 31.31 0.976 1.50 × 10−2 62.42 0.996 0.0099 2.15 0.96 18.29 57.83
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Figure 4. XPS spectra of (a): Cr 2p1/2, (b): Fe 2p3/2, and (c): S 2p3/2 after reaction in the presence of
FeS. Solid samples were prepared under the following experimental conditions: FeS1+x = 11.4 mM;
initial Cr(VI) = 1.14 mM; stirring speed = 200 rpm. The C1s peak at 284.8 eV was chosen to calibrate
all the peak positions.

Table 2. XPS analysis fit results of Cr(VI) 2p1/2, S 2p3/2 and Fe 2p3/2 under anoxic conditions.
BS-FeS1+x: biosynthesis of iron sulfides containing SRB.

Type Elements B.E.(eV) Species Relative
Fraction(%)

BS-FeS1+x

Fe 2p3/2
710.6 eV Fe(II)-S 45.3

712.6 eV, 718.0 eV, 713.9 eV Fe(III) 19.5
724.6 eV FeOOH 35.2

S 2p3/2
163.5 eV Sn(-II) 15.9
160.4 eV S(-II) 5.5
168.7 eV SO4

2− 78.6

Cr 2p1/2 579.6 eV Cr(VI) 5.7
576.5 eV, 578.4 eV, 586.4 eV Cr(III) 94.3
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Figure 5. Changes in the concentration of Fe(II) and S(-II) when Cr(VI) is removed from the suspension
of BS-FeS1+x and BNS-FeS1+x. (a): Fe(II) concentration change, (b): S(-II) concentration change, and
(c): Fe2+ concentration change. Reaction conditions: FeS1+x dosage concentration was 11.4 mM; Cr(VI)
dosage concentration was 1.14 mM; initial pH was 5.0; reaction time was 2 h; and speed was 200 rpm.
BS-FeS1+x: biosynthesis of iron sulfides containing SRB. BNS-FeS1+x: biosynthesis of iron sulfide
dry particles without SRB. Data were plotted as means of duplicates, and the error bars indicate the
standard deviation.

3.3. Role of Srb Bacteria in Cr(Vi) Removal
3.3.1. The Stabilization by SRB

In this study, in order to better understand the role of SRB during pollutant removal,
BS-FeS1+x and BNS-FeS1+x were used to remove Cr(VI) in comparative experiments. There-
fore, we hypothesized that SRB was one of the reasons for the better removal
performance of BS-FeS1+x. The difference in Cr(VI) removal efficiency between BS-FeS1+x
and BNS-FeS1+x was examined to confirm the hypothesis. Cr(VI) could be quickly re-
moved by both BS-FeS1+x and BNS-FeS1+x systems (Figure 3a). Therefore, the pseudo-
secondary reaction kinetics were explored. The Cr(VI) removal rate of BNS-FeS1+x was
1.50 × 10−2 (min(mg/g)−1), which was 0.58 times that of BS-FeS1+x (Table 1). It could be
seen that the solubility of BNS-FeS1+x powder was limited, so the contact area with Cr(VI)
was relatively limited. The FeS suspension could be evenly distributed in the solution,
and the contact area with pollutants was greatly increased after the addition of the FeS
suspension [40]. However, the role of SRB was still a point of controversy. Therefore,
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the effect of chemically synthesized FeS suspension and dry particles was also tested.
The pseudo-secondary kinetic constant of chemically synthesized FeS dry particles was
0.72 times that of suspension (Figure 6 and Table 3). The t0.5 and t0.95 of chemically synthe-
sized FeS suspension and dry particles were 0.67, 24.77 and 1.94, 32.57 min, respectively
(Table 3). Compared to BS-FeS1+x and BNS-FeS1+x, we found that the difference between
BS-FeS1+x and BNS-FeS1+x was greater than that of chemically synthesized FeS, indicating
that although the suspension could promote the dispersion and dissolution of FeS, SRB
also played a significant role in promoting the removal of Cr(VI). EPS could reduce aggre-
gation of FeS by increasing the negative surface charge and then reducing the propensity of
nanoparticles to aggregate [41,42].
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Figure 6. (a,b): Removal effect and reaction kinetics of Cr(VI) by suspension and dry particles of
chemical synthesis FeS; (c): adsorption kinetic models of Cr(VI). Reaction conditions: FeS dosage
concentration was 11.4 mM; Cr(VI) dosage concentration was 1.14 mM; initial pH was 5.0; reaction
time was 2 h; and speed was 200 rpm. Data were plotted as means of duplicates, and the error bars
indicate the standard deviation.

