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Abstract: Climate changes, intensive agricultural production, and expanding urban areas make the
study of runoff and its possible impact on stream quality increasingly important. In this study, we
examined large datasets concerning catchment type, stream quality, and invertebrate composition in a
comprehensive geographic information system study. The aim was to examine correlations between
land use type and quality of the receiving waters to detect possible differences in anthropogenic
impacts. The studied area covered 937 km2, and the dataset included 1672 stretches of streams and
data from 468 fauna sampling stations. Runoff from agricultural areas more negatively influenced the
stream quality than runoff from urban areas. Considering urban catchments, the areas with separate
sewer systems generally influenced the stream quality less than catchments with combined sewer
systems. In conclusion, the catchment of any specific stream must contain an area with a minimum of
20–30% without agriculture or urban areas to obtain good ecological status; when focusing only on
the riparian zone (10 m on each side of the stream), a minimum of 40–55% is needed to create a good
ecological status. Therefore, management focus on the entire catchment is important and separate
sewers should be preferred rather than combined sewers.

Keywords: urban runoff; GIS; storm water; sewer overflow; buffer zones; wetlands; nutrients;
drainage water

1. Introduction

Nutrient enrichment of streams and other watercourses is a major environmental challenge.
Nutrients of primary environmental concern are nitrogen and phosphorus, which are derived from
either point sources or diffuse sources like stormwater and agricultural runoff [1].

Several studies have demonstrated that stormwater containing particles, organic matter, hazardous
substances, nutrients, salts, and heavy metals [2] may affect receiving streams. These impacts are (1)
physical [3,4], due to higher hydraulic pressure, sediment erosion, and withdrawal of animals and plants;
(2) chemical [5,6], due to higher concentrations of nutrients and xenobiotics; and (3) biological [7,8],
e.g., due to domination by pollution-tolerant species. Impacts from stormwater and other factors
affecting the streams in an urbanized watershed are referred to as the urban stream syndrome [9–11].

Several studies have documented water quality problems due to diffuse agricultural runoff.
This runoff contains nutrients, pesticides, soil particles, and microbes [12,13]. The use of nutrients in
agriculture results in increased crop yields but creates a risk of nutrient leakage to the surrounding
environment, which can cause environmental problems. The processes of diffuse pollution include
surface runoff and erosion, spray-drift, leaching, from sources such as atmospheric deposition and
atmospheric transport of wind eroded soil.
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The water quality is poor in European streams [14], even though the average nitrate and
phosphorus concentrations have decreased from 2.8 to 2.1 mg N/L and from 0.133 to 0.055 mg P/L from
1992 to 2012. These decreases reflect both improvements in wastewater treatment and the introduction
of measures to reduce nutrient runoff by national and European legislation [15]. In Denmark, point
source discharge of nitrogen, phosphorus, and organic matter have been reduced by 75%, 85%, and
87%, respectively, since 1989 [16].

Stream quality is monitored using different methods around the world. In Canada, the watershed
land use is studied using spatial scales and the Index of Biotic Integrity (IBI) [17]. In the U.S., the
United States Geological Survey (USGS) method has been used since 1995. The annual mass flux is
estimated, and source and sink areas for constituents are identified and used to estimate the loadings
to receiving waters. Regression models are used to interpolate between observations [18]. In China,
stream quality is monitored by analyzing water samples for physico-chemical variables. Statistical
methods are used to determine water quality [19]. A method for routine monitoring of water quality
has also been developed in Europe with respect to European Union legislation [20].

In Denmark, a national stream fauna index (Danish water fauna index (DFVI), based on
invertebrates) is used to describe ecological quality [21,22]. The index ranges from one to seven,
where seven represents the best ecological quality. The environmental requirement for good ecological
condition is met at DVFI 5 or higher, according to the requirements of the European Water Framework
Directive. A natural meandering stream will usually fall within these categories. Low DVFI values (1–4)
are often found in streams with poor oxygen conditions and in straightened, dredged streams or those
exposed to rough weed cutting. The Danish Physical Index (DFI) consolidates the biological results,
by describing the physical quality of the watercourse. The index is based on parameters describing
the physical condition in and around the stream [22]. Approximately 22,000 km of Danish streams
have environmental objectives to obtain good ecological status and only 28% meet the requirement
currently according to the Danish Water Management Plans 2015-2021.

