Slowing Down Quick Runoff—A New Approach for the Delineation and Assessment of Critical Points, Contributing Areas, and Proposals of Measures to Reduce Non-Point Water Pollution from Agricultural Land
Abstract
:1. Introduction
- To present a new integrated and comprehensive approach for water quality conservation in relation to agricultural non-point pollution sources and rainfall–runoff processes within a catchment as a basis for the Watershed Management Plans for the Vltava River catchment.
- To assess and categorize hydrological units of various scales according to accelerated runoff, sediment, and nutrients transport.
- To introduce appropriate steps for the prioritization of the most threatened sites and methods for the design of structural measures within agrarian catchments.
- To document the effectiveness of designed systems of mitigation measures in a selected catchment.
2. Materials and Methods
2.1. Characteristics of the Area of Interest
2.2. Definition of the Critical Points
2.3. Categorization of Critical Points Based on Surface Water Pollution Sources
2.4. Categorization of Critical Points Based on Drainage Water Pollution Sources
2.5. Selection of High-Priority Areas for Water Retention Measures
2.6. Principles for the Design of Water Retention and Pollution Control Measures
- Keep and retain water in the upper or central parts of the headwater catchments, e.g., by using technical retention measures or permanent buffer strips. Such technical measures must at least possess a passive system for outlet-water regulation, which promotes water retention, accumulation, and/or infiltration.
- The subsequent measure concerns the transformation/capture of nutrients and particles in buffer strips, wetlands, small water reservoirs, etc. This is also applicable to drainage water management and measures.
- Finally, where applicable, water should be stored for future use. This includes water reservoirs, ponds, polders, but also infiltration into soil and geological structures.
2.7. Effectiveness of the Proposed Measures
3. Results
3.1. Surface Pollution Sources
3.2. Drainage Pollution Sources—Critical Points and Their Categorization
3.3. Effectiveness Assessment of the Designed Control Measures
3.3.1. Surface Water Pollution Sources
3.3.2. Drainage Pollution Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.D.; Wu, W.L.; Zhang, J. Regional Differentiation of Non-point Source Pollution of Agriculture-derived Nitrate Nitrogen in Groundwater in Northern China. Agric. Ecosyst. Environ. 2005, 107, 211–220. [Google Scholar] [CrossRef]
- Dai, L. Regulating water pollution in China and the European union with a focus on agricultural pollution. J. Water. Law 2015, 24, 150–156. [Google Scholar]
- Eurostat. Archive: Agri-Environmental Indicator—Nitrate Pollution of Water. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Agri-environmental_indicator_-_nitrate_pollution_of_water (accessed on 12 January 2023).
- Gramlich, A.; Stoll, S.; Stamm, C.; Walter, T.; Prashun, V. Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields—A review. Agric. Ecosyst. Environ. 2018, 299, 84–99. [Google Scholar] [CrossRef]
- Novotný, V. Water Quality: Diffuse Pollution and Watershed Management, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2002; p. 888. ISBN 978-0-471-39633-8. [Google Scholar]
- Schilling, K.; Streeter, M.T.; Vogelgesang, J.; Jones, C.S.; Seeman, A. Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices. Agric. Water Manag. 2020, 241, 106339. [Google Scholar] [CrossRef]
- Weisner, O.; Arle, J.; Liebmann, L.; Link, M.; Schäfer, R.B.; Schneeweiss, A.; Schreiner, W.C.; Vormeier, P.; Liess, M. Three Reasons Why the Water Framework Directive (WFD) Fails to Identify Pesticide Risks. Water Res. 2021, 208, 117848. [Google Scholar] [CrossRef]
- Casado, J.; Brigden, K.; Santillo, D.; Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Sci. Total Environ. 2019, 670, 1204–1225. [Google Scholar] [CrossRef]
- Defra. The Protection of Waters against Pollution from Agriculture Consultation on Diffuse Sources in England 2013–2016. 2017. Available online: https://consult.defra.gov.uk/water/rules-for-diffuse-water-pollution-from-agriculture (accessed on 7 January 2023).
