Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. MFC Construction
2.2. Electrode Assembly Preparation
2.3. Operation
2.4. Analytical Methods
3. Results and Discussion
3.1. MFC Operation
3.2. Effect of the Different Cathode Strategies on the Polarization Performance of the MFC Units
3.3. Electrochemical Impedance Spectroscopy Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennetto, H.P. Electricity generation by microorganisms. Biotechnol. Educ. 1990, 1, 163–168. [Google Scholar]
- Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Lissens, G.; Verstraete, W. Microbial fuel cells: Performances and perspectives. In Biofuels for Fuel Cells: Renewable Energy from Biomass Fermentation, 1st ed.; Piet, L., Peter, W., Marianne, H., Angelo, M., Eds.; IWA Publishing: London, UK, 2005; pp. 377–399. [Google Scholar]
- Logan, B.E. Microbial Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Lefebvre, O.; Uzabiaga, A.; Chang, I.S.; Kim, B.-H.; Ng, H.Y. Microbial fuel cells for energy self-sufficient domestic wastewater treatment—A review and discussion from energetic consideration. Appl. Microbiol. Biotechnol. 2010, 89, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Do, M.; Ngo, H.; Guo, W.; Liu, Y.; Chang, S.; Nguyen, D.; Nghiem, L.; Ni, B. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci. Total. Environ. 2018, 639, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Tremouli, A.; Kamperidis, T.; Lyberatos, G. Comparative Study of Different Operation Modes of Microbial Fuel Cells Treating Food Residue Biomass. Molecules 2021, 26, 3987. [Google Scholar] [CrossRef] [PubMed]
- Tremouli, A.; Kamperidis, T.; Pandis, P.K.; Argirusis, C.; Lyberatos, G. Exploitation of Digestate from Thermophilic and Mesophilic Anaerobic Digesters Fed with Fermentable Food Waste Using the MFC Technology. Waste Biomass Valorization 2021, 12, 5361–5370. [Google Scholar] [CrossRef]
- Kamperidis, T.; Pandis, P.K.; Argirusis, C.; Lyberatos, G.; Tremouli, A. Effect of Food Waste Condensate Concentration on the Performance of Microbial Fuel Cells with Different Cathode Assemblies. Sustainability 2022, 14, 2625. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kamperidis, T.; Bariamis, K.; Vlachos, I.; Argirusis, C.; Stathopoulos, V.N.; Lyberatos, G.; Tremouli, A. Comparative Study of Different Production Methods of Activated Carbon Cathodic Electrodes in Single Chamber MFC Treating Municipal Landfill Leachate. Appl. Sci. 2022, 12, 2991. [Google Scholar] [CrossRef]
- James, A. Ceramic-microbial fuel cell (C-MFC) for waste water treatment: A mini review. Environ. Res. 2022, 210, 112963. [Google Scholar] [CrossRef]
- Jeong, C.M.; Choi, J.D.R.; Ahn, Y.; Chang, H.N. Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence. Korean J. Chem. Eng. 2008, 25, 535–541. [Google Scholar] [CrossRef]
- Merino-Jimenez, I.; Obata, O.; Pasternak, G.; Gajda, I.; Greenman, J.; Ieropoulos, I. Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine. Process. Biochem. 2020, 101, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, V.; Mohebbi-Kalhori, D.; Samimi, A. Start-up investigation of the self-assembled chitosan/montmorillonite nanocomposite over the ceramic support as a low-cost membrane for microbial fuel cell application. Int. J. Hydrogen Energy 2019, 45, 4804–4820. [Google Scholar] [CrossRef]
- Tremouli, A.; Greenman, J.; Ieropoulos, I. Investigation of ceramic MFC stacks for urine energy extraction. Bioelectrochemistry 2018, 123, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Tremouli, A.; Greenman, J.; Ieropoulos, I. Effect of simple interventions on the performance of a miniature MFC fed with fresh urine. Int. J. Hydrogen Energy 2021, 46, 33594–33600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Mahadevan, G.D.; Wu, Y.; Zhao, F. Progress of air-breathing cathode in microbial fuel cells. J. Power Sources 2017, 356, 245–255. [Google Scholar] [CrossRef]
- Santoro, C.; Kodali, M.; Herrera, S.; Serov, A.; Ieropoulos, I.; Atanassov, P. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. J. Power Sources 2017, 378, 169–175. [Google Scholar] [CrossRef]