Since nutrient discharge to surface water is driven by different types of land use, there is a need to
determine the relationship between land use and chemical and ecological water quality. According
to Kronvang et al. [23], a comparison of the annual median loss of total nitrogen and phosphorus to
streams from agricultural and undisturbed catchments in Denmark showed a loss of nitrogen and
phosphorus (weight ratio = 14:1 for total nitrogen and 4:1 for total phosphorus). Paul and Meyer [24]
found that runoff from urbanized surfaces and industrial and municipal discharges result in increased
loadings of nutrients, pesticides, metals, and other contaminants to streams, which can lead to declined
invertebrates and fish richness in urban streams.

In this study, a large dataset of catchments and streams of varying ecological quality was examined
using a geographic information system (GIS) to establish correlations between land use type and the
quality of the receiving waters. The goal was to identify possible relationships between stream quality
and land use in the catchment to improve tools for stream management. The examined catchment
areas are representative for large parts of Europe. The parameters considered include topography,
land use, water quality, and type of sewer outlet/overflow.

2. Materials and Methods

The study was conducted across the total area of the Municipality Aabenraa in the Southeastern part
of Denmark (Figure 1A). The municipality is the ninth largest in Denmark (937 km2, 59,000 inhabitants).
The area is characterized by varying soil composition. In west, soil is very sandy and in the east,
it is moraine clay due to the Weichsel glaciation. Therefore, the studied streams were divided into
east-flowing and west-flowing (Figure 1B). The east-flowing streams have steeper watercourses
(0–25%�) than the west-flowing streams (0–2%�).

All available data regarding catchment types, streams quality, and stormwater handling in the
studied area were collected [25,26]. The local utility company Arwos (Aabenraa, Denmark) provided
all technical data and maps concerning urban stormwater outlets. Monitoring data from continuously
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measured stream stations included in the national monitoring program and regional data were also
used. The following data were included in the GIS study: 1672 stream stretches, each with data from a
specific stream station. Of these, 468 stations had fauna class measurements (DVFI). In total, 1387 DVFI
measurements were included. Physical state (DFI) was available from 499 stations. The stream stations
are evenly distributed in the area, represented as black dots in Figure 1B. GIS themes with information
about stormwater outlet locations in the streams were divided into wastewater overflows from
combined sewers (77) and outlets from separate sewers (319), and location of stormwater ponds (110)
and water quality parameters were included [25,26]. GIS themes with information about catchment
areas and land use (divided into “nature”, which covers moors, meadows, coastal meadows, commons,
heaths, lakes, and streams; “forest”, which covers conifer trees and deciduous trees; “urban areas”;
“freshwater”; and “agriculture”) as well as location of stormwater outlets and sewage catchment areas
(622 stations) were constructed. Finally, scattered houses in the studied area (3837 properties) were
also included in a theme.Sustainability 2019, 11, x FOR PEER REVIEW 3 of 12 
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Figure 1. (A) Studied area and land use distribution. Red areas = cities, green and blue areas =

terrestrial and aquatic nature including forests, and orange areas = agriculture; (B) illustration of
streams running either eastward (dark blue) or westward (light blue). Black dots represent the location
of the stream stations.

All data were handled in the GIS program MapInfo 11.5 (Pitney Bowes, Stamford, CT, USA), and
were tested for gaps and overlays. Buffer polygons were constructed, which enabled Structured Query
Language (SQL) searches to find polygons in other GIS themes inside the buffer, after splitting the GIS
theme of interest with the buffer polygons to include all the objects in the SQL search. The buffers
enabled the identification and analysis of selected parts of the data and to compare the DVFI in the
entire catchment (total) with the DVFI in the lowland area (50 m buffer on each side of the stream) and
DVFI in the riparian zone (10 m buffer).

The catchment theme was divided into sub-catchments that contained at least one fauna class
station. Smaller catchments close to the sea were not included due to lack of fauna class stations.
This adjustment resulted in 192 catchments containing fauna class measurements. Next, SQL searches
concerning correlations between two or more parameters were performed. The output was transferred
to Sigmaplot 13.0 (Systat Software, San Jose, CA, USA) for statistical analyses. P < 0.05 was chosen as
the level of significance and linear regressions were performed after testing for normal distribution.

