A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Bromide Application and Soil Sampling at the Beginning of the Experiment
2.3. Tracer Monitoring
2.4. 3D-Reconstruction of Soil Layering
3. Results
3.1. Tracer Concentration Observation and Relative Saturation along the Tracer Application Trench
3.2. Bromide Concentration in Soil Pore Water (Suction Cup Measurements)
3.3. Bromide Concentration in Soil Samples
3.4. Estimated Transport Distances in Luvisol and the Regosol Soil Profiles
3.5. 3D-Reconstruction of Soil Layering and Flow Path Reconstruction
4. Discussion
4.1. Subsurface Flow Patterns in the Luvisol and Regosol
4.2. Flow Patterns, Conditions, and Depth of LSF Occurrence
4.3. Subsurface Lateral Tracer Transport Distances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Position Along Tracer Trench [m] | Without Stones | With Stones | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
θ [g/g] | ρ [g/cm 3] | PV [-] | Se [-] | θ [g/g] | ρ [g/cm 3] | PV [-] | Se [-] | |||||||||
Reg | Luv | Reg | Luv | Reg | Luv | Reg | Luv | Reg | Luv | Reg | Luv | Reg | Luv | Reg | Luv | |
0.5 | 0.18 | 0.24 | 1.64 | 1.64 | 0.38 | 0.38 | 0.47 | 0.64 | 0.18 | 0.24 | 1.69 | 1.69 | 0.36 | 0.36 | 0.50 | 0.67 |
1 | 0.19 | 0.25 | 1.74 | 1.70 | 0.34 | 0.36 | 0.56 | 0.71 | 0.19 | 0.25 | 1.78 | 1.76 | 0.33 | 0.34 | 0.58 | 0.76 |
1.5 | 0.19 | 0.25 | 1.61 | 1.71 | 0.39 | 0.35 | 0.48 | 0.71 | 0.19 | 0.25 | 1.65 | 1.74 | 0.38 | 0.34 | 0.49 | 0.73 |
2 | 0.19 | 0.24 | 1.58 | 1.61 | 0.41 | 0.39 | 0.46 | 0.61 | 0.19 | 0.24 | 1.70 | 1.64 | 0.36 | 0.38 | 0.53 | 0.63 |
2.5 | 0.19 | 0.25 | 1.64 | 1.66 | 0.38 | 0.37 | 0.49 | 0.67 | 0.19 | 0.25 | 1.67 | 1.70 | 0.37 | 0.36 | 0.51 | 0.70 |
3 | 0.16 | 0.25 | 1.37 | 1.63 | 0.48 | 0.38 | 0.32 | 0.64 | 0.16 | 0.25 | 1.63 | 1.67 | 0.39 | 0.37 | 0.40 | 0.67 |
3.5 | 0.20 | 0.25 | 1.70 | 1.62 | 0.36 | 0.39 | 0.56 | 0.65 | 0.20 | 0.25 | 1.73 | 1.67 | 0.35 | 0.37 | 0.58 | 0.68 |
4 | 0.20 | 0.27 | 1.64 | 1.70 | 0.38 | 0.36 | 0.53 | 0.75 | 0.20 | 0.27 | 1.69 | 1.73 | 0.36 | 0.35 | 0.55 | 0.78 |
4.5 | 0.20 | 0.26 | 1.69 | 1.66 | 0.36 | 0.37 | 0.54 | 0.70 | 0.20 | 0.26 | 1.73 | 1.70 | 0.35 | 0.36 | 0.57 | 0.73 |
5 | 0.19 | 0.25 | 1.61 | 1.58 | 0.39 | 0.40 | 0.49 | 0.61 | 0.19 | 0.25 | 1.63 | 1.62 | 0.38 | 0.39 | 0.51 | 0.64 |
5.5 | 0.21 | 0.25 | 1.77 | 1.72 | 0.33 | 0.35 | 0.63 | 0.72 | 0.21 | 0.25 | 1.80 | 1.75 | 0.32 | 0.34 | 0.65 | 0.74 |
6 | 0.19 | 0.25 | 1.60 | 1.64 | 0.40 | 0.38 | 0.49 | 0.67 | 0.19 | 0.25 | 1.63 | 1.71 | 0.38 | 0.35 | 0.51 | 0.71 |
6.5 | 0.19 | 0.25 | 1.64 | 1.64 | 0.38 | 0.38 | 0.51 | 0.65 | 0.19 | 0.25 | 1.70 | 1.70 | 0.36 | 0.36 | 0.54 | 0.69 |
7 | 0.21 | 0.25 | 1.75 | 1.66 | 0.34 | 0.37 | 0.62 | 0.68 | 0.21 | 0.25 | 1.78 | 1.72 | 0.33 | 0.35 | 0.63 | 0.72 |
7.5 | 0.18 | 0.25 | 1.57 | 1.68 | 0.41 | 0.37 | 0.45 | 0.68 | 0.18 | 0.25 | 1.60 | 1.72 | 0.40 | 0.35 | 0.46 | 0.71 |
8 | 0.19 | 0.25 | 1.68 | 1.66 | 0.36 | 0.37 | 0.53 | 0.67 | 0.19 | 0.25 | 1.77 | 1.72 | 0.33 | 0.35 | 0.58 | 0.71 |
8.5 | 0.19 | 0.24 | 1.66 | 1.73 | 0.37 | 0.35 | 0.52 | 0.69 | 0.19 | 0.24 | 1.71 | 1.78 | 0.36 | 0.33 | 0.55 | 0.72 |
