The Impacts of Land Use and Seasonal Effects on Phytoplankton Taxa and Physical-Chemical Variables in the Tigris River within the City of Mosul
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use Map
2.3. Sample Collection
2.4. Data Analysis
3. Results
3.1. Seasonal Effects on the Phytoplankton Communities and Environmental Variables
3.2. Phytoplankton Species
3.3. Physical-Chemical Variables
3.4. Hiararchical Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abonyi, A.; Leitão, M.; Lançon, A.M.; Padisák, J. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 2012, 698, 233–249. [Google Scholar] [CrossRef]
- Wen, Y.; Schoups, G.; van de Giesen, N. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 2017, 7, 43289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehab, Z.N.; Jamil, N.R.; Aris, A.Z.; Shafie, N.S. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia. Ecol. Indic. 2021, 122, 107254. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, L.; Yuan, L.; Guo, B.; Zhang, Q.; Huang, H. Urbanization and water quality dynamics and their spatial correlation in coastal margins of mainland China. Ecol. Indic. 2022, 138, 108812. [Google Scholar] [CrossRef]
- Hajong, P.; Ramanujam, P. Effect of anthropogenic activities on algal community in Ganol River, West Garo Hills, Meghalaya. Bull. Environ. Pharmacol. Life Sci. 2017, 6, 109–120. [Google Scholar]
- Kilic, E.; Yucel, N. Determination of Spatial and Temporal Changes in Water Quality at Asi River Using Multivariate Statistical Techniques. Turk. J. Fish. Aquat. Sci. 2019, 19, 727–737. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Phungela, T.T.; Maphanga, T.; Chidi, B.S.; Madonsela, B.S.; Shale, K. The impact of wastewater treatment effluent on Crocodile River quality in Ehlanzeni District, Mpumalanga Province, South Africa. S. Afr. J. Sci. 2022, 118. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, F.; Shi, J.; Kung, H.-T. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environ. Sci. Pollut. Res. 2022, 29, 56887–56907. [Google Scholar] [CrossRef]
- Poff, N.L.; Bledsoe, B.P.; Cuhaciyan, C.O. Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology 2006, 79, 264–285. [Google Scholar] [CrossRef]
- Rodrigues, V.; Estrany, J.; Ranzini, M.; de Cicco, V.; Martín-Benito, J.M.T.; Hedo, J.; Lucas-Borja, M.E. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Sci. Total Environ. 2018, 622–623, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; King, K.W.; Macrae, M.L.; Ford, W.; Van Esbroeck, C.; Brunke, R.I.; English, M.C.; Schiff, S.L. Uncertainty in nutrient loads from tile-drained landscapes: Effect of sampling frequency, calculation algorithm, and compositing strategy. J. Hydrol. 2015, 530, 306–316. [Google Scholar] [CrossRef]
- Zieliński, M.; Dopieralska, J.; Belka, Z.; Walczak, A.; Siepak, M.; Jakubowicz, M. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland. Sci. Total Environ. 2016, 548–549, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Vrebos, D.; Beauchard, O.; Meire, P. The impact of land use and spatial mediated processes on the water quality in a river system. Sci. Total Environ. 2017, 601–602, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Qiu, Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Babel, M.S.; Shrestha, S.; Deb, P. Land use impact on the water quality of large tropical river: Mun River Basin, Thailand. Environ. Monit. Assess. 2019, 191, 614. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Yin, H.; Jin, W.; Li, H.; He, Z. Urban river pollution control in developing countries. Nat. Sustain. 2019, 2, 158–160. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Al, M.A.; Ndayishimiye, J.C.; Yang, J.R.; Isabwe, A.; Luo, A.; Yang, J. Urbanization reduces resource use efficiency of phytoplankton community by altering the environment and decreasing biodiversity. J. Environ. Sci. 2022, 112, 140–151. [Google Scholar] [CrossRef]