- Whelan, M.J.; Linstead, C.; Worrall, F.; Ormerod, S.J.; Durance, I.; Johnson, A.C.; Johnson, D.; Owen, M.; Wiik, E.; Howden, N.J.K.; et al. Is water quality in British rivers “better than at any time since the end of the Industrial Revolution”? Sci. Total Environ. 2022, 843, 157014. [Google Scholar] [CrossRef]
- Kopáček, J.; Hejzlar, J.; Posch, M. Factors Controlling the Export of Nitrogen from Agricultural Land in a Large Central European Catchment during 1900–2010. Environ. Sci. Technol. 2013, 47, 6400–6407. [Google Scholar] [CrossRef]
- Winterová, J.; Krása, J.; Bauer, M.; Noreika, N.; Dostál, T. Using WaTEM/SEDEM to Model the Effects of Crop Rotation and Changes in Land Use on Sediment Transport in the Vrchlice Watershed. Sustainability 2022, 14, 5748. [Google Scholar] [CrossRef]
- Pärn, J.; Henine, H.; Kasak, K.; Kauer, K.; Sohar, K.; Tournebize, J.; Uuemaa, E.; Välik, K.; Mander, Ü. Nitrogen and phosphorus discharge from small agricultural catchments predicted from land use and hydroclimate. Land Use Policy 2018, 75, 260–268. [Google Scholar] [CrossRef]
- Rosendorf, P.; Vyskoč, P.; Prchalová, H.; Fiala, D. Estimated contribution of selected non-point pollution sources to the phosphorus and nitrogen loads in water bodies of the Vltava River basin. Soil. Water. Res. 2016, 11, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, X.; Jiang, J.; Han, J.; Li, W.; Li, X.; Leung, K.M.Y.; Snyder, S.A.; Alvarez, P.J.J. Which Micropollutants in Water Environments Deserve More Attention Globally? Environ. Sci. Tech. 2022, 56, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Fučík, P.; Zajíček, A.; Kaplická, M.; Duffková, R.; Peterková, J.; Maxová, J.; Takáčová, Š. Incorporating rainfall-runoff events into nitrate-nitrogen and phosphorus load assessments for small tile-drained catchments. Water 2017, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- Zajíček, A.; Fučík, P.; Kaplická, M.; Liška, M.; Maxová, J.; Dobiáš, J. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions—The role of runoff components. Water. Sci. Technol. 2018, 77, 1879–1890. [Google Scholar] [CrossRef] [Green Version]
- Krasa, J.; Dostal, T.; Jachymova, B.; Bauer, M.; Devaty, J. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs—Watershed analyses using WaTEM/SEDEM. Environ. Res. 2019, 171, 470–483. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Act No. 254/2001 Coll. About Water. Available online: https://www.zakonyprolidi.cz/cs/2001-254 (accessed on 9 January 2023). (In Czech).
- Act No. 334/1992 Coll. About Protection of Agricultural Land. Available online: https://www.zakonyprolidi.cz/cs/1992-334 (accessed on 9 January 2023). (In Czech).
- Act No. 289/1995 Coll. About Forests. Available online: https://www.zakonyprolidi.cz/cs/1995-289 (accessed on 9 January 2023). (In Czech).
- Act No. 114/1992 Coll. About Conservation of Nature and Landscape. Available online: https://www.zakonyprolidi.cz/cs/1992-114 (accessed on 9 January 2023). (In Czech).
- EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Union 2000, 1–73. [Google Scholar]
- Mičaník, T.; Vyskoč, P.; Prchalová, H.; Polášek, M.; Němejcová, D.; Durčák, M.; Richter, P. Surface Water Status Assessment for the Third Cycle River Basin Management Plan of the Czech Republic. Water Manag. Tech. Econ. Inf. J. 2020, 62, 4–18. [Google Scholar]
- Van Kats, N.; Dieperink, C.; van Rijswick, M.; de Senerpont Domis, L. Towards a Good Ecological Status? The Prospects for the Third Implementation Cycle of the EU Water Framework Directive in The Netherlands. Water 2022, 14, 486. [Google Scholar] [CrossRef]
- Karásek, P.; Konečná, J.; Pochop, M.; Kučera, J.; Podhrázská, J. Priority Areas for Initiating Land Consolidations Related to Erosion and Water Retention in the Landscape, Czech Republic. J. Ecol. Eng. 2018, 19, 16–28. [Google Scholar] [CrossRef]
- Janečková Molnárová, K.; Sklenička, P.; Bohnet, I.C.; Lowther_Harris, F.; Brink, A.; Moghaddam, S.; Fanta, V.; Zástěra, V.; Azadi, H. Impacts of land consolidation on land degradation: A systematic review. J. Environ. Manag. 2023, 329, 117026. [Google Scholar] [CrossRef]
- Moravcová, J.; Koupilová, M.; Pavlíče, T.; Zemek, F.; Kvítek, T.; Pečenka, J. Analysis of land consolidation projects and their impact on land use change, landscape structure, and agricultural land resource protection: Case studies of Pilsen-South and Pilsen-North (Czech Republic). Landsc. Ecol. Eng. 2017, 13, 1–13. [Google Scholar] [CrossRef]
- Sidemo-Holm, W.; Smith, H.G.; Brady, M.V. Improving agricultural pollution abatement through result-based payment schemes. Land Use Policy 2018, 77, 209–219. [Google Scholar] [CrossRef]
- Kuhmonen, T. Systems view of future of wicked problems to be addressed by the Common Agricultural Policy. Land Use Policy 2018, 77, 683–695. [Google Scholar] [CrossRef]
- Jacobsen, B.H.; Anker, H.T.; Baaner, L. Implementing the water framework directive in Denmark—Lessons on agricultural measures from a legal and regulatory perspective. Land Use Policy 2017, 67, 98–106. [Google Scholar] [CrossRef]
- Levers, C.; Butsic, V.; Verburg, P.H.; Müller, D.; Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 2016, 58, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Milczarek-Andrzejewska, D.; Zawaliaska, K.; Czarnecki, A. Land-use conflicts and the Common Agricultural Policy: Evidence from Poland. Land Use Policy 2018, 73, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Kousky, C.; Olmstead, S.M.; Walls, M.A.; Macauley, M. Strategically Placing Green Infrastructure: Cost-Effective Land Conservation in the Floodplain. Environ. Sci. Technol. 2013, 47, 3563–3570. [Google Scholar] [CrossRef]
- Antolini, F.; Tate, E. Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation. Water 2021, 13, 2706. [Google Scholar] [CrossRef]
- Leone, A.; Ripa, M.N.; Uricchio, V.; Dea´k, J.; Vargay, Z. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary’s main aquifer using DRASTIC and GLEAMS models. J. Environ. Manag. 2009, 90, 2969–2978. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Qiu, Z. Comparison of Indexes for Prioritizing Placement of Water Quality Buffers in Agricultural Watersheds. J. Am. Water Resour. Assoc. 2011, 47, 662–671. [Google Scholar] [CrossRef]
- Darwiche-Criado, N.; Sorando, R.; Eismann, S.G.; Comín, F.A. Comparing Two Multi-Criteria Methods for Prioritizing Wetland Restoration and Creation Sites Based on Ecological, Biophysical and Socio-Economic Factors. Water Resour. Manag. 2017, 31, 1227–1241. [Google Scholar] [CrossRef]
- Wilkinson, M.E.; Quinn, P.F.; Barber, N.J.; Jonczyk, J. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach. Sci. Total Environ. 2014, 468–469, 1245–1254. [Google Scholar] [CrossRef]
- Schilling, K.E.; Mount, J.; Suttles, K.M.; McLellan, E.L.; Gassman, P.W.; White, M.J.; Arnold, J.G. An Approach for Prioritizing Natural Infrastructure Practices to Mitigate Flood and Nitrate Risks in the Mississippi-Atchafalaya River Basin. Land 2023, 12, 276. [Google Scholar] [CrossRef]
