# An Effective Standalone Solar Air Gap Membrane Distillation Plant for Saline Water Desalination: Mathematical Model, Optimization

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

^{−2}·h

^{−1}achieved at 68 °C, a feed temperature. Moreover, gained output ratio (GOR) of the unit of thermal solar desalination was estimated to be about 4.6, which decreases with increasing hot water flow and temperature.

## 1. Introduction

^{−2}/day when the annual-mean-daily GSR reached 5656 Wh·m

^{−2}/day. This region has its place in the great solar deposit characterized by tremendous advances in a vast array of alternative renewable energy options, including solar power, which is a very important means for developing desalination technologies, such as membrane distillation (MD). Recently, the latter has encountered a specific interest in its applications in the water desalination field, particularly when paired with solar power [6].

^{2}. A feeding solution of NaCl with 1 and 35 g·L

^{−1}concentrations was used. Specific distillate flux was displayed by modules of AGMD with values up to a maximum of 6.5 L·m

^{−2}·h

^{−1}at 65 °C feedwater temperature and for 1 g·L

^{−1}of NaCl feed solution. Kubota et al. [21], in their study, reported distillate fluxes of about 4.7 L·h

^{−1}·m

^{−2}for a system made up of an AGMD module of 1.92 m

^{2}of membrane, a feed flow rate of 20 L·min

^{−1}, and 40 °C feed water temperature, while Banat et al. [10] reported that a distillate fluxes up to 2.5 L·m

^{−2}·h

^{−1}for a larger system composed of 4 MD modules of 10 m

^{2}of each membrane, a feed flow rate up to 21.2 L·min

^{−1}, and 74 °C feed temperature; in both investigations, they used real seawater.

^{−1}m

^{−2}for 34.5 °C of the temperature of the feed water with a salinity of 4 g·L

^{−1}.

^{−2}·h

^{−1}, MD hot and cold temperature difference must be kept between 40 °C and 45 °C, while it is necessary to adjust the flow rate from 6 to 7 L·min

^{−1}depending upon the operating season.

^{−1}and remains nearly constant on various days during the year by utilizing solar energy alone. Afterward, a pilot-scale experiment study was carried out to determine the performance of a 14.4 m

^{2}multichannel spiral-wound AGMD module, which can be used for water desalination with capacities up to 18 kg·h

^{−1}from the flow rate of distillate water. The AGMD system’s specific thermal energy consumption ranged from 158.83 to 346.55 kWh·m

^{−3}, and the maximum gain output ratio (GOR) achieves 4.4 at 52 °C, based on the inlet temperature of feed.

## 2. System Description

## 3. Numerical Modeling and Proposed Method

#### 3.1. AGMD Unit

#### 3.1.1. Heat Transfer

_{ch}is the coefficient of convective exchange and T

_{h}is the differential temperature between the hot solution temperature, and T

_{hm}is the temperature of the hot solution at the interface of the membrane. Equation (2) is used to determine the heat flow in the hot channel, where R

_{mT}is the membrane’s thermal resistance, T

_{mg}is the temperature at the membrane-air gap interface, J

_{v}is the vapor flux traveling through the membrane, and h

_{v}is the evaporation enthalpy [38].

_{ag}and T

_{p}are the air gap thermal resistance and the permeate temperature, respectively [8].

_{cc}and T

_{c}are the coefficient of heat transfer and the cold solution temperature in the cold channel, respectively. The heat flux in the cold channel’s boundary layer, as shown in Equation (5) [38]:

#### 3.1.2. Mass Transfer

_{w}) is proportional to the vapor pressure difference throughout the membrane matrix, and it can be calculated using Equation (6) [8,40], where P

_{hm}and P

_{p}are the vapor pressures at the membrane’s surface in the hot channel’s boundary layer and the air gap at the cooling plate’s surface, respectively. α is the activity coefficient and is the solution’s water fraction.

_{hm}and P

_{p}, the Antoine equation can be used and is given by Equation (7) [8]:

_{w}is given in Equation (8). Water molecular weight, gas constant, absolute membrane temperature, and total pressure inside the pores are all represented by M

_{w}, R, T

_{m}, and P, respectively. D

_{va}is the water vapor’s thermal diffusivity in the air gap, and τ is the membrane’s tortuosity [8].