9 | 0.19 | 0.23 | 1.61 | 1.63 | 0.39 | 0.38 | 0.47 | 0.59 | 0.19 | 0.23 | 1.66 | 1.72 | 0.37 | 0.35 | 0.50 | 0.65 |
9.5 | 0.20 | 0.24 | 1.62 | 1.72 | 0.39 | 0.35 | 0.52 | 0.67 | 0.20 | 0.24 | 1.67 | 1.74 | 0.37 | 0.34 | 0.54 | 0.69 |
10 | 0.19 | 0.22 | 1.59 | 1.70 | 0.40 | 0.36 | 0.48 | 0.61 | 0.19 | 0.22 | 1.70 | 1.73 | 0.36 | 0.35 | 0.53 | 0.63 |
References
- Kalettka, T.; Rudat, C. Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica 2006, 36, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, N.; Koestel, J.; Larsbo, M. Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects. Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Xie, M.; Šimůnek, J.; Zhang, Z.; Zhang, P.; Xu, J.; Lin, Q. Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study. Hydrol. Process. 2019, 33, 3282–3296. [Google Scholar] [CrossRef]
- Cueff, S.; Alletto, L.; Bourdat-Deschamps, M.; Benoit, P.; Pot, V. Water and pesticide transfers in undisturbed soil columns sampled from a Stagnic Luvisol and a Vermic Umbrisol both cultivated under conventional and conservation agriculture. Geoderma 2020, 377, 114590. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H. Addressing Two Bottlenecks to Advance the Understanding of Preferential Flow in Soils; Elsevier: Amsterdam, The Netherlands, 2018; pp. 61–117. ISBN 9780128152836. [Google Scholar]
- Scaini, A.; Audebert, M.; Hissler, C.; Fenicia, F.; Gourdol, L.; Pfister, L.; Beven, K.J. Velocity and celerity dynamics at plot scale inferred from artificial tracing experiments and time-lapse ERT. J. Hydrol. 2017, 546, 28–43. [Google Scholar] [CrossRef]
- Gerke, K.M.; Sidle, R.C.; Mallants, D. Preferential flow mechanisms identified from staining experiments in forested hillslopes. Hydrol. Process. 2015, 29, 4562–4578. [Google Scholar] [CrossRef]
- Luo, Z.; Niu, J.; Xie, B.; Zhang, L.; Chen, X.; Berndtsson, R.; Du, J.; Ao, J.; Yang, L.; Zhu, S. Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils. Forests 2019, 10, 986. [Google Scholar] [CrossRef] [Green Version]
- Filipović, V.; Gerke, H.H.; Filipović, L.; Sommer, M. Quantifying Subsurface Lateral Flow along Sloping Horizon Boundaries in Soil Profiles of a Hummocky Ground Moraine. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ehrhardt, A.; Groh, J.; Gerke, H.H. Wavelet analysis of soil water state variables for identification of lateral subsurface flow: Lysimeter vs. field data. Vadose Zone J. 2021, 20, 149. [Google Scholar] [CrossRef]
- Hardie, M.A.; Doyle, R.B.; Cotching, W.E.; Lisson, S. Subsurface Lateral Flow in Texture-Contrast (Duplex) Soils and Catchments with Shallow Bedrock. Appl. Environ. Soil Sci. 2012, 2012, 861358. [Google Scholar] [CrossRef] [Green Version]
- Sander, T.; Gerke, H.H. Preferential Flow Patterns in Paddy Fields Using a Dye Tracer. Vadose Zone J. 2007, 6, 105–115. [Google Scholar] [CrossRef]
- Kung, K.S.J. Preferential flow in a sandy vadose zone: 1. Field observation. Geoderma 1990, 46, 51–58. [Google Scholar] [CrossRef]
- Ehrhardt, A.; Berger, K.; Filipović, V.; Wöhling, T.; Vogel, H.-J.; Gerke, H.H. Tracing lateral subsurface flow in layered soils by undisturbed monolith sampling, targeted laboratory experiments, and model-based analysis. Vadose Zone J. 2022, 21, 1075. [Google Scholar] [CrossRef]
