# Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Approach

#### 2.1. Filling Operation

#### 2.2. Governing Equations

- Air–water interface position is given by:$$\frac{dL}{dt}=v$$
- Polytropic model: this formulation describes how the air pocket size changes with air pocket pressure pulses. These changes are described by the polytropic law (see Equation (3)), which is applied without injected air into hydraulic installations.

^{2}); $f$ = friction factor; and $D$ = internal pipe diameter; $L$ = length of a water filling column; ${R}_{v}$ = resistance coefficient of a valve (s

^{2}/m

^{5}); and $A$ = cross-sectional area of a single pipe (m

^{2}).

#### 2.3. Initial Conditions

#### 2.4. Velocity Field

#### 2.5. Computation of Critical Point

_{f}). An isothermal process is characterized by a slow transient event; thus, a polytropic coefficient of k = 1.0 can be used to compute the value of ${L}_{f}$ (see Equation (9)):

## 3. Analysis of Results and Discussion

#### 3.1. Case Study

^{2}/m

^{5}, and an initial pressure supplied by a tank of 202,650 Pa. Figure 3 shows the evolution of the main hydraulic and thermodynamic variables over time for the analyzed case study. Figure 3a presents that the maximum water velocity occurs at 10.7 s with a value of 5.34 m/s, while the minimum value reached was −0.76 m/s (at 130.0 s), indicating a reverse water flow. After that, many oscillations occur, since the system trends to a resting position ($v$ = 0) at the end of the hydraulic event. The pipe is filled rapidly by the water column since it takes only 130.0 s to reach a maximum value of 390.9 m. After that, the air–water interface exhibits many pulses moving around its final position (384.42 m). Figure 3b presents the evolution of air pocket pulses for the analyzed case study. The air pocket starts at atmospheric condition (101,325 Pa). The air pocket pressure head reached a peak value of 31.1 m (at 110.6 s) which was provoked by the compression of the filling water column. A similar trend is detected with regard to air pocket pressure oscillations, where the system finished with a value of 28.3 m.