- Suttles, K.M.; Eagle, A.J.; McLellan, E.L. Upstream Solutions to Downstream Problems: Investing in Rural Natural Infrastructure for Water Quality Improvement and Flood Risk Mitigation. Water 2021, 13, 3579. [Google Scholar] [CrossRef]
- Roberts, M.T.; Geris, J.; Hallett, P.D.; Wilkinson, M.E. Mitigating floods and attenuating surface runoff with temporary storage areas in headwaters. WIREs Water 2023, e1634. [Google Scholar] [CrossRef]
- Fennell, J.; Soulsby, C.; Wilkinson, M.E.; Daalmans, R.; Geris, J. Assessing the role of location and scale of Nature Based Solutions for the enhancement of low flows. Int. J. River Basin Manag. 2022. [Google Scholar] [CrossRef]
- McLellan, E.L.; Schilling, K.E.; Wolter, C.F.; Tomer, M.D.; Porter, S.A.; Magner, J.A.; Smith, D.R.; Prokopy, L.S. Right practice, right place: A conservation planning toolbox for meeting water quality goals in the Corn Belt. J. Soil Water Conserv. 2018, 73, 29A–34A. [Google Scholar] [CrossRef] [Green Version]
- Kvítek, T. Water Retention and Quality in the Catchment Area of the Švihov Water Reservoir: The Importance of Water Retention on Agricultural Land for Water Quality and at the Same Time a Guide to the Water Regime in Czech Crystalline Complex (in Czech), 1st ed.; Vltava River Basin Management Authority: Prague, Czech Republic, 2017; ISBN 978-80-270-2488-9. [Google Scholar]
- Kvítek, T.; Krátký, M. Sheet type A measures to elimination non-point agricultural sources pollution via water retention and accumulation in Partial River Basin Vltava Management Plan. In Landscape Water Management Conference; Rožnovský, J., Litschmann, T., Eds.; Mendel University in Brno: Třeboň, Czech Republic, 2018. (In Czech) [Google Scholar]
- Drbal, K.; Dumbrovský, M.; Muchová, Z.; Sobotková, V.; Štěpánková, P.; Šarapatka, B. Mitigation of Flood Risks with the Aid of the Critical Points Method. Agronomy 2022, 12, 1300. [Google Scholar] [CrossRef]
- Panisello, P.; Quantick, P. Technical barriers to Hazard Analysis Critical Control Points (HACCP). Food Control 2001, 12, 165–173. [Google Scholar] [CrossRef]
- Dewettinck, T.; Van Houtte, E.; Geenens, D.; Hege, K.V.; Verstraete, W. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production—A case study. Water. Sci. Technol. 2001, 43, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zajíček, A.; Dostál, T.; Krása, T.; Hejduk, T.; Fučík, P.; Kulhavý, Z.; Bauer, M.; Pelíšek, I.; Jáchymová, B.; Devátý, J.; et al. Atlas of Non-Point Pollution of Waters in the Vltava River Basin; VÚMOP: Prague, Czech Republic, 2018; Available online: https://atlaspvl.vumop.cz/ (accessed on 10 January 2023).
- Jáchymová, B.; Krása, J. A new method for modelling dissolved phosphorus transport with the use of WaTEM/SEDEM. Environ. Monit. Assess. 2017, 189, 365. [Google Scholar] [CrossRef] [PubMed]
- Krása, J.; Dostal, T.; Van Rompaey, A.; Vaska, J.; Vrana, K. Reservoirs’ siltation measurments and sediment transport assessment in the Czech Republic, the Vrchlice catchment study. Catena 2005, 64, 348–362. [Google Scholar] [CrossRef]
- Van Rompaey, A.; Krasa, J.; Dostal, T. Modelling the Impact of Land Cover Changes in the Czech Republic on Sediment Delivery. Land Use Policy 2007, 24, 576–583. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Length Factor for the Universal Soil Loss Equation. Trans. ASAE 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Novotný, I.; Rožnovský, J.; Dostál, T. Creating a Map of Regionalization of Rain Erosion Efficiency Factor for the Needs of GAEC 2; Final report of the task of the Ministry of Agriculture of the Czech Republic; Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2017; Available online: https://eagri.cz/public/web/mze/farmar/kontroly-podminenosti/uzivatelske-prirucky/ (accessed on 10 January 2023).