3. Results

3.1. Land Use and Stream Characteristics

Stream quality depends on land use, quantity and quality of runoff, shape of the stream,
topographical conditions, and soil composition in the catchments. The examined area consisted of
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5% cities and 6% roads, whereas areas without agriculture and urban areas like lakes, forests, and
nature areas covered 17%. Agriculture was the dominating land use, covering 72% of the total area
(Figure 1A). This land use distribution is representative of Denmark (urban areas 14%, natural areas
24%, agriculture 62%) [27]. Agriculture was evenly distributed in the eastern and western parts of the
studied area, while urban areas were mainly represented in the eastern part. The percentage of areas
without agriculture and urban areas was higher in the eastern part, resulting in more streams with good
ecological quality (32% natural areas in catchments to streams with DVFI 5–7 in the east compared
with 23% in the west). Under the Weichsel Glaciation, 20% of the eastern part was covered by the ice
cape, whereas most of the western area (80%) was affected by melting ice. This means that the soil in
the east contains moraine clay, and sand in the west. The same area distribution applies to streams in
the area (Figure 1B). A total of 1093 km streams are situated in the study area, of which 886 km are
open streams and the remaining 207 km are piped. Almost half of the open streams (43.5%) are in
good condition (DVFI 5–7). Most of the west-flowing streams fail to meet the environmental objective
(60%), whereas only 33% of the east-flowing streams did not meet the goal of DVFI 5–7 (Figure 2).
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Figure 2. Stream quality in the studied area. Colors in the figure indicate the Danish water fauna index
(DVFI value). Black: 1, Red: 2, Orange: 3, Yellow: 4, Light green: 5, Dark green: 6, Blue: 7, Gray:
Streams that were not targeted. The table shows percentages (%) of streams in the eastern and western
part of the area that meet the environmental objectives (light grey) and those that do not (dark grey).

3.2. Stream Quality vs. Land Use

Generally, a large agricultural land use area in the catchments resulted in low DVFI. Stations with
low DVFI also had a low amount of nature and forest in the entire catchment, the lowland area, and in
the riparian zones. In streams with high DVFI, the percentage of area with agriculture was still high
for the entire catchment, whereas nature and forest dominated in the lowland areas and riparian zones.
In general, urban areas negatively influenced DVFI, but not nearly to the same degree as agriculture.
Land use distribution in the catchments (Table 1) significantly affected the stream quality. Generally,
the catchments were dominated by agriculture and nature and forest, whereas urban areas were more
limited. At stations with DVFI 7, the catchments were dominated by agriculture (47%), whereas
nature/forest constituted 37% and urban areas 15%. Focusing on the riparian zone at stations with DVFI
7, the land use was dominated by natural/forested areas (60%) and only 27% agriculture, whereas the
proportion of urban catchment increased to 27%. At stations with DVFI 1, the total catchment and the
riparian zone were, to an even greater extent, dominated by agriculture (79% and 67%, respectively).
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Table 1. Land use distribution (mean of agriculture, nature (nature, forest and freshwater) and urban)
in percentages for every DVFI score in the entire catchment (total), in the lowland area (50 m on each
side of the stream), and in the riparian zone (10 m on each side of the stream).

DVFI Catchment Agriculture (%) Nature (%) Urban (%)

7 Total/50 m buffer/10 m buffer 47/35/27 37/52/60 15/13/13
6 Total/50 m buffer/10 m buffer 67/41/32 20/52/60 13/8/8
5 Total/50 m buffer/10 m buffer 69/46/38 20/44/52 11/10/10
4 Total/50 m buffer/10 m buffer 70/64/58 18/28/31 13/9/11
3 Total/50 m buffer/10 m buffer 73/69/65 16/25/29 11/5/6
2 Total/50 m buffer/10 m buffer 66/70/64 10/16/17 24/14/20
1 Total/50 m buffer/10 m buffer 79/66/67 15/28/23 6/6/10