- Hanashiro, F.T.T.; Mukherjee, S.; Souffreau, C.; Engelen, J.; Brans, K.I.; Busschaert, P.; De Meester, L. Freshwater Bacterioplankton Metacommunity Structure Along Urbanization Gradients in Belgium. Front. Microbiol. 2019, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.H.Y.; Tran, T.T.; Nguyen, T.M.Y.; Ngo, X.Q.; Nguyen, X.D.; Pham, T.L. Seasonal changes in phytoplankton assemblages and environmental variables in highly turbid tropical estuaries of the Mekong River, Vietnam. Environ. Monit. Assess. 2022, 194, 776. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Katsiapi, M.; Mazaris, A.D.; Charalampous, E.; Moustaka-Gouni, M. Watershed land use types as drivers of freshwater phytoplankton structure. In Phytoplankton Responses to Human Impacts at Different Scales; Springer: Dordrecht, The Netherlands, 2012; pp. 121–131. [Google Scholar] [CrossRef]
- Russo, D.A.; Couto, N.; Beckerman, A.P.; Pandhal, J. A Metaproteomic Analysis of the Response of a Freshwater Microbial Community under Nutrient Enrichment. Front. Microbiol. 2016, 7, 1172. [Google Scholar] [CrossRef] [Green Version]
- Camara, M.; Jamil, N.R.; Abdullah, A.F.b. Impact of land uses on water quality in Malaysia: A review. Ecol. Process. 2019, 8, 10. [Google Scholar] [CrossRef]
- Luo, X.; Pan, K.; Wang, L.; Li, M.; Li, T.; Pang, B.; Kang, J.; Fu, J.; Lan, W. Anthropogenic Inputs Affect Phytoplankton Communities in a Subtropical Estuary. Water 2022, 14, 636. [Google Scholar] [CrossRef]
- Issa, I.; Al-Ansari, N.; Sherwani, G.; Knutsson, S. Trends and future challenges of water resources in the Tigris-Euphrates Rivers basin in Iraq. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 14617–14644. [Google Scholar] [CrossRef] [Green Version]
- Chabuk, A.; Al-Madhlom, Q.; Al-Maliki, A.; Al-Ansari, N.; Hussain, H.M.; Laue, J. Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arab. J. Geosci. 2020, 13, 654. [Google Scholar] [CrossRef]
- Farhan, A.F.; Al-Ahmady, K.K.; Al-Masry, N.A.-A. Assessment of Tigris River Water Quality in Mosul for Drinking and Domestic Use by Applying CCME Water Quality Index. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012204. [Google Scholar] [CrossRef]
- al Obaidy, A.H.; Al-Khateeb, M. The Challenges of Water Sustainability in Iraq. Eng. Tech. J. 2013, 31, 828–840. [Google Scholar]
- Utermöhl, H. Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berucksichtigung des Ultraplanktons). Verh. Int. Ver. Theor. Angew. Limnol. 1931, 5, 567–596. [Google Scholar] [CrossRef]
- Hu, Y.H. (Ed.) Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468); IEEE: Piscataway, NJ, USA, 1999; p. 0_1. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 28.0; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.; Groffman, P.; Rimm, N.; Baker, L.; Pouyat, R. A distinct urban biogeochemistry? Trends Ecol. Evol. 2006, 21, 192–199. [Google Scholar] [CrossRef]
- Peng, F.; Guo, Y.; Isabwe, A.; Chen, H.; Wang, Y.; Zhang, Y.; Zhu, Z.; Yang, J. Urbanization drives riverine bacterial antibiotic resistome more than taxonomic community at watershed scale. Environ. Int. 2020, 137, 105524. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.R.; Yu, X.; Chen, H.; Kuo, Y.-M.; Yang, J. Structural and functional variations of phytoplankton communities in the face of multiple disturbances. J. Environ. Sci. 2021, 100, 287–297. [Google Scholar] [CrossRef]
- Gökçe, D. Algae as an Indicator of Water Quality; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.; Mahnashi, M.H.; Hussain, M.; Zafar, N.; Khan, F.S.; Afzal, U.; Shah, G.M.; Niazi, U.M.; Awais, M.; Irfan, M. Exploration and determination of algal role as Bioindicator to evaluate water quality—Probing fresh water algae. Saudi J. Biol. Sci. 2021, 28, 5728–5737. [Google Scholar] [CrossRef]
