Removal of Haloacetic Acids via Adsorption and Biodegradation in a Bench-Scale Filtration System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofiltration System
2.2. Feed Water
2.3. Biological Activity
2.4. Organic Matter Analysis
2.5. HAA Analysis and Gas Chromatography
3. Results and Discussion
3.1. Biological Activity
3.2. Organic Matter Removal
3.3. HAA Speciation
3.4. HAA Biodegradability
3.5. HAA Single Pass Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutler, D.; Miller, G. The role of public health improvements in health advances: The twentieth-century United States. Demography 2005, 42, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- Krasner, S.W.; McGuire, M.J.; Jacangelo, J.G. Occurrence of disinfection by-products in US drinking water. J. Am. Water. Work. Assoc. 1989, 81, 41–53. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Water: Stage 2 DBPR 2012. Available online: http://water.epa.gov/lawsregs/rulesregs/sdwa/stage2/compliance.cfm (accessed on 20 March 2023).
- Sawade, E.; Fabris, R.; Humpage, A.; Drikas, M. Effect of increasing bromide concentration on toxicity in treated drinking water. J. Water Health 2015, 14, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolb, C.; Francis, R.A.; VanBriesen, J.M. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk. J. Environ. Sci. 2017, 58, 191–207. [Google Scholar] [CrossRef]
- EPA. Monitoring Unregulated Contaminants in Drinking Water. EPA 2022. Available online: https://www.epa.gov/dwucmr (accessed on 20 March 2023).
- VanBriesen, J.M. Potential Drinking Water Effects of Bromide Discharges From Coal-Fired Electric Power Plants; Formal Comments of the Environmental Integrity Project et al. on the Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category, Appendix B of Water Docket EPA-HQ-OW-2009-0819-4687; EPA: Washington, DC, USA, 2013; pp. 1–38.
- Magazinovic, R.S.; Nicholson, B.C.; Mulcahy, D.E.; Davey, D.E. Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. Chemosphere 2004, 57, 329–335. [Google Scholar] [CrossRef]
- Xue, R.; Xue, R.; Shi, H.; Ma, Y.; Yang, J.; Hua, B.; Inniss, E.C.; Adams, C.D.; Eichholz, T. Evaluation of thirteen haloacetic acids and ten trihalo-methanes formation by peracetic acid and chlorine drinking water disinfection. Chemosphere 2017, 189, 349–356. [Google Scholar] [CrossRef]
- Ged, E.C.; Boyer, T.H. Effect of seawater intrusion on formation of bromine-containing trihalomethanes and haloacetic acids during chlorination. Desalination 2014, 345, 85–93. [Google Scholar] [CrossRef]
- Li, Z.; Clark, R.M.; Buchberger, S.G.; Yang, Y.J. Evaluation of Climate Change Impact on Drinking Water Treatment Plant Operation. J. Environ. Eng. 2014, 140, 824. [Google Scholar] [CrossRef]
- Kolb, C.; Pozzi, M.; Samaras, C.; VanBriesen, J.M. Climate Change Impacts on Bromide, Trihalomethane Formation, and Health Risks at Coastal Groundwater Utilities. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2017, 3, 04017006. [Google Scholar] [CrossRef]
- Motz, L.H.; Kurki-Fox, J.; Ged, E.C.; Boyer, T.H. Increased Total Dissolved Solids, Chloride, and Bromide Concentrations Due to Sea-Level Rise in a Coastal Aquifer. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, OR, USA, 1–5 June 2014. [Google Scholar] [CrossRef]
- Xie, Y.F.; Zhou, H. Use of BAC for HAA removal—Part 2, column study. J. Am. Water Work. Assoc. 2002, 94, 126–134. [Google Scholar] [CrossRef]
- Kim, J.; Kang, B. DBPs removal in GAC filter-adsorber. Water Res. 2008, 42, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Gupta, A.K.; Ghosal, P.S. A review on Trihalomethanes and Haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies. J. Environ. Chem. Eng. 2021, 9, 106511. [Google Scholar] [CrossRef]
- Tung, H.-H.; Xie, Y.F.; Evaluate, H.A.A. Removal in biologically active carbon filters using the ICR database. Front. Environ. Sci. Eng. China 2011, 5, 489–496. [Google Scholar] [CrossRef]
- Tung, H.H.; Unz, R.F.; Xie, Y.F. HAA removal by GAC adsorption. J.-Am. Water Work. Assoc. 2006, 98, 107–112. [Google Scholar] [CrossRef]
- Urfer, D.; Huck, P.M.; Booth, S.D.J.; Coffey, B.M. Biological filtration for BOM and particle removal: A critical review: The authors review key parameters and engineering variables influencing biological filtration and identify areas requiring further research. J. Am. Water Work. Assoc. 1997, 89, 83–98. [Google Scholar] [CrossRef]
- Terry, L.G.; Summers, R.S. Biodegradable organic matter and rapid-rate biofilter performance: A review. Water Res. 2018, 128, 234–245. [Google Scholar] [CrossRef]
- Chen, F.; Peldszus, S.; Elhadidy, A.M.; Legge, R.L.; Van Dyke, M.I.; Huck, P.M. Kinetics of natural organic matter (NOM) removal during drinking water biofiltration using different NOM characterization approaches. Water Res. 2016, 104, 361–370. [Google Scholar] [CrossRef]