#### 3.2. Heat Exchangers Model

#### 3.3. Solar Flat Plate Collector

_{eff}denoting the effective optical fraction of the absorbed energy, I

_{T}is the total amount of solar radiation incident on the collector surface in W/m

^{2}, and A

_{c}is the collector surface in m

^{2}.

_{0}is determined by the collector’s total heat transfer coefficient U

_{L}and its temperature. It can be expressed by Equation (15) [42]:

_{0}represents the heat loss in W, U

_{L}represents the heat loss coefficient W/K·m

^{2}, T

_{c}represents the collector’s average temperature in °C, and Ta represents the ambient temperature in °C. As a result, the rate at which the collector extracts useful energy, denoted as the extraction rate under stable state conditions, is proportional to the amount of useful energy absorbed by the collector minus the quantity lost by the collection. It is written as shown in Equation (16) [41]:

_{u}is derived as shown in Equation (18) [41,44]:

_{u}on incident solar energy corresponds to the collector’s efficiency, as shown in Equation (19) [43].

#### 3.4. System Performance Assessment

## 4. Results and Discussion

#### 4.1. Validation of the AGMD Model

^{−2}·h

^{−1}at a cooling temperature set at 15 °C and a cooling flow rate set at 5 L·min

^{−1}. This change in permeate flow may be the result of the water vapor’s increased transmembrane force. The outcomes are consistent with those that have been reported by many authors in the literature [47,48].

#### 4.2. Evaluation of Solar Potential

#### 4.3. Variation of the Temperature in AGMD Unit

_{hm}), the temperature at the interface between the membrane and the air gap (T

_{mg}), the temperature of permeate (T

_{p}), and the temperature at the interface between the cooling solution and the cold plate’s surface (T

_{pc}). The obtained results are given in Figure 7.

#### 4.4. Variation of the Saline Water Temperature in Flat Plate Collector

^{−1}mass flow rate.

#### 4.5. Variation of the Permeate Flux

^{−2}·h

^{−1}for a flow rate of 0.01 kg·s

^{−1}and is considered as the maximum value goshawk 12:00 h. These obtained results show the best matching with the other results cited in the literature. As can be observed from Figure 13, the permeate flux is very sensitive to the variation of the flow rate of seawater. It was marked that the permeate flux increases as the flow rate of seawater decreases. Permeate flux passes from 8 kg·m

^{−2}·h

^{−1}for a flow rate of 0.01 kg·s

^{−1}to 16 kg·m

^{−2}·h

^{−1}for 0.005 kg·s

^{−1}value of a flow, which means that the flow increased two times. From the obtained data and in order to guarantee the smooth running of the coupled system, 0.01 kg·s

^{−1}was chosen as the optimum flow rate value.

^{−1}, while the flow rates of feed and coolant were kept constant at 2 L·min

^{−1}. The increased air gap thickness in the module at the permeate side, caused by the higher mass transfer resistance, greatly reduces the permeate flux. Additionally, the performance of the AGMD process is directly influenced by the minimum air gap thickness.

#### 4.6. System Performance

## 5. Conclusions

- The variation of the temperature of the heat transfer fluid at the outlet of the solar SFPC increases gradually to reach 50 °C, which is the most used value in the literature for the AGMD process and the collector’s safety.
- An average distillate water production of 8 kg·m
^{−2}·h^{−1}could be achieved at 68 °C for a feed temperature and a flow rate of 1 L·min^{−1}. - Enhanced air gap thickness will be conducted to thermal and mass resistance, and thus a decrease in the mass flux and the thermal efficiency of the AGMD.
- The maximum GOR and PR values of 4.6 and 2, respectively, can be reached at 12:00 h corresponding to the minimum irreversible loss of the overall desalination system.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