- Casartelli, M.R.; Ferragut, C. Influence of seasonality and rooted aquatic macrophyte on periphytic algal community on artificial substratum in a shallow tropical reservoir. Int. Rev. Hydrobiol. 2015, 100, 158–168. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Bennett, B.J.; Jordan, D.N.; French, R.D. Phosphorus regulates stream injury by filamentous green algae, DO, and pH with thresholds in responses. Hydrobiologia 2012, 695, 25–42. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, D.; Singh, R.S.; Pandey, L.K.; Rai, J. Seasonal variations in response of periphytic algal community to nutrient enrichment in the river Ganga (Varanasi, India). Ann. De Limnol.—Int. J. Limnol. 2018, 54, 32. [Google Scholar] [CrossRef] [Green Version]
- Seguro, I.; García, C.M.; Papaspyrou, S.; Gálvez, J.A.; García-Robledo, E.; Navarro, G.; Soria-Píriz, S.; Aguilar, V.; Lizano, O.G.; Morales-Ramírez, A.; et al. Seasonal changes of the microplankton community along a tropical estuary. Reg. Stud. Mar. Sci. 2015, 2, 189–202. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F. Size structure of the planktonic community in microcosms with different levels of turbulence. Sci. Mar. 2005, 69, 187–197. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Env. Sci. Process. Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef]
- Ruiz, G.; Jeison, D.; Rubilar, O.; Ciudad, G.; Chamy, R. Nitrification–denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresour. Technol. 2006, 97, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Basant, N.; Gupta, S.; Malik, A.; Singh, K.P. Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—A case study. Chemom. Intell. Lab. Syst. 2010, 104, 172–180. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Y.J. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence. Environ. Monit. Assess. 2015, 187, 4171. [Google Scholar] [CrossRef]
- Mallin, M.A.; Johnson, V.L.; Ensign, S.H.; MacPherson, T.A. Factors contributing to hypoxia in rivers, lakes, and streams. Limnol. Oceanogr. 2006, 51, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, K.D.; Rounds, S.A.; Survey, U.S.G. Plankton Communities and Summertime Declines in Algal Abundance Associated with Low Dissolved Oxygen in the Tualatin River, Oregon; US Department of the Interior; US Geological Survey: Reston, VA, USA, 2013. [CrossRef]
- Al-Shahri, Y.; Maulood, B.; Toma, J. A study on a sulfur spring (Ain Al Kibrit) ecosystem along Tigris River Mosul, Iraq. J. Adv. Lab. Res. Biol. 2016, 7, 6. [Google Scholar]
- Dzinomwa, T.; Ndagurwa, H. Effect of land use on water quality and phytoplankton community in the tropical Khami River in semi-arid southwest Zimbabwe. Afr. J. Aquat. Sci. 2017, 42, 83–89. [Google Scholar] [CrossRef]
- Marmen, S.; Blank, L.; Al-Ashhab, A.; Malik, A.; Ganzert, L.; Lalzar, M.; Grossart, H.P.; Sher, D. The Role of Land Use Types and Water Chemical Properties in Structuring the Microbiomes of a Connected Lake System. Front. Microbiol. 2020, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, T.E.; Weller, D.E.; Pelc, C.E. Effects of Local Watershed Land Use on Water Quality in Mid-Atlantic Coastal Bays and Subestuaries of the Chesapeake Bay. Estuaries Coasts 2018, 41, 38–53. [Google Scholar] [CrossRef] [Green Version]
- le Tien, H.; Okubo, K.; Ho Thi, P.; Saito, M. Estimation of long-term external nutrient loading from watersheds to Lake Biwa by a combined rainfall-runoff model and loading-discharge curve approach. Hydrol. Res. Lett. 2020, 14, 143–149. [Google Scholar] [CrossRef]