- Janeček, M. Protection of Agricultural Soil against Water Erosion. A Methodology; Czech University of Agriculture Prague: Praha, Czech Republic, 2012; 113p, ISBN 978-80-87415-42-9. (In Czech) [Google Scholar]
- Wishmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide Book to Conservation Planning; Agr. Handbook No. 537; US Dept. of Agriculture: Washington, DC, USA, 1978.
- Vopravil, J. Impact of Expected Climate Change on Soils in the Czech Republic and Assessment their Productive Function; Editorially edited annual report of the KUS QJ1230056; Research Institute for Soil and Water: Praha, Czech Republic, 2015. [Google Scholar]
- Zajíček, A.; Hejduk, T.; Sychra, L.; Vybíral, T.; Fučík, P. How to Select a Location and a Design of Measures on Land Drainage—A Case Study from the Czech Republic. J. Ecol. Eng. 2022, 23, 43–57. [Google Scholar] [CrossRef]
- Natural Water Retention Measures (NWRM). Available online: http://nwrm.eu/index.php/ (accessed on 10 January 2023).
- Kvítek, T.; Žlábek, P.; Bystřický, V.; Fučík, P.; Lexa, M.; Gergel, J.; Novák, P.; Ondr, P. Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Phys. Chem. Earth 2009, 34, 541–551. [Google Scholar] [CrossRef]
- Doležal, F.; Kvítek, T. The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes. Phys. Chem. Earth Pt. A/B/C 2004, 29, 775–785. [Google Scholar] [CrossRef]
- Staponites, L.R.; Simon, O.P.; Barták, V.; Bílý, M. Management effectiveness in a freshwater protected area: Long-term Water quality response to catchment-scale land use changes. Ecol. Indic. 2022, 144, 109438. [Google Scholar] [CrossRef]
- Addy, K.; Gold, A.J.; Christianson, L.E.; David, M.B.; Schipper, L.A.; Ratigan, N.A. Denitrifying bioreactors for nitrate removal: A meta-analysis. J. Environ. Qual. 2016, 45, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, M.V.; Hashemi, F.; Hoffmann, C.C.; Zak, D.; Audet, J.; Kronvang, B. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio 2020, 49, 1820–1837. [Google Scholar] [CrossRef]
- Povilaitis, A.; Rudzianskaite, A.; Miseviciene, S.; Gasiunas, V.; Miseckaite, O.; Živatkauskiene, I. Efficiency of drainage practices for improving water quality in Lithuania. Trans. ASABE 2018, 61, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Zajíček, A.; Fučík, P.; Kulhavý, Z.; Duffková, R. Harmonize various types of ecosystem services of agricultural drainage systems in the Czech Republic using preventive and remedial nitrogen strategies. In Proceedings of the 26th Euro-Mediterranean Regional Conference and Workshops «Innovate to Improve Irrigation Performances», Montpellier, France, 12–15 October 2015; Available online: https://icid2015.sciencesconf.org/75020.html (accessed on 11 January 2023).
- Kulhavý, Z.; Fučík, P. Adaptation Option for Land Drainage Systems Toward Sustainable Agriculture and the Environment: A Czech Perspektive. Pol. J. Environ. Stud. 2015, 24, 1085–1102. [Google Scholar] [CrossRef]
- Lavrnić, S.; Nan, X.; Blasioli, S.; Braschi, I.; Anconelli, S.; Toscano, A. Performance of a full scale constructed wetland as ecological practice for agricultural drainage water treatment in Northern Italy. Ecol. Eng. 2020, 154, 105927. [Google Scholar] [CrossRef]
- Vymazal, J.; Sochacki, A.; Fučík, P.; Šereš, M.; Kaplická, M.; Hnátková, T.; Chen, Z. Constructed wetlands with subsurface flow for nitrogen removal from tile drainage. Ecol. Eng. 2020, 155, 105943. [Google Scholar] [CrossRef]
- Carstensen, M.V.; Børgesen, C.D.; Ovesen, N.B.; Poulsen, J.R.; Hvid, S.K.; Kronvang, B. Controlled Drainage as a Targeted Mitigation Measure for Nitrogen and Phosphorus. J. Environ. Qual. 2019, 48, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Sojka, M.; Kozłowski, M.; Stasik, R.; Napierała, M.; Kęsicka, B.; Wróżyński, R.; Jaskuła, J.; Liberacki, D.; Bykowski, J. Sustainable Water Management in Agriculture-The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow. Sustainability 2019, 11, 4201. [Google Scholar] [CrossRef] [Green Version]