- Anderson, A.E.; Weiler, M.; Alila, Y.; Hudson, R.O. Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resour. Res. 2009, 45, 1043. [Google Scholar] [CrossRef] [Green Version]
- Koch, J.C.; Toohey, R.C.; Reeves, D.M. Tracer-based evidence of heterogeneity in subsurface flow and storage within a boreal hillslope. Hydrol. Process. 2017, 31, 2453–2463. [Google Scholar] [CrossRef]
- Laine-Kaulio, H.; Koivusalo, H. Model-based exploration of hydrological connectivity and solute transport in a forested hillslope. Land Degrad. Dev. 2018, 29, 1176–1189. [Google Scholar] [CrossRef]
- Bero, N.J.; Ruark, M.D.; Lowery, B. Bromide and chloride tracer application to determine sufficiency of plot size and well depth placement to capture preferential flow and solute leaching. Geoderma 2016, 262, 94–100. [Google Scholar] [CrossRef]
- Gerke, H.H.; Maximilian Köhne, J. Dual-permeability modeling of preferential bromide leaching from a tile-drained glacial till agricultural field. J. Hydrol. 2004, 289, 239–257. [Google Scholar] [CrossRef]
- Logsdon, S.D. Subsurface lateral transport in glacial till soils. Trans. ASABE 2007, 50, 875–883. [Google Scholar] [CrossRef]
- Bathke, G.R.; Cassel, D.K.; McDaniel, P.A. Bromide movement at selected sites in a dissected Piedmont landscape. J. Environ. Qual. 1992, 21, 469–475. [Google Scholar] [CrossRef]
- Robinson, J.; Buda, A.; Collick, A.; Shober, A.; Ntarlagiannis, D.; Bryant, R.; Folmar, G.; Andres, S.; Slater, L. Electrical monitoring of saline tracers to reveal subsurface flow pathways in a flat ditch-drained field. J. Hydrol. 2020, 586, 124862. [Google Scholar] [CrossRef]
- Boeing, F.; Rakovec, O.; Kumar, R.; Samaniego, L.; Schrön, M.; Hildebrandt, A.; Rebmann, C.; Thober, S.; Müller, S.; Zacharias, S.; et al. High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrol. Earth Syst. Sci. 2022, 26, 5137–5161. [Google Scholar] [CrossRef]
- Zink, M.; Samaniego, L.; Kumar, R.; Thober, S.; Mai, J.; Schäfer, D.; Marx, A. The German drought monitor. Environ. Res. Lett. 2016, 11, 74002. [Google Scholar] [CrossRef]
- Sommer, M.; Augustin, J.; Kleber, M. Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes—The CarboZALF experiment. Soil Tillage Res. 2016, 156, 182–184. [Google Scholar] [CrossRef]
- Gerke, H.H.; Koszinski, S.; Kalettka, T.; Sommer, M. Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. J. Hydrol. 2010, 393, 123–132. [Google Scholar] [CrossRef]
- Rieckh, H.; Gerke, H.H.; Sommer, M. Hydraulic properties of characteristic horizons depending on relief position and structure in a hummocky glacial soil landscape. Soil Tillage Res. 2012, 125, 123–131. [Google Scholar] [CrossRef]
- Kahl, G.; Ingwersen, J.; Nutniyom, P.; Totrakool, S.; Pansombat, K.; Thavornyutikarn, P.; Streck, T. Micro-trench experiments on interflow and lateral pesticide transport in a sloped soil in northern Thailand. J. Environ. Qual. 2007, 36, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Mettler Toledo. Operating: Operating Instruction for Br-Ion-Selective Electrode; Mettler Toledo: Greifensee, Switzerland.