A comparison between measured DVFI at all stream stations and the percentage of either
nature/forest or agriculture in each catchment (Figures 3 and 4) revealed a negative correlation between
DVFI and agriculture, with a higher percentage of agriculture in catchments with low DVFI, when
looking at the three lowest area percentages for each DVFI score. Additionally, we found a positive
correlation between DVFI and nature/forest. In the entire catchment (Figure 3), the linear correlations
were not significant in the west (P = 0.263 for DVFI vs, agriculture and P = 0.184 for DVFI vs. nature).
In the east, the correlation between DVFI and agriculture were significant (P = 0.005), whereas the
P-value was 0.432 for the correlation between DVFI and nature/forest. When focusing on the riparian
zone (Figure 4), all four correlations were significant (P < 0.05). A comparison of land use distribution
in the entire catchment and in the riparian zone showed that the slopes of the trend lines are generally
steeper for the entire catchment, revealing that DVFI is more affected by the type of land use in the
entire catchment than in the riparian zone.Sustainability 2019, 11, x FOR PEER REVIEW 6 of 12 
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3.3. BOD5, Metals, and DFI 

Figure 3. Distribution of agriculture (%) and nature (%, nature/forest) versus DVFI in the western and
eastern parts of the study area. Data (n = 67) cover the entire catchment area for each station. White
dots indicate the three lowest values for each DVFI score. The trend line follows these data. Black dots
represent all the measurements of every DVFI score. One outliner was removed due to being near the
outlet from a treatment plant in the catchment.
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For the streams to be of good ecological quality (DVFI 5–7), at least 30% of the total catchment
area in the west should be without agriculture or urban areas, compared with only 20% in the east
(Figure 3). In the riparian zones, the corresponding values are 40% in the west and almost 60% in the
east (Figure 4). Streams in the east seemed to be more affected by land use in the catchment than in
the west.

3.3. BOD5, Metals, and DFI

An analysis of 1036 BOD5 samples taken in 17 of the catchments showed a negative impact of
BOD5 on DVFI (Figure 5, left) and a more negative impact in summer (May–September) than in winter
(October–April). The data of selected metals showed significant negative correlations between total
concentrations of chromium (Cr), aluminum (Al), and nickel (Ni) measured in the stormwater outlets
and the streams’ DVFI (P = 0.033, 0.034, and 0.017, respectively, data not shown). Metals are often
particulate bound and therefore a positive correlation was found between suspended solid (SS) and
Al (P < 0.0001). Streams in the east were generally in better physical conditions than streams in the
west, and a positive correlation between DFI and DVFI was found (Figure 5, right). There were no
DFI measurements in stations with DVFI 1 and only one with DVFI 2, but for DVFI 7, the DFI was
significantly higher than for DVFI 3 (P < 0.001) and DVFI 4 (P = 0.005), including all measurements.



Sustainability 2019, 11, 5479 7 of 12

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 12 

 

An analysis of 1036 BOD5 samples taken in 17 of the catchments showed a negative impact of 
BOD5 on DVFI (Figure 5, left) and a more negative impact in summer (May–September) than in 
winter (October–April). The data of selected metals showed significant negative correlations between 
total concentrations of chromium (Cr), aluminum (Al), and nickel (Ni) measured in the stormwater 
outlets and the streams’ DVFI (P = 0.033, 0.034, and 0.017, respectively, data not shown). Metals are 
often particulate bound and therefore a positive correlation was found between suspended solid (SS) 
and Al (P < 0.0001). Streams in the east were generally in better physical conditions than streams in 
the west, and a positive correlation between DFI and DVFI was found (Figure 5, right). There were 
no DFI measurements in stations with DVFI 1 and only one with DVFI 2, but for DVFI 7, the DFI was 
significantly higher than for DVFI 3 (P < 0.001) and DVFI 4 (P = 0.005), including all measurements. 

 
Figure 5. Left: Concentrations of BOD5 (mg/L) in summer (black) and winter (grey) divided after DVFI 
(n = 1036) with standard deviation. Right: DFI and corresponding DVFI (n = 77). Light grey represents 
east, dark grey represents west, and black represents both. 