Table 3. Kinetic parameters of chemical synthesis FeS suspension and dry particles for Cr(VI) removal
and adsorption.

Type
Pseudo-Secondary Kinetic General-Order Models

k2 (min(mg/g)−1) qe (mg/g) R2 kn n t0.5 t0.95

chemical synthesis FeS suspension 1.37 × 10−2 61.31 0.995 0.0098 2.14 0.67 24.77
chemical synthesis FeS dry particles 1.00 × 10−2 60.18 0.993 0.022 1.86 1.94 32.57

3.3.2. Enhancement Content of Reductive Species by SRB

It was found that Cr(VI) could also be removed in SRB systems without the presence
of Fe(II) (Figure 7). The Cr(VI) removal efficiency of SRB alone reached 63.2% (0.72 mM)
within 60 min, and the subsequent reaction reached equilibrium within 150 min (Figure 8),
which might be caused by the fact that Cr(VI) could provide electrons to SRB to release a
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small amount of S(-II). Therefore, the change in the S(-II) concentration during the reaction
was measured. It showed that the peak content of S(-II) reached 3.53 mM at 1 min (Figure 7).
It is worth noting that, theoretically, the S(-II) consumed should be not less than 1.43 mM at
60 min. However, the consumption of S(-II) at 60 min was 1.06 mM. It also showed that SRB
could remove Cr(VI) by consuming S(-II). Additionally, substances such as EPS produced
by SRB might also adsorb Cr(VI) and improve the removal effect of biosynthetic FeS.
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standard deviation.
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conditions: FeS1+x dosage concentration was 1.14 mM; Cr(VI) dosage concentration was 1.14 mM;
reaction time was 2 h; and the speed was 200 rpm. BS-FeS1+x: biosynthesis of iron sulfides containing
SRB. Data were plotted as means of duplicates, and the error bars indicate the standard deviation.
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The change in S(-II) in the BNS-FeS1+x system did not share the same trend with the
BS-FeS1+x system (Figure 5). Generally, it could be concluded that SRB would directly
remove part of Cr (VI) by producing S(-II). Meanwhile, it was found that Fe(II) in the
BS-FeS1+x remained at a higher value than BNS-FeS1+x (Figure 5). This indicated that SRB
could accept electrons and continuously release S(-II) during the reaction. It would have
a promotion effect on the reduction of structural Fe(III), which accelerated the cycle of
Fe(II)/Fe(III) in the system [43,44]; this would increase the Fe(II) in solution and could
also promote the rapid dissolution of Fe(II) [43]. Thus, the presence of SRB was one of
the reasons for the increase in the removal efficiency. This extraordinary activity of the
BS-FeS1+x was mainly attributed to its well-dispersed structure and higher content of
reductive species, such as structural Fe(II) and disulfide [19].

To further explore the increased Cr(VI) removal efficiency of BS-FeS1+x, the amount
of dissolved Fe(II) during the reaction was also examined. In the BS-FeS1+x system, the
dissolved Fe(II) appeared before the reaction and always maintained a high value during
the reaction. However, the dissolved Fe(II) in the dry particle system did not appear until
30 min. It could be seen that BS-FeS1+x could not only continuously release S(-II) but also
promote Fe(II) dissolution due to the presence of SRB, thereby improving the reduction
ability of FeS to remove Cr(VI). EPS and other substances in SRB could promote dissolution
or complexation with Fe during biosynthesis [43,45,46].

3.3.3. The Buffering Capacity of SRB

As mentioned above, the presence of SRB could not only promote the stabilization of
FeS1+x but also promote the production of reducing agents. In order to find out whether SRB
had a buffering effect on the pH, the biosynthetic and chemically synthesized suspensions
were used in the buffer and buffer-free systems.