- Surfer Grapher. Surfer (Version 17.1.288; 64-bit); Golden Software, LLC.: Golden, CO, USA, 2019. [Google Scholar]
- ESRI Inc. ArcGIS Map (Version 10.6.1); ESRI Inc.: Redlands, CA, USA, 2017. [Google Scholar]
- Leue, M.; Uteau, D.; Peth, S.; Beck-Broichsitter, S.; Gerke, H.H. Volume-related quantification of organic carbon content and cation exchange capacity of macropore surfaces in Bt horizons. Vadose Zone J. 2020, 19, e20069. [Google Scholar] [CrossRef]
- Walter, M.T.; Kim, J.-S.; Steenhuis, T.S.; Parlange, J.-Y.; Heilig, A.; Braddock, R.D.; Selker, J.S.; Boll, J. Funneled flow mechanisms in a sloping layered soil. Water Resour. Res. 2000, 36, 841–849. [Google Scholar] [CrossRef] [Green Version]
- McCord, J.T.; Stephens, D.B. Lateral moisture flow beneath a sandy hillslope without an apparent impeding layer. Hydrol. Process. 1987, 1, 225–238. [Google Scholar] [CrossRef]
- Guo, L.; Fan, B.; Zhang, J.; Lin, H. Occurrence of subsurface lateral flow in the Shale Hills Catchment indicated by a soil water mass balance method. Eur. J. Soil Sci. 2018, 69, 771–786. [Google Scholar] [CrossRef]
- Köhne, J.M.; Gerke, H.H. Spatial and Temporal Dynamics of Preferential Bromide Movement towards a Tile Drain. Vadose Zone J. 2005, 4, 79–88. [Google Scholar] [CrossRef]
Soil | Horizon | Depth | ρb | Sand | Silt | Clay | Corg | KS |
---|---|---|---|---|---|---|---|---|
[cm] | [kg m−3] | [g kg−1] | [g kg−1] | [g kg−1] | [%] | [cm d−1] | ||
Luv | Ap | 0–31 | 1490 | 619 | 265 | 116 | 0.83 | 22.3 |
Btg | 31–70 | 1680 | 549 | 265 | 185 | 0.44 | 309.4 | |
CBkg | 70–105 | 1790 | 588 | 258 | 154 | 0.15 | 31.5 | |
Reg | Ap | 0–25 | 1660 | 596 | 283 | 120 | 0.47 | 39.4 |
CBkg | 26–48 | 1760 | 614 | 267 | 118 | 0.10 | 89.5 | |
Bgk1 | 49–85 | 1900 | 612 | 270 | 118 | 0.02 | 7.3 | |
Bgk2 | 85–190 | 1910 | 610 | 263 | 127 | 0.03 | 16.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrhardt, A.; Koszinski, S.; Gerke, H.H. A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape. Water 2023, 15, 1248. https://doi.org/10.3390/w15061248
Ehrhardt A, Koszinski S, Gerke HH. A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape. Water. 2023; 15(6):1248. https://doi.org/10.3390/w15061248
Chicago/Turabian StyleEhrhardt, Annelie, Sylvia Koszinski, and Horst H. Gerke. 2023. "A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape" Water 15, no. 6: 1248. https://doi.org/10.3390/w15061248
APA StyleEhrhardt, A., Koszinski, S., & Gerke, H. H. (2023). A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape. Water, 15(6), 1248. https://doi.org/10.3390/w15061248