A | surface area [m^{2}] | VMD | vacuum membrane distillation |

B_{w} | mass transfer coefficient [kg·m^{−2}·h^{−1}·Pa^{−1}] | Greek letters | |

C_{p} | thermal capacity [J·kg^{−1}·K^{−1}] | α | activity coefficient [−] |

D_{va} | thermal diffusivity of water vapour in air [m^{2}·s^{−1}] | β | water fraction [−] |

d_{h} | hydraulic diameter [m] | δ | thickness [m] |

F | correction factor [−] | ε | porosity [−] |

F_{R} | heat removal factor [−] | μ | dynamic viscosity [kg·m^{−1}·s^{−1}] |

GOR | gained output ratio [−] | ρ | density [kg·m^{−3}] |

hc_{c} | heat transfer coefficient [W·m^{−2}·K^{−1}] | φ | thermal flux [W·m^{−2}] |

h_{ch} | convective heat transfer coefficient [W·m^{−2}·K^{−1}] | τ | tortuosity [−] |

h_{v} | enthalpy [kJ·kg^{−1}] | Subscripts | |

J_{w} | permeate flux [kg·m^{−2}·s^{−1}] | 0 | reference state |

k | thermal conductivity [W·m^{−1}·K^{−1}] | a | air |

L | module length [m] | ag | air gap |

LMDT | logarithmic mean temperature difference [K] | c | cold |

M_{w} | Molar mass of water [kg·mol^{−1}] | f | feed |

$\dot{m}$ | mass flow rate [kg·s^{−1}] | h | hot |

MED | multiple-effect distillation | h_{m} | hot fluid—membrane interface |

MD | membrane distillation | in | inlet |

MSF | multi-stage flash distillation | m | membrane |

P | pressure [Pa] | mg | membrane—air gap interface |

PR | Performance Ratio [−] | out | outlet |

${Q}_{u}$ | useful energy delivered by the solar collector [kW] | p | plate |

$\phi $ | thermal flux [W·m^{−2}] | m_{g} | membrane—air gap interface |

R | thermal resistance [m^{2}·K·W^{−1}] | pc | cold fluid—plate interface |

RO | reverse osmosis | r | receiver |

s | salinity [g·kg^{−1}] | so | source |

T | temperature [°C] | sw | seawater |

t | time [s] | th | thermal |

U | heat transfer coefficient [W·m^{−2}·K^{−1}] | v | vapour |

## References

- Kumar, A.; Saini, R.P.; Saini, J.S. A Review of Thermohydraulic Performance of Artificially Roughened Solar Air Heaters. Renew. Sustain. Energy Rev.
**2014**, 37, 100–122. [Google Scholar] [CrossRef] - Bayrak, F.; Oztop, H.F.; Hepbasli, A. Energy and Exergy Analyses of Porous Baffles Inserted Solar Air Heaters for Building Applications. Energy Build.
**2013**, 57, 338–345. [Google Scholar] [CrossRef] - Yang, Y.; Wang, Q.; Xiu, D.; Zhao, Z.; Sun, Q. A Building Integrated Solar Collector: All-Ceramic Solar Collector. Energy Build.
**2013**, 62, 15–17. [Google Scholar] [CrossRef] - Zhai, X.Q.; Wang, R.Z.; Dai, Y.J.; Wu, J.Y.; Xu, Y.X.; Ma, Q. Solar Integrated Energy System for a Green Building. Energy Build.
**2007**, 39, 985–993. [Google Scholar] [CrossRef] - Djellouli-Tabet, Y. Common Scarcity, Diverse Responses in the Maghreb Region. In Water and Sustainability in Arid Regions: Bridging the Gap Between Physical and Social Sciences; Springer: Heidelberg, Germany, 2010; pp. 87–102. [Google Scholar]
- Rabehi, A.; Guermoui, M.; Djafer, D.; Zaiani, M. Radial Basis Function Neural Networks Model to Estimate Global Solar Radiation in Semi-Arid Area. Leonardo Electron. J. Pract. Technol.