In the chemical synthesis FeS system, the Cr(VI) removal efficiency without the pres-
ence of buffers at pH 5.0, 7.0 and 9.0 was 85.6%, 73.5% and 65.7%, respectively, while the
Cr(VI) removal efficiency reached 100% when pH was 5.0 and 7.0 in the buffer system
(Figure 8). Additionally, the Cr(VI) removal efficiency with the absence of buffers slowly
decreased with the increase in pH. The BS-FeS1+x systems shared the same trend with the
chemical synthesis FeS system in the absence of buffers. In the no-buffer system, the Cr(VI)
removal efficiency was 93.4%, 89.2% and 77.4% when pH was 5.0, 7.0 and 9.0, respectively;
in the buffer system, the Cr(VI) removal efficiency was 100%, 100% and 78.3% at pH 5.0, 7.0
and 9.0, respectively (Figure 8). Moreover, it was found that when there was no buffer in
the solution, the pH changed greatly in the chemical synthesis group. When the pH was 5.0,
7.0 and 9.0 in the chemical synthesis FeS system, the pH increased to 9.2, 9.5 and 10.2 after
2 h, respectively (Figure 8), while in the BS-FeS1+x buffer-free system, the pH of the solution
rose to 7.4, 8.3 and 9.8 after 2 h, respectively (Figure 8). Liu and Wang et al. found EPS has
a strong buffering capacity [17,46]. Compared with the chemical synthesis group, it was
found that the presence of SRB inhibited the change in pH, which would enhance the Cr(VI)
removal efficiency. Research has shown that pH also had an influence on the morphology
of the final product Cr(III). When the pH is within 6-8 at the end of the reaction, Cr(III) can
completely break away from the solution phase in the form of precipitate [24,47]. Hence,
when BS-FeS1+x is used for in situ remediation, the presence of SRB can not only promote
the reduction of Cr(VI), but also play a buffering role to make Cr(III) easier to precipitate,
thereby removing the pollutants. However, the role of SRB in removing Cr(VI) should be
further explored by analyzing the EPS extraction.

As mentioned above, we have summarized the role of SRB (Figure 9). SRB have three
main points of promotion. First, SRB could release more S(-II), which not only reduced
Cr(VI) directly but also might have reduced Fe(III) to Fe(II). Second, SRB could promote
the dispersion and dissolution of FeS to make FeS more stable. Moreover, the buffering
effect of SRB could reduce the change in pH, resulting in the high value of the removal
efficiency. SRB itself had been less-studied for Cr(VI) removal. We compared the effects of
FeS on Cr(VI) in other studies (Table 4). The maximum removal capacities of BS-FeS1+x and
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BNS-FeS1+x were 73.52 mg/g and 62.42 mg/g, respectively, and both materials displayed a
good removal capacity toward Cr(VI) compared to many other adsorbents. These experi-
mental results demonstrated that both BS-FeS1+x and BNS-FeS1+x were excellent adsorbents
for Cr(VI) uptake from aqueous solutions.
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Table 4. Maximum adsorption capacities of some adsorbents for the removal of Cr(VI) ions.

Sample pH Reaction
Time

Removal
Capability

(mg/g)
References

FeS a 5.5 72 h 38.6 [20]
FeS@Fe0 a 5.6 1 h 66.7 [20]
Fe/FeS a 5 48 h 69.7 [43]
BS-FeS1+x 5 2 h 73.52 This study

BNS-FeS1+x 5 2 h 62.42 This study
a: Chemically synthesized FeS.