- Peleato, N.M.; McKie, M.; Taylor-Edmonds, L.; Andrews, S.A.; Legge, R.L.; Andrews, R.C. Fluorescence spectroscopy for monitoring reduction of natural organic matter and halogenated furanone precursors by biofiltration. Chemosphere 2016, 153, 155–161. [Google Scholar] [CrossRef]
- Liu, C.; Olivares, C.I.; Pinto, A.J.; Lauderdale, C.V.; Brown, J.; Selbes, M.; Karanfil, T. The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res. 2017, 124, 630–653. [Google Scholar] [CrossRef]
- Vines, M.; Terry, L.G. Evaluation of the biodegradability of fluorescent dissolved organic matter via biological filtration. AWWA Water Sci. 2020, 2, 1201. [Google Scholar] [CrossRef]
- Grigorescu, A.S.; Hozalski, R.M. Modeling HAA biodégradation in biofilters and distribution systems. J. Am. Water Work. Assoc. 2010, 102, 67–80. [Google Scholar] [CrossRef]
- Tang, H.L.; Xie, Y.F. Biologically active carbon filtration for haloacetic acid removal from swimming pool water. Sci. Total. Environ. 2016, 541, 58–64. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhou, Y.; Bian, Y.; Hu, C.; Wang, Z.-H.; Feng, X.-S. Haloacetic Acids in the Aquatic Environment. Sep. Purif. Rev. 2022, 2002, 1–25. [Google Scholar] [CrossRef]
- Moore, B.C.; Cannon, F.S.; Westrick, J.A.; Metz, D.H.; Shrive, C.A.; DeMarco, J.; Hartman, D.J. Changes in GAC pore structure during full-scale water treatment at Cincinnati: A comparison between virgin and thermally reactivated GAC. Carbon 2001, 39, 789–807. [Google Scholar] [CrossRef]
- Hong, L.; Wang, W.; Gao, D.; Liu, W. Critical pore size for micropore filling in coal samples with different rank coals. PLoS ONE 2022, 17, e0264225. [Google Scholar] [CrossRef]
- Terry, L.G.; Pruisner, P.; Peterson, E.; Dickenson, E.; Wang, J.; Summers, R.S. Scale-Up Methodology for Biological Filtration Removal of Dissolved Organic Matter. Environ. Eng. Sci. 2019, 36, 405–412. [Google Scholar] [CrossRef]
- de Vera, G.A.; Lauderdale, C.; Alito, C.L.; Hooper, J.; Wert, E.C. Using upstream oxidants to minimize surface biofouling and improve hydraulic performance in GAC biofilters. Water Res. 2019, 148, 526–534. [Google Scholar] [CrossRef]
- Young, T.R.; Deem, S.; Leslie, J.C.; Salo-Zieman, V.; He, H.; Dodd, M.C. Drivers of disinfection byproduct formation and speciation in small, chlorinated coastal groundwater systems: Relative roles of bromide and organic matter, and the need for improved source water characterization and monitoring. Environ. Sci. Water Res. Technol. 2020, 6, 3361–3379. [Google Scholar] [CrossRef]
- Pharand, L.; Van Dyke, M.I.; Anderson, W.B.; Huck, P.M. Assessment of biomass in drinking water biofilters by adenosine triphosphate. J. Am. Water Work. Assoc. 2014, 106, E433–E444. [Google Scholar] [CrossRef] [Green Version]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23th ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Wu, H.; Xie, Y.F. Effects of EBCT and Water Temperature on HAA Removal using BAC. J. Am. Water Work. Assoc. 2005, 97, 94–101. [Google Scholar] [CrossRef]
- Ratasuk, C.; Kositanont, C.; Ratanatamskul, C. Removal of haloacetic acids by ozone and biologically active carbon. Sci. Asia 2008, 34, 293–298. [Google Scholar] [CrossRef]
Analyte | Abbreviation | Chemical Formula | Designation |
---|---|---|---|
Chloroacetic acid | CAA | C2H3ClO2 | HAA5 |
Dichloroacetic acid | DCAA | C2H2Cl2O2 | HAA5 |
Trichloroacetic acid | TCAA | C2HCl3O2 | HAA5 |
Bromoacetic acid | BAA | C2H3BrO2 | HAA5 |
Dibromoacetic acid | DBAA | C2H2Br2O2 | HAA5 |
Bromochloroacetic acid | BCAA | C2H2BrClO2 | HAA9 |
Bromodichloroacetic acid | BDCAA | C2HBrCl2O2 | HAA9 |
Chlorodibromoacetic acid | CDBAA | C2HBrClO2 | HAA9 |
Tribromoacetic acid | TBAA | C2HBr3O2 | HAA9 |
Br−/Cl− (×10−3) | UV254 (cm−1) * | DOC (mg/L) * | SUVA * | Ph * |
---|---|---|---|---|
3.11 ± 0.5 | 0.019 ± 0.002 | 1.67 ± 0.50 | 1.22 ± 0.25 | 7.46 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vines, M.; Terry, L.G. Removal of Haloacetic Acids via Adsorption and Biodegradation in a Bench-Scale Filtration System. Water 2023, 15, 1445. https://doi.org/10.3390/w15081445
Vines M, Terry LG. Removal of Haloacetic Acids via Adsorption and Biodegradation in a Bench-Scale Filtration System. Water. 2023; 15(8):1445. https://doi.org/10.3390/w15081445
Chicago/Turabian StyleVines, Melanie, and Leigh G. Terry. 2023. "Removal of Haloacetic Acids via Adsorption and Biodegradation in a Bench-Scale Filtration System" Water 15, no. 8: 1445. https://doi.org/10.3390/w15081445
APA StyleVines, M., & Terry, L. G. (2023). Removal of Haloacetic Acids via Adsorption and Biodegradation in a Bench-Scale Filtration System. Water, 15(8), 1445. https://doi.org/10.3390/w15081445