**2015**, 27, 177–184. [Google Scholar] - Al-Obaidani, S.; Curcio, E.; Macedonio, F.; Di Profio, G.; Al-Hinai, H.; Drioli, E. Potential of Membrane Distillation in Seawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation. J. Membr. Sci.
**2008**, 323, 85–98. [Google Scholar] [CrossRef] - Diaby, A.T.; Byrne, P.; Loulergue, P.; Balannec, B.; Szymczyk, A.; Maré, T.; Sow, O. Design Study of the Coupling of an Air Gap Membrane Distillation Unit to an Air Conditioner. Desalination
**2017**, 420, 308–317. [Google Scholar] [CrossRef] - Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M. Desalination by a “Compact SMADES” Autonomous Solarpowered Membrane Distillation Unit. Desalination
**2007**, 217, 29–37. [Google Scholar] [CrossRef] - Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M. Performance Evaluation of the “Large SMADES” Autonomous Desalination Solar-Driven Membrane Distillation Plant in Aqaba, Jordan. Desalination
**2007**, 217, 17–28. [Google Scholar] [CrossRef] - Chafidz, A.; Al-Zahrani, S.; Al-Otaibi, M.N.; Hoong, C.F.; Lai, T.F.; Prabu, M. Portable and Integrated Solar-Driven Desalination System Using Membrane Distillation for Arid Remote Areas in Saudi Arabia. Desalination
**2014**, 345, 36–49. [Google Scholar] [CrossRef] - Wang, Y.; Xu, Z.; Lior, N.; Zeng, H. An Experimental Study of Solar Thermal Vacuum Membrane Distillation Desalination. Desalin. Water Treat.
**2015**, 53, 887–897. [Google Scholar] [CrossRef] - Guillén-Burrieza, E.; Zaragoza, G.; Miralles-Cuevas, S.; Blanco, J. Experimental Evaluation of Two Pilot-Scale Membrane Distillation Modules Used for Solar Desalination. J. Membr. Sci.
**2012**, 409, 264–275. [Google Scholar] [CrossRef] - Suárez, F.; Tyler, S.W.; Childress, A.E. A Theoretical Study of a Direct Contact Membrane Distillation System Coupled to a Salt-Gradient Solar Pond for Terminal Lakes Reclamation. Water Res.
**2010**, 44, 4601–4615. [Google Scholar] [CrossRef] [PubMed] - Wang, X.; Zhang, L.; Yang, H.; Chen, H. Feasibility Research of Potable Water Production via Solar-Heated Hollow Fiber Membrane Distillation System. Desalination
**2009**, 247, 403–411. [Google Scholar] [CrossRef] - Banat, F.; Jumah, R.; Garaibeh, M. Exploitation of Solar Energy Collected by Solar Stills for Desalination by Membrane Distillation. Renew. Energy
**2002**, 25, 293–305. [Google Scholar] [CrossRef] - Vickers, N.J. Animal Communication: When i’m Calling You, Will You Answer Too. Curr. Biol.
**2017**, 27, R713–R715. [Google Scholar] [CrossRef] - Qtaishat, M.R.; Banat, F. Desalination by Solar Powered Membrane Distillation Systems. Desalination
**2013**, 308, 186–197. [Google Scholar] [CrossRef] - Banat, F.; Jwaied, N. Economic Evaluation of Desalination by Small-Scale Autonomous Solar-Powered Membrane Distillation Units. Desalination
**2008**, 220, 566–573. [Google Scholar] [CrossRef] - Guillén-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcón, D.-C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental Analysis of an Air Gap Membrane Distillation Solar Desalination Pilot System. J. Membr. Sci.
**2011**, 379, 386–396. [Google Scholar] [CrossRef] - Kubota, S.; Ohta, K.; Hayano, I.; Hirai, M.; Kikuchi, K.; Murayama, Y. Experiments on Seawater Desalination by Membrane Distillation. Desalination
**1988**, 69, 19–26. [Google Scholar] [CrossRef] - Summers, E.K.; Lienhard, V.J.H. A Novel Solar-Driven Air Gap Membrane Distillation System. Desalin. Water Treat.
**2013**, 51, 1344–1351. [Google Scholar] [CrossRef] - Moudjeber, D.-E.; Ruiz-Aguirre, A.; Ugarte-Judge, D.; Mahmoudi, H.; Zaragoza, G. Solar Desalination by Air-Gap Membrane Distillation: A Case Study from Algeria. Desalin. Water Treat.
**2016**, 57, 22718–22725. [Google Scholar] [CrossRef] - Kumar, N.U.; Martin, A. Experimental Modeling of an Air-Gap Membrane Distillation Module and Simulation of a Solar Thermal Integrated System for Water Purification. Water Treat.
**2017**, 84, 123–134. [Google Scholar] - Shirsath, G.B.; Muralidhar, K.; Pala, R.G.S. Variable Air Gap Membrane Distillation for Hybrid Solar Desalination. J. Environ. Chem. Eng.