- Amano, A.; Kazama, S. Relationship between Discharge and Nutrient Concentration in Inundation Areas in Cambodia. J. Water Environ. Technol. 2012, 10, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, C.S.; Flindt, M.R.; Sønderup, M.J.; Madsen, M.H.; Egemose, S. Impact of Land Use and Runoff on Stream Quality. Sustainability 2019, 11, 5479. [Google Scholar] [CrossRef] [Green Version]
- Arreghini, S. Influence of rainfall on the discharge, nutrient concentrations and loads of a stream of the “Pampa Ondulada” (Buenos Aires, Argentina). Limnetica 2005, 24, 225–236. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yang, L.Y.; Qin, B.Q.; Gao, G.; Luo, L.C.; Zhu, G.W.; Liu, M.L. Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu. Huan Jing Ke Xue Huanjing Kexue 2008, 29, 1457–1462. [Google Scholar]
- Smith, V.H. Eutrophication. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2009; pp. 61–73. [Google Scholar] [CrossRef]
- Somlyai, I.; Berta, C.; Nagy, S.A.; Dévai, G.; Ács, É.; Szabó, L.J.; Nagy, J.; Grigorszky, I. Heterogeneity and Anthropogenic Impacts on a Small Lowland Stream. Water 2019, 11, 2002. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Sun, J.; Zhang, Q.; Zuo, Y.; Liu, J.; Liu, J.; Li, L.; Song, L. The Emergent Integrated Constructed Wetland-Reservoir (CW-R) Is Being Challenged by 2-Methylisoborneol Episode—ACase Study in Yanlonghu, C.W.-R. Water 2022, 14, 2670. [Google Scholar] [CrossRef]
- Mohamed, Z.A. Allelopathic activity of Spirogyra sp.: Stimulating bloom formation and toxin production by Oscillatoria agardhii in some irrigation canals, Egypt. J. Plankton. Res. 2002, 24, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, M.M.; Berta, C.; Szabó, L.J.; Dévai, G.; Szabó, S.; Nagy, S.A.; Bácsi, I.; Simon, A.; Nagy, J.; Somlyai, I.; et al. Changes in Algal Plankton Composition and Physico-Chemical Variables in a Shallow Oxbow Lake. Water 2021, 13, 2339. [Google Scholar] [CrossRef]
- Fatima, A.; Abbas, G.; Kasprzak, R. Assessment of Hydrobiological and Soil Characteristics of Non-Fertilized, Earthen Fish Ponds in Sindh (Pakistan), Supplied with Seawater from Tidal Creeks. Water 2022, 14, 2115. [Google Scholar] [CrossRef]
- Espinosa, C.; Abril, M.; Guasch, H.; Pou, N.; Proia, L.; Ricart, M.; Ordeix, M.; Llenas, L. Water Flow and Light Availability Influence on Intracellular Geosmin Production in River Biofilms. Front. Microbiol. 2020, 10, 3002. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Dzialowski, A.R.; Meyer, J.O.; Denoyelles, F.; Lim, N.C.; Spotts, W.W.; Huggins, D.G. Relationships between cyanobacterial production the physical chemical properties of a Midwestern Reservoir, U.S.A. Hydrobiologia 2005, 541, 29–43. [Google Scholar] [CrossRef]
- Smith, V.H.; Sieber-Denlinger, J.; deNoyelles Jr, F.; Campbell, S.; Pan, S.; Randtke, S.J.; Blain, G.T.; Strasser, V.A. Managing Taste and Odor Problems in a Eutrophic Drinking Water Reservoir. Lake Reserv. Manag. 2002, 18, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H. Effects of Nutrients and Non-algal Turbidity on Blue-green Algal Biomass in Four North Carolina Reservoirs. Lake Reserv. Manag. 1990, 6, 125–131. [Google Scholar] [CrossRef]
- Dzialowski, A.R.; Smith, V.H.; Wang, S.-H.; Martin, M.C.; deNoyelles, F., Jr. Effects of non-algal turbidity on cyanobacterial biomass in seven turbid Kansas reservoirs. Lake Reserv. Manag. 2011, 27, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Burkholder, J.M.; Larsen, L.M.; Glasgow, H.B.; Mason, K.M.; Gama, P.; Parsons, J.E. Influence of Sediment and Phosphorus Loading on Phytoplankton Communities in an Urban Piedmont Reservoir. Lake Reserv. Manag. 1998, 14, 110–121. [Google Scholar] [CrossRef]