- Duffková, R.; Poláková, L.; Lukas, V.; Fučík, P. The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content. Remote Sens. 2022, 14, 4959. [Google Scholar] [CrossRef]
- Fučík, P.; Zajíček, A.; Duffková, R.; Kvítek, T. Water Quality of Agricultural Drainage Systems in the Czech Republic—Options for Its Improvement. In Research and Practices in Water Quality; Lee, T.S., Ed.; IntechOpen Limited: London, UK, 2015; pp. 239–262. ISBN 978-953-51-2163-3. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, F.; Kulhavy, Z.; Soukup, M.; Kodesova, R. Hydrology of tile drainage runoff. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 623–627. [Google Scholar] [CrossRef]
- Pešková, J.; Štibinger, J. Computation method of the drainage retention capacity of soil layers with a subsurface pipe drainage system. Soil Water Res. 2015, 10, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, M.; Priest, S.; Hudson, P.; Löschner, L.; Raška, P.; Schindelegger, A.; Slavíková, L.; Stričević, R.; Vleesenbeek, T. Win–Win for Everyone? Reflecting on Nature-Based Solutions for Flood Risk Management from an Environmental Justice Perspective. In Nature-Based Solutions for Flood Mitigation; Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2021; Volume 107. [Google Scholar]
- McLellan, E.; Robertson, D.; Schilling, K.; Tomer, M.; Kostel, J.; Smith, D.; King, K. Reducing Nitrogen Export from the Corn Belt to the Gulf of Mexico: Agricultural Strategies for Remediating Hypoxia. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 263–289. [Google Scholar] [CrossRef]
- Wilkinson, M.E. Commentary: Mr. Pitek’s Land from a Perspective of Managing Hydrological Extremes: Challenges in Upscaling and Transferring Knowledge. In Nature-Based Flood Risk Management on Private Land; Hartmann, T., Slavíková, L., McCarthy, S., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef] [Green Version]
- Brázdil, R.; Chromá, K.; Zahradníček, P.; Dobrovolný, P.; Dolák, L.; Řehoř, J.; Řezníčková, L. Changes in Weather-Related Fatalities in the Czech Republic during the 1961–2020 Period. Atmosphere 2022, 13, 688. [Google Scholar] [CrossRef]
- Winter, C.; Nguyen, T.V.; Musolff, A.; Lutz, S.R.; Rode, M.; Kumar, R.; Fleckenstein, J.H. Droughts can reduce the nitrogen retention capacity of catchments. Hydrol. Earth Syst. Sci. 2023, 27, 303–318. [Google Scholar] [CrossRef]
- Rowbottom, J.; Graversgaard, M.; Wright, I.; Dudman, K.; Klages, S.; Heidecke, C.; Surdyk, N.; Gourcy, L.; Leitão, I.; Ferreira, A.D.; et al. Water governance diversity across Europe: Does legacy generate sticking points in implementing multi-level governance? J. Eviron. Manag. 2022, 319, 115598. [Google Scholar] [CrossRef]
- Raška, P.; Bezak, N.; Ferreira, C.S.S.; Kalantari, Z.; Banasik, K.; Bertola, M.; Bourke, M.; Cerdà, A.; Davids, P.; de Brito, M.M.; et al. Identifying barriers for nature-based solutions in flood risk management: An interdisciplinary overview using expert community approach. J. Environ. Manag. 2022, 310, 114725. [Google Scholar] [CrossRef]
- Gebhart, M.; Dumbrovský, M.; Šarapatka, B.; Drbal, K.; Bednář, M.; Kapička, J.; Pavlík, F.; Kottová, B.; Zástěra, V.; Muchová, Z. Evaluation of Monitored Erosion Events in the Context of Characteristics of Source Areas in Czech Conditions. Agronomy 2023, 13, 256. [Google Scholar] [CrossRef]
- Noreika, N.; Li, T.; Winterova, J.; Krasa, J.; Dostal, T. The Effects of Agricultural Conservation Practices on the Small Water Cycle: From the Farm- to the Management-Scale. Land 2022, 11, 683. [Google Scholar] [CrossRef]
- Žížala, D.; Juřicová, A.; Kapička, J.; Novotný, I. The potential risk of combined effects of water and tillage erosion on the agricultural landscape in Czechia. J. Maps 2021, 17, 428–438. [Google Scholar] [CrossRef]
- The Czech Ministry of Agriculture. Statutory Management Requirements. 2015. Available online: http://eagri.cz/public/web/mze/zivotni-prostredi/novinky/podminky-podminenosti-pro-nove-obdobi.html (accessed on 11 January 2023). (In Czech).