**2020**, 8, 103751. [Google Scholar] [CrossRef] - SANDİD, A.; Nehari, D.; Elmeriah, A.; Remlaoui, A. Dynamic Simulation of an Air-Gap Membrane Distillation (AGMD) Process Using Photovoltaic Panels System and Flat Plate Collectors. J. Therm. Eng.
**2021**, 7, 117–133. [Google Scholar] [CrossRef] - Sandida, A.M.; Neharia, T.; Neharia, D. Simulation Study of an Air-Gap Membrane Distillation System for Seawater Desalination Using Solar Energy. Desalin. Water Treat.
**2021**, 229, 40–51. [Google Scholar] [CrossRef] - Sandid, A.M.; Bassyouni, M.; Nehari, D.; Elhenawy, Y. Experimental and Simulation Study of Multichannel Air Gap Membrane Distillation Process with Two Types of Solar Collectors. Energy Convers. Manag.
**2021**, 243, 114431. [Google Scholar] [CrossRef] - Thai Huynh, N.V.T.; Nguyen, T.; Manh Nguyen, Q. Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS. Comput. Mater. Contin.
**2022**, 73, 5961–5983. [Google Scholar] [CrossRef] - Wang, C.-N.; Yang, F.-C.; Nguyen, V.T.T.; Nguyen, Q.M.; Huynh, N.T.; Huynh, T.T. Optimal Design for Compliant Mechanism Flexure Hinges: Bridge-Type. Micromachines
**2021**, 12, 1304. [Google Scholar] [CrossRef] - Wang, C.-N.; Yang, F.-C.; Nguyen, V.T.T.; Vo, N.T.M. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Micromachines
**2022**, 13, 1208. [Google Scholar] [CrossRef] - Khalifa, A.E.; Lawal, D.U. Performance and Optimization of Air Gap Membrane Distillation System for Water Desalination. Arab. J. Sci. Eng.
**2015**, 40, 3627–3639. [Google Scholar] [CrossRef] - Dudchenko, A.V.; Bartholomew, T.V.; Mauter, M.S. Cost Optimization of Multi-Stage Gap Membrane Distillation. J. Membr. Sci.
**2021**, 627, 119228. [Google Scholar] [CrossRef] - Chen, Y.-H.; Li, Y.-W.; Chang, H. Optimal Design and Control of Solar Driven Air Gap Membrane Distillation Desalination Systems. Appl. Energy
**2012**, 100, 193–204. [Google Scholar] [CrossRef] - Khayet, M.; Cojocaru, C. Air Gap Membrane Distillation: Desalination, Modeling and Optimization. Desalination
**2012**, 287, 138–145. [Google Scholar] [CrossRef] - Khayet, M.; Cojocaru, C. Artificial Neural Network Modeling and Optimization of Desalination by Air Gap Membrane Distillation. Sep. Purif. Technol.
**2012**, 86, 171–182. [Google Scholar] [CrossRef] - He, Q.; Li, P.; Geng, H.; Zhang, C.; Wang, J.; Chang, H. Modeling and Optimization of Air Gap Membrane Distillation System for Desalination. Desalination
**2014**, 354, 68–75. [Google Scholar] [CrossRef] - Diaby, A.T.; Byrne, P.; Loulergue, P.; Sow, O.; Maré, T. Experimental Study of a Heat Pump for Simultaneous Cooling and Desalination by Membrane Distillation. Membranes
**2021**, 11, 725. [Google Scholar] [CrossRef] - Khalifa, A.; Ahmad, H.; Antar, M.; Laoui, T.; Khayet, M. Experimental and Theoretical Investigations on Water Desalination Using Direct Contact Membrane Distillation. Desalination
**2017**, 404, 22–34. [Google Scholar] [CrossRef] - Boubakri, A.; Hafiane, A.; Al Tahar Bouguecha, S. Nitrate Removal from Aqueous Solution by Direct Contact Membrane Distillation Using Two Different Commercial Membranes. Desalin. Water Treat.
**2015**, 56, 2723–2730. [Google Scholar] [CrossRef] - Irshad, M.; Yadav, A.; Singh, R.; Kumar, A. Mathematical Modelling and Performance Analysis of Single Pass Flat Plate Solar Collector. IOP Conf. Ser. Mater. Sci. Eng.
**2018**, 404, 012051. [Google Scholar] [CrossRef] - Ismail, T. Study, Realization and Simulation of a Solar Collector. Ph.D. Thesis, Universite Des FreresMentouri, Constantine, Algeria, 2016. [Google Scholar]
- Terfai, A.; Chiba, Y.; Zirari, M.; Bouaziz, M.N. Numerical Simulation of a Flat-Plate Solar Collector Operating Under Open Cycle Mode of Heat Extraction. In Proceedings of the Advances in Green Energies and Materials Technology: Selected Articles from the Algerian Symposium on Renewable Energy and Materials (ASREM-2020); Springer: Heidelberg, Germany, 2021; pp. 153–158. [Google Scholar]