3.4. Influence from Nature/Forest and Urban Areas 

Focusing on the uncultivated and non-urban areas, which are important for the good ecological 
quality of streams, forest (a mixture of conifer and deciduous trees) was the dominant land use (70% 
in east and 57% in the west on average). Forests with conifer trees were the dominating type, whereas 
natural areas like moors, meadows, coastal meadows, commons, heaths, lakes, and streams 
constituted 27% in the east and 39% in the west. Table 2 focuses only on nature, forest, and urban 
areas, excluding the overall negative influence from agriculture. Nature and forest were more 
dominant types than urban areas in catchments with streams with high ecological quality (DVFI 5–
7). In contrast, low ecological quality (DVFI 1–4) was found in streams with catchments containing 
outlets from sewer systems. Urban areas were divided into areas with either combined sewers (with 
occasional wastewater overflow) or separate sewer systems (constant stormwater outlet). Catchments 
containing a large percentage of separate sewer systems had lower DVFI (4–5) and catchments with 
combined sewer systems had even lower DVFIs (1–4).  

Most of the urban areas are connected with wastewater treatment plants with tertiary treatment. 
Small villages and scattered houses discharge wastewater directly to the receiving waters with only 
physical treatment and therefore negatively influence the stream quality. This was observed in the 
data as a negative relationship between DVFI and the number of scattered houses/km2 (Table 2). As 
an example, there were, on average, 2.4 houses/km2 at stations with DVFI 7, but 3.6 at DVFI 6 and 5.3 
at DVFI 4. 

Table 2. The percentage of areas with nature/forest, and combined and separate sewers in the 
catchment (n = 771) plus number of scattered houses/km2 and the influence on DVFI (n = 182) divided 
into DVFI scores including standard deviation. One outliner of the scattered houses in a small 
catchment close to the sea was removed as it was not representative. 

Figure 5. Left: Concentrations of BOD5 (mg/L) in summer (black) and winter (grey) divided after DVFI
(n = 1036) with standard deviation. Right: DFI and corresponding DVFI (n = 77). Light grey represents
east, dark grey represents west, and black represents both.

3.4. Influence from Nature/Forest and Urban Areas

Focusing on the uncultivated and non-urban areas, which are important for the good ecological
quality of streams, forest (a mixture of conifer and deciduous trees) was the dominant land use (70% in
east and 57% in the west on average). Forests with conifer trees were the dominating type, whereas
natural areas like moors, meadows, coastal meadows, commons, heaths, lakes, and streams constituted
27% in the east and 39% in the west. Table 2 focuses only on nature, forest, and urban areas, excluding
the overall negative influence from agriculture. Nature and forest were more dominant types than
urban areas in catchments with streams with high ecological quality (DVFI 5–7). In contrast, low
ecological quality (DVFI 1–4) was found in streams with catchments containing outlets from sewer
systems. Urban areas were divided into areas with either combined sewers (with occasional wastewater
overflow) or separate sewer systems (constant stormwater outlet). Catchments containing a large
percentage of separate sewer systems had lower DVFI (4–5) and catchments with combined sewer
systems had even lower DVFIs (1–4).

Table 2. The percentage of areas with nature/forest, and combined and separate sewers in the catchment
(n = 771) plus number of scattered houses/km2 and the influence on DVFI (n = 182) divided into DVFI
scores including standard deviation. One outliner of the scattered houses in a small catchment close to
the sea was removed as it was not representative.

DVFI Nature/Forest (%) Combined Sewer (%) Separate Sewer (%) Scattered Houses (houses/km2)

7 90 ± 13 0 ± 1 10 ± 13 2.4 ± 0.4
6 81 ± 20 1 ± 4 18 ± 20 3.7 ± 0.4
5 77 ± 26 4 ± 10 19 ± 23 3.9 ± 0.6
4 74 ± 30 5 ± 12 21 ± 26 5.4 ± 1
3 56 ± 34 16 ± 20 28 ± 25 4.9 ± 0.4
2 35 ± 26 28 ± 23 37 ± 24 2.3 ± 0.1
1 55 ± 32 16 ± 21 29 ± 29 5.4 ± 3.5

Most of the urban areas are connected with wastewater treatment plants with tertiary treatment.
Small villages and scattered houses discharge wastewater directly to the receiving waters with only
physical treatment and therefore negatively influence the stream quality. This was observed in the
data as a negative relationship between DVFI and the number of scattered houses/km2 (Table 2). As an
example, there were, on average, 2.4 houses/km2 at stations with DVFI 7, but 3.6 at DVFI 6 and 5.3 at
DVFI 4.
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4. Discussion