- Aftab, A.; Hanley, N.; Baiocchi, G. Transferability of Policies to Control Agricultural Non-point Pollution in Relatively Similar Catchments. Ecol. Econ. 2017, 134, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Petrescu-Mag, R.M.; Petrescu, D.C.; Azadi, H.; Petrescu-Mag, I.V. Agricultural land use conflict management—Vulnerabilities, law restrictions and negotiation frames. A wake-up call. Land Use Policy 2018, 76, 600–610. [Google Scholar] [CrossRef]
- Zagata, L.; Lostak, M.; Swain, N. Family Farm Succession of the First Post-Socialist Generation in the Czech Republic. East. Eur. Countrys. 2019, 25, 9–35. [Google Scholar] [CrossRef]
- Sklenicka, P.; Zouhar, J.; Janeckova Molnarova, K.; Vlasak, J.; Kottova, B.; Petrzelka, P.; Gebhart, M.; Walmsley, A. Trends of soil degradation: Does the socio-economic status of landowners and land users matter? Land Use Policy 2020, 95, 103992. [Google Scholar] [CrossRef]
- Sálusová, D. Czech Agriculture in Statistics 1918–2017; Czech Statistical Office: Prague, Czech Republic, 2018; Available online: https://www.czso.cz/ (accessed on 5 January 2023). (In Czech)
- Fidelis, T.; Rodrigues, C. The integration of land use and climate change risks in the Programmes of Measures of River Basin Plans—Assessing the influence of the Water Framework Directive in Portugal. Environ. Sci. Policy 2019, 100, 158–171. [Google Scholar] [CrossRef]
- Bakalár, T.; Pavolová, H.; Tokarčík, A. Analysis and Model of River Basin Sustainable Management by SWOT and AHP Methods. Water 2021, 13, 2427. [Google Scholar] [CrossRef]
- Antwi, S.H.; Linnane, S.; Getty, D.; Rolston, A. River Basin Management Planning in the Republic of Ireland: Past, Present and the Future. Water 2021, 13, 2074. [Google Scholar] [CrossRef]
Subcatchment | Berounka | Lower Vltava | Upper Vltava | Total |
---|---|---|---|---|
Area (km2) | 8816.3 | 7249.1 | 10,944.2 | 27,009.6 |
Catchment Measures Need Index (CAMNI) | Classification: | |
---|---|---|
Risk Class | Necessity of Measures | |
1 | Negligible risk | Very low |
2 | Low risk | Low |
3 | Moderate risk | Moderate |
4 | High risk | High |
5 | Extreme risk | Very high |
Control Measures Implemented in WaTEM/SEDEM Model |
---|
Wetland located at the outlet of the drainage system |
Re-opening or elimination of drainage systems |
Re-opening of main drainage structures (channels) |
Hedges |
Linear vegetation |
Erosion control swale/ditch |
Retention swale/ditch |
Drainage canal |
Field road with erosion control function |
Dry pond |
Erosion control reservoir/pit |
Afforestation |
Grassed waterways |
Grassed buffer stripes |
Control Measures on Land Drainage | Reduction of Drainage Flow (%) | Reduction of N-NO3 Concentration (%) | ||||
---|---|---|---|---|---|---|
Max. | Min. | Avg. | Max. | Min. | Avg. | |
Biofilter related to drainage system [65,66,67,68] | 25 | 10 | 15 | 80 | 40 | 60 |
Controlled, spontaneous aging of drainage systems [69] | 100 | 75 | 87 | 90 | 25 | 50 |