- Zelzouli, K.; Guizani, A.; Sebai, R.; Kerkeni, C. Solar Thermal Systems Performances versus Flat Plate Solar Collectors Connected in Series. Engineering
**2012**, 4, 881–893. [Google Scholar] [CrossRef][Green Version] - Koschikowski, J.; Wieghaus, M.; Rommel, M. Solar Thermal-Driven Desalination Plants Based on Membrane Distillation. Desalination
**2003**, 156, 295–304. [Google Scholar] [CrossRef] - Fane, A.G.; Schofield, R.W.; Fell, C.J.D. The Efficient Use of Energy in Membrane Distillation. Desalination
**1987**, 64, 231–243. [Google Scholar] [CrossRef] - Alsaadi, A.S.; Ghaffour, N.; Li, J.-D.; Gray, S.; Francis, L.; Maab, H.; Amy, G.L. Modeling of Air-Gap Membrane Distillation Process: A Theoretical and Experimental Study. J. Membr. Sci.
**2013**, 445, 53–65. [Google Scholar] [CrossRef][Green Version] - Banat, F.A. Membrane Distillation for Desalination and Removal of Volatile Organic Compounds from Water. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1994. [Google Scholar]
- Garci-Payo, M.C. MA Lzquierdo-Gill and C. Fernandez-Pineda. J. Membr. Sci
**2000**, 169, 61. [Google Scholar] - Safavi, M.; Mohammadi, T. High-Salinity Water Desalination Using VMD. Chem. Eng. J.
**2009**, 149, 191–195. [Google Scholar] [CrossRef] - Martinez-Diez, L.; Florido-Diaz, F.J.; Vazquez-Gonzalez, M.I. Study of Evaporation Efficiency in Membrane Distillation. Desalination
**1999**, 126, 193–198. [Google Scholar] [CrossRef] - Schofield, R.W.; Fane, A.G.; Fell, C.J.D.; Macoun, R. Factors Affecting Flux in Membrane Distillation. Desalination
**1990**, 77, 279–294. [Google Scholar] [CrossRef] - Yun, Y.; Ma, R.; Zhang, W.; Fane, A.G.; Li, J. Direct Contact Membrane Distillation Mechanism for High Concentration NaCl Solutions. Desalination
**2006**, 188, 251–262. [Google Scholar] [CrossRef] - Gairaa, K.; Bakelli, Y. Solar Energy Potential Assessment in the Algerian South Area: Case of Ghardaïa Region. J. Renew. Energy
**2013**, 2013, 496348. [Google Scholar] [CrossRef][Green Version] - Al-Zoubi, H.; Al-Amri, F.; Khalifa, A.E.; Al-Zoubi, A.; Muhammad, A.; Ebtehal, Y.; Mallick, T.K. A Comprehensive Review of Air Gap Membrane Distillation Process. Desalin. Water Treat.
**2018**, 110, 27–64. [Google Scholar] [CrossRef] - Rahimi-Ahar, Z.; Hatamipour, M.S.; Ahar, L.R. Air Humidification-Dehumidification Process for Desalination: A Review. Prog. Energy Combust. Sci.
**2020**, 80, 100850. [Google Scholar] [CrossRef] - Zheng, H. Solar Energy Desalination Technology; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 0-12-809422-2. [Google Scholar]
- De Andrés, M.C.; Doria, J.; Khayet, M.; Peña, L.; Mengual, J.I. Coupling of a Membrane Distillation Module to a Multieffect Distiller for Pure Water Production. Desalination
**1998**, 115, 71–81. [Google Scholar] [CrossRef] - Camacho, L.M.; Dumée, L.; Zhang, J.; Li, J.; Duke, M.; Gomez, J.; Gray, S. Advances in Membrane Distillation for Water Desalination and Purification Applications. Water
**2013**, 5, 94–196. [Google Scholar] [CrossRef][Green Version] - Alquraish, M.M.; Mejbri, S.; Abuhasel, K.A.; Zhani, K. Experimental Investigation of a Pilot Solar-Assisted Permeate Gap Membrane Distillation. Membranes
**2021**, 11, 336. [Google Scholar] [CrossRef]

