Heavy Metals in Sediments of Hulun Lake in Inner Mongolia: Spatial-Temporal Distributions, Contamination Assessment and Source Apportionment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Physicochemical Analysis
2.3. Assessment Method
2.3.1. Single Factor Pollution Index (PI)
2.3.2. Geo-Accumulation Index (Igeo)
2.4. Receptor Model PMF 5.0
2.5. Statistical Analysis
3. Results and Discussions
3.1. Heavy Metals Content in the Surface Sediments of Hulun Lake
3.2. Spatial Distribution of Heavy Metals in Surface Sediments
3.3. Assessment of Heavy Metals Pollution in Surface Sediments
3.4. Source Identification of Heavy Metals in Surface Sediments by PMF
3.5. Heavy Metals Temporal Variation in the Core Sediments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Irabien, M.J.; Cearreta, A.; Leorri, E.; Gómez, J.; Viguri, J. A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): Implications for environmental management. Mar. Pollut. Bull. 2008, 56, 1719–1727. [Google Scholar] [CrossRef]
- Aung, P.P.; Mao, Y.; Hu, T.; Qi, S.; Tian, Q.; Chen, Z.; Xing, X. Metal concentrations and pollution assessment in bottom sediments from Inle Lake, Myanmar. J. Geochem. Explor. 2019, 207, 106357. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Wu, P.; Qu, K. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China. PLoS ONE 2017, 12, e0189295. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hu, X.; Tang, Y.; Huang, C.; Xiao, W. Changes in lacustrine environment due to anthropogenic activities over 240 years in Jiuzhaigou National Nature Reserve, southwest China. Quat. Int. 2014, 349, 367–375. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J.; Barabach, J.; Ptak, M.; Zhu, S. Heavy metals in lake surface sediments in protected areas in Poland: Concentration, pollution, ecological risk, sources and spatial distribution. Sci. Rep. 2022, 12, 15006. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Chen, F.; Li, Y.; Ren, B. Trends and Sources of Heavy Metal Pollution in Global River and Lake Sediments from 1970 to 2018. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2021; Volume 257. [Google Scholar] [CrossRef]
- Song, Y.; Man, S.C.; Ji, Y.L.; Dong, J.J. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci. Total Environ. 2014, 482–483, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, F.; Meng, F.; Jiang, L.; Li, G.; Zhou, R. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Mar. Pollut. Bull. 2018, 126, 293–303. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Ricciarini, M.I.; Selvaggi, R.; Cappelletti, D. Heavy metals bioaccumulation in selected tissues of red swamp crayfish: An easy tool for monitoring environmental contamination levels. Sci. Total Environ. 2016, 559. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Chen, K.; Yuan, Z.; Bi, J.; Huang, L. Ecological Risk Assessment of Heavy Metals in Surface Sediments of Six Major Chinese Freshwater Lakes. J. Environ. Qual. 2013, 42, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cheng, H.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yu, R.; Chen, J.; Leng, X.; Zhao, D.; Jia, H.; An, S. Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis. J. Clean. Prod. 2022, 334, 130206. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, T.; Zhang, B.-T.; Liu, Y.; Shao, P.; Sun, C.; Zhang, Y.; Bi, J.; Dong, Y.; Wang, S. Spatial-temporal distributions and influential factors of phthalate acid esters in sediments of three lakes in Inner Mongolia. Environ. Sci. Pollut. Res. 2022, 29, 32800–32812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.; Zhang, S. Distribution characteristics and ecological risk assessment of heavy metals in Hulun Lake sediments. J. Agric. Environ. Sci. 2010, 29, 157–162. [Google Scholar]
- Mao, P.; Zhang, J.; Li, M.; Liu, Y.; Wang, X.; Yan, R.; Shen, B.; Zhang, X.; Shen, J.; Zhu, X.; et al. Spatial and temporal variations in fractional vegetation cover and its driving factors in the Hulun Lake region. Ecol. Indic. 2022, 135, 108490. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol. Indic. 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 109–118. [Google Scholar]
- Mandour, A.; El-Sayed, M.K.; El-Gamal, A.A.; Khadr, A.M.; Elshazly, A. Temporal distribution of trace metals pollution load index in the Nile Delta coastal surface sediments. Mar. Pollut. Bull. 2021, 167, 112290. [Google Scholar] [CrossRef]
- Muller, G. Schwermetalle in den sedimenten des Rheins-Vernderungen seit 1971. Umschav 1979, 79, 778–783. [Google Scholar]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment. Quality in Ontario; Ministry of Environment and Energy: Toronto, ON, Canada, 1993. [Google Scholar]