Local elimination of drainage [69] | 75 | 25 | 50 | 75 | 25 | 50 |
Wetland located at the outlet of the drainage system [66,70,71] | 25 | 10 | 15 | 99 | 50 | 75 |
Root-bed treatment system at the outlet of the drainage system [66,67,70,71] | 25 | 10 | 15 | 50 | 10 | 25 |
Re-opening or elimination of drainage [69] | 100 | 50 | 75 | 50 | 1 | 25 |
Re-opening of main drainage structures (channels) [69] | 100 | 50 | 75 | 50 | 1 | 25 |
Total elimination of drainage [69] | 100 | 75 | 87 | 90 | 25 | 50 |
Local transfer of drainage waters [69] | 75 | 25 | 50 | 75 | 25 | 50 |
Subcatchment transfer of drainage waters [69] | 100 | 75 | 87 | 75 | 25 | 50 |
Controlled drainage—main drains (ditches or large pipes) [66,72,73,74] | 50 | 20 | 35 | 75 | 25 | 50 |
Controlled drainage—collective drains [66,72,73,74] | 75 | 25 | 50 | 75 | 25 | 50 |
Decrease in drainage intensity—curtain [69] | 65 | 15 | 40 | 65 | 15 | 40 |
Small pool connected to drainage [66,67] | 50 | 10 | 25 | 25 | 10 | 15 |
Afforestation of drained agricultural land [69] | 100 | 75 | 87 | 99 | 75 | 90 |
Infiltration drain [69] | 100 | 25 | 50 | 99 | 50 | 75 |
Risk Class—CAMNI | 1 | 2 | 3 | 4 | 5 | Total |
---|---|---|---|---|---|---|
Number of catchments (n) | 2 | 2 | 17 | 31 | 19 | 71 |
Mean transport of N-NO3 (kg·year−1) | 20 | 274 | 4567 | 6127 | 7540 | 5795 |
Mean specific transport of N-NO3 (kg·year−1·km−2) | 24 | 207 | 414 | 767 | 998 | 708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvítek, T.; Zajíček, A.; Dostál, T.; Fučík, P.; Krása, J.; Bauer, M.; Jáchymová, B.; Kulhavý, Z.; Pavel, M. Slowing Down Quick Runoff—A New Approach for the Delineation and Assessment of Critical Points, Contributing Areas, and Proposals of Measures to Reduce Non-Point Water Pollution from Agricultural Land. Water 2023, 15, 1247. https://doi.org/10.3390/w15061247
Kvítek T, Zajíček A, Dostál T, Fučík P, Krása J, Bauer M, Jáchymová B, Kulhavý Z, Pavel M. Slowing Down Quick Runoff—A New Approach for the Delineation and Assessment of Critical Points, Contributing Areas, and Proposals of Measures to Reduce Non-Point Water Pollution from Agricultural Land. Water. 2023; 15(6):1247. https://doi.org/10.3390/w15061247
Chicago/Turabian StyleKvítek, Tomáš, Antonín Zajíček, Tomáš Dostál, Petr Fučík, Josef Krása, Miroslav Bauer, Barbora Jáchymová, Zbyněk Kulhavý, and Martin Pavel. 2023. "Slowing Down Quick Runoff—A New Approach for the Delineation and Assessment of Critical Points, Contributing Areas, and Proposals of Measures to Reduce Non-Point Water Pollution from Agricultural Land" Water 15, no. 6: 1247. https://doi.org/10.3390/w15061247
APA StyleKvítek, T., Zajíček, A., Dostál, T., Fučík, P., Krása, J., Bauer, M., Jáchymová, B., Kulhavý, Z., & Pavel, M. (2023). Slowing Down Quick Runoff—A New Approach for the Delineation and Assessment of Critical Points, Contributing Areas, and Proposals of Measures to Reduce Non-Point Water Pollution from Agricultural Land. Water, 15(6), 1247. https://doi.org/10.3390/w15061247