**Figure 4.**Evolution of permeate flux as a function of feed temperature [38].

**Figure 10.**Variation of the inlet and outlet of the heat transfer fluid temperatures from the flat plate collector with time.

MD Type | Membrane Type | Pore Size | Solution | Feed Teperature (°C) | J_{w} (kg·m^{−2}·h^{−1}) | Reference |
---|---|---|---|---|---|---|

AGMD | PVDF | 0.22 | Methanol/water | 50 | ≈3.9–4.6 | [49] |

AGMD | PTFE | 0.2 | NaCl | 65 | ≈7 | [8] |

AGMD | PTFE | 0.2 | NaCl | 80 | ≈6.5 | [47] |

VMD | PP | 0.2 | NaCl | 55 | ≈10.7–7.0 | [50] |

DCMD | PTFE | 0.2 | NaCl | 31 | ≈32.4–25.2 | [51] |

DCMD | PVDF | 0.4 | NaCl | 81 | ≈44–63 | [52] |

DCMD | PVDF | 0.22 | NaCl | 68 | ≈36–28.8 | [53] |

AGMD | PTFE | 0.2 | NaCl | 65 | 7.03 | Current study |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mibarki, N.; Triki, Z.; Belhadj, A.-E.; Tahraoui, H.; Zamouche, M.; Kebir, M.; Amrane, A.; Zhang, J.; Mouni, L.
An Effective Standalone Solar Air Gap Membrane Distillation Plant for Saline Water Desalination: Mathematical Model, Optimization. *Water* **2023**, *15*, 1141.
https://doi.org/10.3390/w15061141

**AMA Style**

Mibarki N, Triki Z, Belhadj A-E, Tahraoui H, Zamouche M, Kebir M, Amrane A, Zhang J, Mouni L.
An Effective Standalone Solar Air Gap Membrane Distillation Plant for Saline Water Desalination: Mathematical Model, Optimization. *Water*. 2023; 15(6):1141.
https://doi.org/10.3390/w15061141

**Chicago/Turabian Style**

Mibarki, Nawel, Zakaria Triki, Abd-Elmouneïm Belhadj, Hichem Tahraoui, Meriem Zamouche, Mohammed Kebir, Abdeltif Amrane, Jie Zhang, and Lotfi Mouni.
2023. "An Effective Standalone Solar Air Gap Membrane Distillation Plant for Saline Water Desalination: Mathematical Model, Optimization" *Water* 15, no. 6: 1141.
https://doi.org/10.3390/w15061141