- Huang, J.; Guo, S.; Zeng, G.M.; Li, F.; Gu, Y.; Shi, Y.; Shi, L.; Liu, W.; Peng, S. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Amp, O.O. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2015. [Google Scholar]
- Zhao, X.; Li, X.; Lu, H. Heavy metal pollution characteristics and potential ecological risk assessment of surface sediments in Dongjiang Lake. Environ. Sci. 2022, 43, 3048–3057. [Google Scholar]
- Kim, I.; Kim, Y.; Kim, R.; Hyon, T. Spatial distribution, origin and contamination assessment of heavy metals in surface sediments from Jangsong tidal flat, Kangryong river estuary, DPR Korea. Mar. Pollut. Bull. 2021, 168, 112414. [Google Scholar] [CrossRef] [PubMed]
- Zi, X.; Zhang, M.; Gu, X. Impact of enclosure culture on heavy metal content in surface sediments of Hongze Lake and ecological risk assessment. Environ. Sci. 2021, 42, 5355–5363. [Google Scholar]
- Tang, C.; Qian, B.; Li, W. Pollution characteristics and risk assessment of heavy metals in surface sediments of dongting lake area. People’s Yangtze River 2020, 51, 49–56. [Google Scholar]
- Zhang, J.; Guo, X.; Zeng, Y.; Deng, J. Distribution and pollution assessment of heavy metals in river sediments in taihu lake basin. Environ. Sci. 2019, 40, 2202–2210. [Google Scholar] [CrossRef]
- Jahromi, F.A.; Keshavarzi, B.; Moore, F.; Abbasi, S.; Busquets, R.; Hooda, P.S.; Jaafarzadeh, N. Source and risk assessment of heavy metals and microplastics in bivalves and coastal sediments of the Northern Persian Gulf, Hormogzan Province. Environ. Res. 2021, 196, 110963. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Vennila, G.; Nanthakumar, G.; Aswini, M. Dataset for spatial distribution and pollution indices of heavy metals in the surface sediments of Emerald Lake, Tamil Nadu, India. Data Brief. 2020, 28, 104877. [Google Scholar] [CrossRef]
- Griboff, J.; Horacek, M.; Wunderlin, D.A.; Monferran, M.V. Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by antrophic pollution in Córdoba, Argentina. Ecotoxicol. Environ. Saf. 2018, 148, 275–284. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, Y.; Zhang, H.; Wang, D.; Qi, S.; Du, Z.; Zhang, H. Assessing heavy metal contamination and ecological risk in Poyang Lake area, China. Environ. Earth Sci. 2016, 75, 549. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.; Yan, Y.; Liu, B.; Wang, T.; Mao, S.; Song, N.; Dou, H.; Ao, W.; Zou, C. Organic Matter Pollution During the Spring Thaw in Hulun Lake Basin: Contribution of Multiform Human Activities. Bull. Environ. Contam. Toxicol. 2020, 105, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, F.; Zou, Y.; Sun, J.; Lin, X.; Liang, T. Oil source and charge in the Wuerxun Depression, Hailar Basin, northeast China: A chemometric study. Mar. Pet. Geol. 2018, 89, 665–686. [Google Scholar] [CrossRef]
- Ji, Z.; Long, Z.; Zhang, Y.; Wang, Y.; Pei, Y. Enrichment differences and source apportionment of nutrients, stable isotopes, and trace metal elements in sediments of complex and fragmented wetland systems. Environ. Pollut. 2021, 289, 117852. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, L.; Qu, Z.; Yang, Z. Distribution, contamination and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China. Environ. Sci. Pollut. Res. 2018, 25, 7012–7020. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Jia, K.; Zhang, S. Nutrient element distribution and environmental pollution assessment in Hulun Lake sediments, Inner Mongolia. Agrl. Environ. Sci. 2010, 29, 5. [Google Scholar]
- Salem, D.; Khaled, A.; Nemr, A.E.; El-Sikaily, A. Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast. Egypt. J. Aquat. Res. 2014, 25, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; SHI, Q.; QU, J.; HE, M.; LIU, Q. A pollution risk assessment and source analysis of heavy metals in sediments: A case study of Lake Gehu, China. Chin. J. Anal. Chem. 2022, 50, 100077. [Google Scholar] [CrossRef]
- Jiang, X.; Teng, A.; Xu, W.; Liu, X. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar. Pollut. Bull. 2014, 83, 366–375. [Google Scholar] [CrossRef]
- Shao, D.; Zhan, Y.; Zhou, W.; Zhu, L. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ. Pollut. 2016, 219, 329–336. [Google Scholar] [CrossRef]
- Xiao, H.; Shahab, A.; Xi, B.; Chang, Q.; Siddique, J. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. Environ. Pollut. 2020, 269, 116189. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. Environmental Geochemistry of Heavy Metals in Hulun Lake. Master’s thesis, Inner Mongolia University, Hohhot, China, 2011. Available online: http://a.xueshu.baidu.com/usercenter/paper/show?paperid=3f7d292206f46f24f331a491ed6a3d8d (accessed on 23 March 2023).