We found significant correlations between land use in the catchments and stream quality.
The ecological stream quality was negatively influenced by the percentage of agriculture and urban
areas, whereas nature and forest had positive impacts. Catchments with combined sewer systems
more negatively influenced stream quality than catchments with separate sewer systems. This was
supported by measurements showing negative impacts from metals originating from stormwater
and BOD5 originating from wastewater. Finally, the results showed that management of the entire
catchment influences the stream quality more than management in the riparian zone alone.

Runoff from different types of land use is crucial for the ecological quality in streams. Urban catchments
are often located in the riparian zone and in lowland areas (Table 1), whereas agriculture, scattered
houses, and small villages dominate the countryside. These are historically also located close to
waterbodies and their nutrients, organic contamination, and xenobiotics in discharged stormwater
negatively impact DVFI. Particulate material is often deposited in the stream systems and metals are
often particulate bound (proved by, e.g., a relationship between SS and Al in this study). Significant
negative correlations were found between DVFI and Ni, Cr, and Al. The metals can influence the
biotopes due to, e.g., desorption, bioturbation, and direct uptake [28].

From a stream quality perspective, separate sewers should be preferred over combined sewers, as
separate systems in the catchments resulted in better stream quality than combined systems. During
heavy rain events, direct overflows from combined sewers to the receiving water occur if the pipe system
and the treatment plant cannot handle the large amounts of diluted wastewater. The consequence
is contamination with nutrients, organic matter, and xenobiotics. In separate systems, wastewater
is never discharged; instead, all stormwater is discharged with its content of the above-mentioned
substances, though at lower concentrations [29]. Therefore, outlets from catchments with separate
sewers can still negatively influence DVFI due to hydraulic effects and contamination with, e.g., heavy
metals, nutrients, hydrocarbons, and road salt. Overall, separate sewer systems are a successful climate
adaption strategy and many municipalities have chosen to convert combined sewers into separate
sewers to accommodate the increased precipitation caused by climate change [30]. Due to the hydraulic
effects and the contained substances, stormwater is often treated and retained in wet ponds before outlet.
Other sustainable urban drainage systems (SuDS), such as permeable surfaces or local infiltration,
provide alternative solutions. The contamination in the discharged stormwater is dependent on various
factors such as the design and age of the sewer system, eventual treatment of the water, and the level
of pollution of the catchment, which, e.g., depends on activities and traffic intensity [26]. Wastewater
from scattered houses deteriorates stream quality due to inadequate treatment. A solution to this is to
connect scattered houses to public sewer systems, if feasible, or adopt an improved treatment method.
This is currently an ongoing national process in Denmark. A correlation between urban runoff and
low stream quality has also been studied by Paul and Meyer [24]. They found that the increasing
population in urban areas has resulted in changes in the hydrology and geomorphology of streams and
in declines in the richness of invertebrates and fish due to increased loadings of nutrients, pesticides,
metals, and other contaminants.

Agriculture dominates in catchments with streams that have low DVFI and is less widespread in
streams with high DVFI. In contrast, natural and forested areas in the catchments (both in the total area
and in the riparian zone) always positively impact DVFI and thereby the ecological stream quality.
A study in Lithuania showed the same tendency, where the ecological stream quality was significantly
higher in natural forested streams [31]. The presence of nature belts along the streams seems to support
the macroinvertebrate communities and thereby a good DVFI status. Chase et al. also concluded that
relatively small increases in riparian forest cover will lead to statistically detectable and ecologically
meaningful improvements in stream quality [32]. Increases in the riparian forest result in increases in
physical quality, which positively influences DVFI.

The significant linear correlations between DVFI and both agriculture and nature in the riparian
zone (Figure 4) indicate that stream quality is highly dependent on the land use in the riparian zone.
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Good quality in the riparian zone is insufficient on its own, since the stream receives runoff from the
entire catchment. Steeper slopes of trend lines created from data from the entire catchment (Figures 3
and 4) indicate that management in the entire catchment has a greater influence on stream quality than
management in the riparian zone. Streams in east were more affected by agriculture than those in the
west. This could be due to more intensive agricultural production in east, as this soil has a higher
agricultural value and therefore receives higher amounts of fertilizer, leading to higher nutrient runoff.
In the west, a large part of the farm land is grassland, and therefore does not receive the same high
amounts of fertilizers and cultivation.