3.4. Effects of pH and FeS-to-Cr(III) Molar Ratios on Cr(VI) Reduction

It has been considered that the removal of heavy metals is influenced by initial pH [48,49].
Therefore, removal kinetic simulations were performed. The pseudo-secondary kinetic con-
stants k2 of BS-FeS1+x at pH 5.0 was 1.7 and 3.0 times higher than those of pH 7.0 and 9.0, re-
spectively, and they were the same as the adsorption kinetic models
(Figure 10a,b and Table 5). It showed that pH had a great influence on Cr(VI) removal, and
its reaction rate decreased with the increase in pH [37,50]. Other substances containing
Fe2+ or S2− respond similarly to pH during the removal of Cr(VI) [51,52]. The influence
of pH could be explained by the following reasons: 1. The increase in pH leads to greater
formation of iron (hydr)oxides on the FeS surface, resulting in fewer reactive points [53].
2. OH− increased in the solution with the pH, which intensifies the competition for FeS
with the oxygenated anions of Cr(VI) [54,55]. 3. The main forms of Cr under acidic con-
ditions are Cr2O7

2− and CrO4
2−. As the pH increases, there is only a stable form of Cr

(CrO4
2−) and a less polymerized form of Cr oxide in the solution. HCrO4

− is more easily
adsorbed on the FeS surface under acidic conditions, resulting in a faster reaction rate [56].
Different molar ratios of Cr(VI) and FeS, such as 1:1, 1:5 and 1:10, were used to explore the
effect of Cr(VI) and BS-FeS1+x ratio on the removal of Cr(VI). The Cr(VI) removal efficiency
of 1:1, 5:1 and 10:1 molar ratio was 93.4%, 100% and 100%, respectively (Figure 10c), and
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the trend gradually expanded as the initial concentration increased. The t0.5 and t0.95 of
BS-FeS1+x at different pH and molar ratios illustrated that pH and molar ratio were the
important factors in adsorption.
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Figure 10. (a): Removal effect, (b): Pseudo-second-order kinetic fitting of Cr(VI) removal by
BS-FeS1+x under different pH conditions (5.0, 7.0 and 9.0), (c): Adsorption kinetic models of Cr(VI)
under different pH, (d): Removal effect, (e): Pseudo-second-order kinetic fitting of Cr(VI) removal
under different FeS1+x:Cr(VI) molar ratios (10:1, 5:1 and 1:1), and (f): adsorption kinetic models of
Cr(VI) under different molar ratios. Reaction conditions: FeS dosage concentration was 11.4 mM;
Cr(VI) dosage concentration was 1.14 mM; initial pH was 5.0; reaction time was 2 h; and speed was
200 rpm. BS-FeS1+x: biosynthesis of iron sulfides containing SRB. Data were plotted as means of
duplicates, and the error bars indicate the standard deviation.

Table 5. Kinetic constants for the removal and adsorption of Cr(VI) using biosynthetic FeS1+x under
different pH (5.0, 7.0, 9.0) and FeS:Cr(VI) molar ratios (10:1, 5:1, 1:1).

pH k2 (min(mg/g)−1) qe (mg/g) R2 kn n t0.5 t0.95

5.0 2.59 × 10−2 73.52 0.998 0.017 2.19 0.43 7.61
7.0 1.53 × 10−2 60.86 0.996 0.0019 2.77 0.50 24.32
9.0 0.94 × 10−2 62.22 0.992 0.031 1.57 2.59 42.34

FeS:Cr(VI)
10:1 2.59 × 10−2 73.52 0.998 0.017 2.19 0.43 7.61
5:1 0.45 × 10−2 62.56 0.998 0.245 0.945 3.32 13.51
1:1 0.73 × 10−1 50.45 0.997 0.018 2.78 3.59 234.15

4. Conclusions

Biosynthetic FeS1+x showed different properties from chemical synthesis. During
synthesis, it would produce other iron minerals (i.g. vivianite), and with the increase in
time, the morphology of FeS1+x also changed. BS-FeS1+x showed good performance with
respect to the Cr(VI) removal efficiency and rate. At the same time, the presence of SRB
promoted the removal of Cr(VI). There were three main reasons for this phenomenon:
1. The presence of SRB could continuously generate S, which not only reduced Cr(VI)
directly but also might make Fe(III) become Fe(II) again. 2. The presence of SRB could also
play a role in stabilizing FeS1+x. 3. Meanwhile, the buffering effect of SRB could reduce the
change in pH, resulting in the high value of the removal efficiency. In summary, in actual
in situ pollutant remediation the presence of SRB can enhance Cr(VI) removal efficiency.
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