#### 3.2. Final Position of Air–Water Interface

#### 3.3. Sensitivity Analysis

#### 3.4. Experimental Validation

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

A | Cross-sectional area of pipe (m^{2}) |

D | Internal pipe diameter (m) |

f | Friction factor (-) |

g | Gravity acceleration (m s^{−2}) |

k | Polytropic coefficient (-) |

j | Used function in the Newton–Raphson equation |

L | Water column length (m) |

L_{T} | Pipe length (m) |

p_{0*} | Initial absolute pressure supplied by an energy source (Pa) |

p_{atm}^{*} | Atmospheric pressure (101,325 Pa) |

p^{*}_{1} | Air pocket pressure (Pa) |

R_{v} | Resistance coefficient (ms^{2}m^{−6}) |

t | Time (s) |

v | Water velocity (m s^{−1}) |

V | Vector field on a region in the plane (L, v) |

x | Air pocket size (m) |

X | Vector function of t |

$\mathsf{\rho}$ | Water density (kg m^{−3}) |

θ | Pipe slope (rad) |

γ_{w} | Water unit weight (N m^{−3}) |

Subscripts | |

0 | Refers to an initial condition |

f | Refers to a final condition |

i | Iteration number |

s | Specific experimental test |

Superscripts | |

‘ | Derivative |

## References

- Tasca, E.; Besharat, M.; Ramos, H.M.; Luvizotto, E., Jr.; Karney, B. Contribution of Air Management to the Energy Efficiency of Water Pipelines. Sustainability
**2023**, 15, 3875. [Google Scholar] [CrossRef] - Martins, N.M.; Soares, A.K.; Ramos, H.M.; Covas, D.I. CFD modeling of transient flow in pressurized pipes. Comput. Fluids
**2016**, 126, 129–140. [Google Scholar] [CrossRef] - Maddahian, R.; Shaygan, F.; Bucur, D.M. Developing a 1D-3D model to investigate the effect of entrapped air on pressure surge during the rapid filling of a pipe. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 774, 012069. [Google Scholar] [CrossRef] - Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic Modeling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review. Urban Water J.
**2019**, 16, 299–311. [Google Scholar] [CrossRef] - AWWA (American Water Works Association). Manual of Water Supply Practices M51—Air Valves: Air Release, Air/Vacuum and Combination; AWWA: Denver, CO, USA, 2016. [Google Scholar]
- Zhou, L.; Liu, D. Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe. J. Hydraul. Res.
**2013**, 51, 469–474. [Google Scholar] [CrossRef] - Tijsseling, A.S.; Hou, Q.; Bozkuş, Z. Rapid Liquid Filling of a Pipe With Venting Entrapped Gas: Analytical and Numerical Solutions. J. Press. Vessel. Technol.
**2019**, 141, 041301. [Google Scholar] [CrossRef] - Liou, C.P.; Hunt, W.A. Filling of pipelines with undulating elevation profiles. J. Hydraul. Eng.
**1996**, 122, 534–539. [Google Scholar] [CrossRef] - Izquierdo, J.; Fuertes, V.; Cabrera, E.; Iglesias, P.; Garcia-Serra, J. Pipeline start-up with entrapped air. J. Hydraul. Res.
**1999**, 37, 579–590. [Google Scholar] [CrossRef] - Wang, H.; Zhou, L.; Liu, D.; Karney, B.; Wang, P.; Xia, L.; Ma, J.; Xu, C. CFD approach for column separation in water pipelines. J. Hydraul. Eng.
**2016**, 142, 04016036. [Google Scholar] [CrossRef] [Green Version] - Chan, S.N.; Cong, J.; Lee, J.H. 3d numerical modeling of geyser formation by release of entrapped air from horizontal pipe into vertical shaft. J. Hydraul. Eng.
**2018**, 144, 04017071. [Google Scholar] [CrossRef] - Wang, J.; Vasconcelos, J. Manhole cover displacement caused by the release of entrapped air pockets. J. Water Manag. Model.
**2018**, 26, 1–6. [Google Scholar] [CrossRef] [Green Version] - Martins, N.M.; Delgado, J.N.; Ramos, H.M.; Covas, D.I. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res.
**2017**, 55, 506–519. [Google Scholar] [CrossRef] - Tijsseling, A.; Hou, Q.; Bozku¸s, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol.
**2016**, 138, 031301. [Google Scholar] [CrossRef] [Green Version] - Zhou, L.; Cao, Y.; Karney, B.; Vasconcelos, J.; Liu, D.; Wang, P. Unsteady friction in transient vertical-pipe flow with trapped air. J. Hydraul. Res.
**2021**, 59, 820–834. [Google Scholar] [CrossRef] - Zhou, L.; Pan, T.; Wang, H.; Liu, D.; Wang, P. Rapid air expulsion through an orifice in a vertical water pipe. J. Hydraul. Res.
**2019**, 57, 307–317. [Google Scholar] [CrossRef] - Zhou, L.; Cao, Y.; Karney, B.; Bergant, A.; Tijsseling, A.S.; Liu, D.; Wang, P. Expulsion of Entrapped Air in a Rapidly Filling Horizontal Pipe. J. Hydraul. Eng.
**2020**, 146, 04020047. [Google Scholar] [CrossRef] - Coronado-Hernández, O.E.; Bonilla-Correa, D.M.; Lovo, A.; Fuertes-Miquel, V.S.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations. Water
**2022**, 14, 3364. [Google Scholar] [CrossRef] - Canelon, D.J. Pivoting Strategies in the Solution of the Saint-Venant Equations. J. Irrig. Drain. Eng.
**2009**, 135, 96–101. [Google Scholar] [CrossRef] - Martin, C.S. Entrapped Air in Pipelines. In Proceedings of the Second International Conference on Pressure Surges, London, UK, 22–24 September 1976. [Google Scholar]
- Chapra, S.; Canale, R. Numerical Methods for Engineers, 7th ed.; Mcgraw-Hill Education, Cop: New York, NY, USA, 2015. [Google Scholar]

**Figure 1.**A filling process configuration: (

**a**) hydraulic system at rest (t = 0); and (

**b**) hydraulic system at $t\ne 0$.

**Figure 3.**Evolution of hydraulic and thermodynamic variables: (

**a**) water velocity and water column length; and (

**b**) air pocket pressure.

**Figure 6.**Sensitivity analysis for dependent parameters: (

**a**) polytropic coefficient ($k$); (

**b**) pipe slope ($\theta $ ); (

**c**) air pocket size (${x}_{0}$ ); and (

**d**) initial absolute pressure (${p}_{0}^{*}$ ).

**Figure 7.**Sensitivity analysis for non-dependent parameters: (

**a**) internal pipe diameter ($D$); (

**b**) resistance coefficient of a regulating valve (${R}_{v}$ ); and (

**c**) friction factor ($f$ ).

**Figure 9.**Evolution of the analyzed variables for the experimental facility: (

**a**) air pocket pressure; and (

**b**) water column lengths.

$\mathit{i}$ | ${\mathit{L}}_{\mathit{i}}\left(\mathbf{m}\right)$ | $\mathit{j}\left(\mathit{y}\right)$ | $\mathit{j}\mathbf{\prime}\left(\mathit{y}\right)$ | ${\mathit{L}}_{\mathit{i}+1}\left(\mathbf{m}\right)$ | ${\mathit{L}}_{\mathit{i}+1}-{\mathit{L}}_{\mathit{i}}\left(\mathbf{m}\right)$ |
---|---|---|---|---|---|

0 | 422.58 | −0.15559 | −0.00479 | 390.10 | −32.48 |

1 | 390.10 | −0.02036 | −0.00365 | 384.53 | −5.57 |

2 | 384.53 | −0.00038 | −0.00352 | 384.42 | −0.11 |

3 | 384.42 | 0.00000 | −0.00352 | 384.42 | 0.00 |

Test No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|

x_{0} (m) | 0.46 | 0.96 | 1.36 | 0.46 | 0.96 | 1.36 |

${p}_{0}^{*}$ (bar) | 1.75 | 1.75 | 1.75 | 2.25 | 2.25 | 2.25 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bonilla-Correa, D.M.; Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M.
Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling. *Water* **2023**, *15*, 1304.
https://doi.org/10.3390/w15071304

**AMA Style**

Bonilla-Correa DM, Coronado-Hernández ÓE, Fuertes-Miquel VS, Besharat M, Ramos HM.
Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling. *Water*. 2023; 15(7):1304.
https://doi.org/10.3390/w15071304

**Chicago/Turabian Style**

Bonilla-Correa, Dalia M., Óscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Mohsen Besharat, and Helena M. Ramos.
2023. "Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling" *Water* 15, no. 7: 1304.
https://doi.org/10.3390/w15071304