The overall lower negative impact of urban areas on DVFI can be explained by the percentage
of urban areas in the studied area (11%). Despite this low percentage, a clear and visible impact was
observed on DVFI, which means that stormwater clearly influences stream quality. This influence
might not only be negative, as well-treated stormwater might dilute the drainage water in highly
cultivated agricultural land. Stormwater is an extra water source to streams situated in areas with
groundwater aquifers used for drinking water, which lowers the groundwater table and thereby the
water level in the streams.

Catchments in the east contained the highest percentages of nature and forest and 33% of the
east-flowing streams were not fulfilling the objectives, whereas this was the case for 60% of the
west-flowing streams (Figure 2). The descending gradient is also larger for the east-flowing streams,
which leads to higher DFI and thereby higher DVFI in the east. An important factor that affects DVFI
is the hydraulic effects, i.e., sediment erosion, withdrawal of animals and plants, and higher dynamic
flow. These depend on the composition of the catchment area, soil type, and shape of the stream.

Good ecological quality depends on the physical conditions. Animals and plants have demands
on, for example, substrate, water flow, descending gradient, shade, banks, riffles, and meandering of
the stream, to survive in and around the stream environment. As expected, high DFI resulted in high
DVFI in this study (Figure 5, right). Due to different topographies, streams in the east with higher
slopes (0–25%�) had better physical states than those in the west with lower slopes (0–2%�), which
could explain why only 33% of streams in the east were not meeting the environmental goal.

Streams are usually in poor physical conditions when they have been exposed to straightening,
dredging, and/or rough weed cutting [22]. Although the biotic response to some stressors is expected to
be negative, several environmental stressors have positive influences at low to moderate concentrations.
Odum et al. used riparian thinning and low intensity agriculture as examples [33]. The initial increase
in nutrients, light, and water temperature increases the periphyton biomass and macroinvertebrate
abundance, whereas further intensification of agriculture results in loss of diversity and sensitive
species [34]. Along with poor physical conditions, BOD5 negatively influences the living conditions of
plants and animals, and physical reaeration is suboptimal in streams with low slopes (Figure 5, left).
The impact was greater in summer than in winter, caused by higher mineralization rates during the
warm period. Richards et al. also found significant seasonal differences in BOD5. They found that
septic tank effluent BOD5 concentrations were particularly higher in spring and summer [35].

Natural and forested areas in the catchments are crucial to high DVFI values in the streams.
In this study, forest area was more dominant compared to the amount of natural areas, with the
highest amount found in the west. This was due to tree planting in the west to reduce sand drift
and because sandy soil is not as usable for cultivation. The results from another study showed that
deciduous trees along the streams give higher DVFI than conifer trees due to shading and difference
in nutrient input [36]. Since the sandy soil in the west has mostly conifer trees, deciduous trees in
the east contribute to a higher DVFI. The natural areas in the study are different. There is original
nature, culture-dependent nature (e.g. heaths) and reestablished nature on former farmland, but
independently, the positive impact of all natural areas is clear.
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5. Conclusions

Having large areas without agriculture and urbanization in both the riparian zone and the entire
catchment is important for achieving good physical conditions (DFI) and high-quality ecological
status (DVFI ≥ 5). Management of the entire catchment has a larger influence on stream quality
than management in the riparian zone alone. A specific stream station needs a minimum of 20–30%
nature/forest in the total catchment and 40–55% in the riparian zone to produce good ecological stream
quality according to this study. These relationships are transferable to highly cultivated countries
like Denmark.

The GIS study presented in this study can be transferred and replicated in other catchments, and
is a valuable tool to provide an overview and understanding of the relationships between land use and
stream quality in the area.

The ecological stream quality is negatively influenced by agriculture and outlets from urban areas.
Untreated outlets from scattered houses should be avoided, and separate sewers should be preferred
over combined sewers.
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