- Scheffer, M.; Rinaldi, S.; Gragnani, A.; Mur, L.R.; van Nes, E.H. On the Dominance of Filamentous Cyanobacteria in Shallow, Turbid Lakes. Ecology 1997, 78, 272. [Google Scholar] [CrossRef]
- Cuker, B.E.; Gama, P.T.; Burkholder, J.M. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnol. Oceanogr. 1990, 35, 830–839. [Google Scholar] [CrossRef]
- Capo, E.; Debroas, D.; Arnaud, F.; Perga, M.-E.; Chardon, C.; Domaizon, I. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ. Microbiol. 2017, 19, 2873–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ren, Z.; Qu, X.; Zhang, M.; Yu, Y.; Peng, W. Seasonal Water Level Fluctuation and Concomitant Change of Nutrients Shift Microeukaryotic Communities in a Shallow Lake. Water 2020, 12, 2317. [Google Scholar] [CrossRef]
- Sinco, A.L.; Tampus, A.D. Diatoms in the rivers of Calamba Misamis Occidental, Philippines. IOP Conf. Ser. Earth Environ. Sci. 2020, 528, 012008. [Google Scholar] [CrossRef]
- Siksnane, I.; Lagzdins, A. Relationships between land use and nitrogen and phosphorus concentrations in Berze river basin. Eng. Rural. Development. Proc. Int. Sci. Conf. 2021. [Google Scholar] [CrossRef]
- Desianti, N.; Potapova, M.; Enache, M.; Belton, T.J.; Velinsky, D.J.; Thomas, R.; Mead, J. Sediment Diatoms as Environmental Indicators in New Jersey Coastal Lagoons. J. Coast. Res. 2017, 78, 127–140. [Google Scholar] [CrossRef]
- Isabwe, A.; Yang, J.R.; Wang, Y.; Liu, L.; Chen, H.; Yang, J. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river. Sci. Total Environ. 2018, 630, 658–667. [Google Scholar] [CrossRef]
- Yang, J.R.; Lv, H.; Isabwe, A.; Liu, L.; Yu, X.; Chen, H.; Yang, J. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Res. 2017, 120, 52–63. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Mosa, O.; Al-Saffawi, A.; Sabry, M. Assessment of Surface Water Quality for Irrigation using WQI model; A Case Study of Khosar and Tigris Rivers. Int. J. Enhanc. Res. Sci. Technol. Eng. 2018, 7, 63–69. [Google Scholar]
- Liu, Y.; Ji, M.; Wang, R.; Zhai, H.; Yu, S.; Liu, B.; Zhao, Y. Spatial distribution and comprehensive evaluation of emerging organic pollutants in effluents from wastewater treatment plants in northern cities of China. Desalination Water Treat. 2019, 156, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, B.; Cagnetta, G.; Duan, L.; Yang, J.; Deng, S.; Huang, J.; Wang, Y.; Yu, G. Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability. Water Res. 2018, 140, 291–300. [Google Scholar] [CrossRef]
- Wang, W.; Bai, J.; Xi, M.; Zhao, Q.; Zhang, G.; Wen, X.; Xiao, R. Occurrence, sources, and risk assessment of OCPs in surface sediments from urban, rural, and reclamation-affected rivers of the Pearl River Delta, China. Environ. Sci. Pollut. Res. 2017, 24, 2535–2548. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—A review. Limnologica 2017, 63, 122–132. [Google Scholar] [CrossRef]
- Sun, D.; Lin, X.; Lu, Z.; Huang, J.; Li, G.; Xu, J. Process evaluation of urban river replenished with reclaimed water from a wastewater treatment plant based on the risk of algal bloom and comprehensive acute toxicity. J. Water Reuse Desalination 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Conceição, L.P.; de Jesus Affe, H.M.; da Silva, D.M.L.; de Castro Nunes, J.M. Spatio-temporal variation of the phytoplankton community in a tropical estuarine gradient, under the influence of river damming. Reg. Stud. Mar. Sci. 2021, 43, 101642. [Google Scholar] [CrossRef]
- Laskar, H.; Gupta, S. Phytoplankton diversity and dynamics of Chatla floodplain lake, Barak Valley, Assam, North East India—A seasonal study. J. Environ. Biol. 2009, 30, 1007–1012. [Google Scholar]
- Al-Thahaibawi, B.M.H.; Al-Mayaly, I.K.A.; Al-Hiyaly, S.A.K. Phytoplankton community within Al-Auda marsh in maysan province southern Iraq. IOP Conf. Ser. Earth Environ. Sci. 2021, 722, 012026. [Google Scholar] [CrossRef]