- Wu, J.; Ge, Y.; Li, J.; Lai, X.; Chen, R. A PMF-SSD based approach for the source apportionment and source-specific ecological risk assessment of Le’an river in Jiangxi Province, China. Environ. Res. 2023, 219, 115027. [Google Scholar] [CrossRef]
- Yu, H.; Shi, X.; Sun, B. Analysis on the change of water quality and eutrophication of Hulun Lake from 2011 to 2020. Study Arid. Areas 2021, 38, 1534–1545. [Google Scholar] [CrossRef]
- Su, D.; Zang, S.; Ye, H. Pollution characteristics and source identification of heavy metals in sediment cores of Nanshan Lake in Zhalong Wetland. Environ. Sci. 2012, 33, 7. [Google Scholar]
- Li, J.; Song, L.; Chen, H.; Wu, J.; Teng, Y. Source apportionment of potential ecological risk posed by trace metals in the sediment of the Le’an River, China. J. Soils Sediments 2020, 20, 2460–2470. [Google Scholar] [CrossRef]
- Xie, R.; Sun, D.; Sun, L.; Zhang, N.; Zhang, J.; Zang, S. Sediment record of heavy metals over the last 150 years in Northeast China: Implications for regional anthropogenic activities. Ecotoxicology 2021, 30, 1354–1365. [Google Scholar] [CrossRef]
- Chen, J. Grassland Pearl Reappears Moving Brilliance—Remarkable Achievements Have Been Made in the Ecological Environment Protection and Control of Hulun Lake Basin; Hulun Buir Daily; 2022; pp. 1–2. Hulun Buir Daily, 2022; 1–2. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
Category | Heavy Metals (mg/kg, n = 12) | |||||
---|---|---|---|---|---|---|
Cu | Pb | Cr | Zn | Cd | As | |
Maximum | 30.21 | 28.93 | 34.11 | 116.10 | 0.85 | 14.8 |
Minimum | 2.96 | 5.39 | 9.20 | 24.50 | ND | 1.50 |
Mean | 19.32 | 17.63 | 21.90 | 71.36 | 0.33 | 7.22 |
S.D. | 10.77 | 8.38 | 9.21 | 31.56 | 0.25 | 4.8 |
CV(%) | 55 | 47 | 41 | 43 | 75 | 66 |
LEL | 16 | 31 | 26 | 120 | 0.6 | 6 |
SEL | 110 | 250 | 110 | 820 | 10 | 33 |
Background value a | 35 | 35 | 90 | 100 | 0.2 | 12 |
Lake | Sampling Year | Heavy Metals (mg/kg) | References | |||||
---|---|---|---|---|---|---|---|---|
Cu | Pb | Cr | Zn | Cd | As | |||
Dongjiang Lake, China | 2021 | 33.01 | 47.40 | 67.58 | 113.9 | 2.25 | 80.80 | [26] |
Kangryong River, North Korea | 2019 | 32.70 | 30.90 | 53.90 | 132.50 | 0.28 | 14.30 | [27] |
Hongze Lake, China | 2018 | 25.35 | 27.2 | 66.78 | 74.77 | 0.23 | 16.55 | [28] |
East Dongting Lake, China | 2017 | 42.60 | 58.60 | 42.9 | 88.80 | 5.50 | ND | [29] |
Taihu Lake, China | 2017 | 44.71 | 37.00 | 102.46 | 163.62 | 0.80 | 13.34 | [30] |
Persian Gulf, Iran | 2017 | 14.87 | 7.42 | 59.22 | 32.51 | 0.15 | 5.92 | [31] |
Lake Emerald, India | 2017 | 611.32 | 34.04 | 411.48 | 174.40 | ND | ND | [32] |
Inle Lake, Myanmar | 2017 | 7.92 | 9.64 | 19.24 | 18.80 | 0.05 | 6.59 | [2] |
Los Molinos Lake, Argentina | 2015 | 4.67 | 6.45 | 2.50 | 9.80 | 0.06 | 1.74 | [33] |
Poyang Lake, China | 2014 | 35.17 | 32.63 | 81.39 | 104.17 | 0.66 | 11.34 | [34] |
The present study | 2020 | 19.32 | 17.63 | 21.90 | 71.36 | 0.33 | 7.22 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Zhang, D.; Yue, W.; Wang, B.; Huo, L.; Liu, K.; Zhang, B.-T. Heavy Metals in Sediments of Hulun Lake in Inner Mongolia: Spatial-Temporal Distributions, Contamination Assessment and Source Apportionment. Water 2023, 15, 1329. https://doi.org/10.3390/w15071329
Liu T, Zhang D, Yue W, Wang B, Huo L, Liu K, Zhang B-T. Heavy Metals in Sediments of Hulun Lake in Inner Mongolia: Spatial-Temporal Distributions, Contamination Assessment and Source Apportionment. Water. 2023; 15(7):1329. https://doi.org/10.3390/w15071329
Chicago/Turabian StyleLiu, Tong, Dasheng Zhang, Weifeng Yue, Boxin Wang, Litao Huo, Kuo Liu, and Bo-Tao Zhang. 2023. "Heavy Metals in Sediments of Hulun Lake in Inner Mongolia: Spatial-Temporal Distributions, Contamination Assessment and Source Apportionment" Water 15, no. 7: 1329. https://doi.org/10.3390/w15071329