- Jüttner, I.; Chimonides, P.J.; Ormerod, S.J. Developing a diatom monitoring network in an urban river-basin: Initial assessment and site selection. Hydrobiologia 2012, 695, 137–151. [Google Scholar] [CrossRef]
- Klimaszyk, P.; Kuczyńska-Kippen, N.; Szeląg-Wasielewska, E.; Marszelewski, W.; Borowiak, D.; Niedzielski, P.; Nowiński, K.; Kurmanbayev, R.; Baikenzheyeva, A.; Rzymski, P. Spatial heterogeneity of chemistry of the Small Aral Sea and the Syr Darya River and its impact on plankton communities. Chemosphere 2022, 307, 135788. [Google Scholar] [CrossRef]
- Cira, E.K.; Paerl, H.W.; Wetz, M.S. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA). PLoS ONE 2016, 11, e0160663. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, S.; Narayanan, M.; Prabakaran, M.; Anusha, P.; Srinivasan, R.; Kandasamy, S.; Natarajan, D.; Paulraj, B. In-Situ and Ex-Situ Phycoremediation Competence of Innate Scenedesmus Sp. On Polluted River Water. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Xia, L.; Zhu, Y.; Zhao, Z. Understanding the Ecological Response of Planktic and Benthic Epipelic Algae to Environmental Factors in an Urban Rivers System. Water 2020, 12, 1311. [Google Scholar] [CrossRef]
- Haque, M.d.A.; Jewel, M.d.A.S.; Atique, U.; Paul, A.K.; Naher, N.; Iqbal, S. Seasonal and spatial variation of flagellate communities in a tropical river. Limnologica 2020, 85, 125824. [Google Scholar] [CrossRef]
Variables | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Min-Max Median | Min-Max Median | Min-Max Median | Min-Max Median | |
BOD5 (mg L−1) | 0.06–1.85 0.3 | 0.7–2.2 1.6 | 0.5–2.5 1.9 | 1.5–2.7 2 |
Chlorophyll-a (mg L−1) | 0.21–0.65 0.4 | 0.1–0.5 0.1 | 0.5–1.5 0.8 | 0.2–0.8 0.4 |
Chloride (mg L−1) | 28–40 33 | 30.5–41.9 38 | 38.1–40 38 | 14.5–29.1 22 |
CODsMn (mg L−1) | 1.9–7.8 2.7 | 2.6–4.4 3.6 ± 0.4 | 2.4–6.1 3.1 | 2.8–4.7 3.5 |
DO (mg L−1) | 3.4–5.9 4.2 | 0–2 0.0 | 4.2–12 5.6 | 4.5–9.8 6.9 |
H-CO3- (mg L−1) | 172–246 222 | 170.8–195.2 171 | 195.2–244 220 | 110.9–244 155 |
NH4-N (mg L−1) | 0–0.056 0.009 | 0–0.055 0.012 | 0.017–0.059 0.026 | 0.002–0.011 0.005 |
NO2-N (mg L−1) | 0.004–0.018 0.006 | 0–0.0022 0.0 | 0–0.0065 0.002 | 0–0.0042 0.002 |
NO3-N (mg L−1) | 0.5–1.4 0.69 | 0.55–0.69 0.65 | 0.68–1.29 0.94 | 0.17–0.42 0.27 |
pH | 8.1–8.1 8.1 | 7.8–8 7.8 | 7.8–8.2 8 | 8.3–8.4 8.4 |
PO4-P (mg L−1) | 0.001–0.06 0.0014 | 0.004–0.026 0.009 | 0–0.003 0.0 | 0.001–0.007 0.0043 |
TDS (mg L−1) | 334–357 346 | 280–330 295 | 295–338 325 | 340–369 350 |
TSS (mg L−1) | 3–25 5.5 | 12.5–29 16.5 | 11.4–43 17.5 | 8.3–45 20.4 |
Turbidity (NTU) | 5–32 16.5 | 1–23 5 | 8–31 15 | 4–25 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaqoob, M.M.; Somlyai, I.; Berta, C.; Bácsi, I.; Al-Tayawi, A.N.; Al-Ahmady, K.K.; Mohammed, R.H.; Alalami, O.; Grigorszky, I. The Impacts of Land Use and Seasonal Effects on Phytoplankton Taxa and Physical-Chemical Variables in the Tigris River within the City of Mosul. Water 2023, 15, 1062. https://doi.org/10.3390/w15061062
Yaqoob MM, Somlyai I, Berta C, Bácsi I, Al-Tayawi AN, Al-Ahmady KK, Mohammed RH, Alalami O, Grigorszky I. The Impacts of Land Use and Seasonal Effects on Phytoplankton Taxa and Physical-Chemical Variables in the Tigris River within the City of Mosul. Water. 2023; 15(6):1062. https://doi.org/10.3390/w15061062
Chicago/Turabian StyleYaqoob, Majd Muwafaq, Imre Somlyai, Csaba Berta, István Bácsi, Aws N. Al-Tayawi, Kossay K. Al-Ahmady, Ramadhan Hamza Mohammed, Omar Alalami, and István Grigorszky. 2023. "The Impacts of Land Use and Seasonal Effects on Phytoplankton Taxa and Physical-Chemical Variables in the Tigris River within the City of Mosul" Water 15, no. 6: 1062. https://doi.org/10.3390/w15061062