- Freitas, W.D.S.; Gemma, D.; Mecheri, B.; D’Epifanio, A. Air-breathing cathodes for microbial fuel cells based on iron-nitrogen-carbon electrocatalysts. Bioelectrochemistry 2022, 146, 108103. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, T.; Wang, D.; Tang, J.; Zhou, S. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresour. Technol. 2013, 144, 115–120. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, L. A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid. Bioresour. Technol. 2020, 304, 122992. [Google Scholar] [CrossRef]
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef]
- Chang, H.-C.; Gustave, W.; Yuan, Z.-F.; Xiao, Y.; Chen, Z. One-step fabrication of binder-free air cathode for microbial fuel cells by using balsa wood biochar. Environ. Technol. Innov. 2020, 18, 100615. [Google Scholar] [CrossRef]
- Tremouli, A.; Pandis, P.K.; Kamperidis, T.; Stathopoulos, V.N.; Argirusis, C.; Lyberatos, G. Performance assessment of a four-air cathode membraneless microbial fuel cell stack for wastewater treatment and energy extraction. E3S Web Conf. 2019, 116, 00093. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, S.; Wang, J.; Li, C. Fundamental development and research of cathodic compartment in microbial fuel cells: A review. J. Environ. Chem. Eng. 2022, 10, 107918. [Google Scholar] [CrossRef]
- Coal Ash Basics|US EPA. Available online: https://www.epa.gov/coalash/coal-ash-basics#04 (accessed on 4 December 2022).
- Jayaranjan, M.L.D.; van Hullebusch, E.D.; Annachhatre, A.P. Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Biotechnol. 2014, 13, 467–486. [Google Scholar] [CrossRef]
- Jia, Y.; Feng, H.; Shen, D.; Zhou, Y.; Chen, T.; Wang, M.; Chen, W.; Ge, Z.; Huang, L.; Zheng, S. High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash. J. Hazard. Mater. 2018, 354, 27–32. [Google Scholar] [CrossRef]
- Chen, C.-K.; Pai, T.-Y.; Lin, K.-L.; Ganesan, S.; Ponnusamy, V.K.; Lo, F.-C.; Chiu, H.-Y.; Banks, C.J.; Lo, H.-M. Electricity production from municipal solid waste using microbial fuel cells with municipal solid waste incinerator bottom ash as electrode plate. Bioresour. Technol. Rep. 2022, 19, 101210. [Google Scholar] [CrossRef]
- Tremouli, A.; Intzes, A.; Intzes, P.; Bebelis, S.; Lyberatos, G. Effect of periodic complete anolyte replacement on the long term performance of a four air cathodes single chamber microbial fuel cell. J. Appl. Electrochem. 2015, 45, 755–763. [Google Scholar] [CrossRef]
- Tremouli, A.; Pandis, P.K.; Karydogiannis, I.; Stathopoulos, V.N.; Argirusis, C.; Lyberatos, G. Operation and Electro(chemical) characterization of a microbial fuel cell stack fed with fermentable household waste extract. Glob. NEST J. 2019, 21, 253–257. [Google Scholar] [CrossRef]
- Tremouli, A.; Martinos, M.; Bebelis, S.; Lyberatos, G. Performance assessment of a four-air cathode single-chamber microbial fuel cell under conditions of synthetic and municipal wastewater treatments. J. Appl. Electrochem. 2016, 46, 515–525. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B.E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 2011, 102, 4468–4473. [Google Scholar] [CrossRef] [PubMed]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association (APHA): Washington, DC, USA, 2012; ISBN 9780875532356. [Google Scholar]
- He, Z.; Minteer, S.D.; Angenent, L.T. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environ. Sci. Technol. 2005, 39, 5262–5267. [Google Scholar] [CrossRef] [PubMed]
- Manohar, A.K.; Mansfeld, F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim. Acta 2008, 54, 1664–1670. [Google Scholar] [CrossRef]
- Hidalgo, D.; Sacco, A.; Hernández, S.; Tommasi, T. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation. Bioresour. Technol. 2015, 195, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Benetton, X.; Sevda, S.; Vanbroekhoven, K.; Pant, D. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem. Soc. Rev. 2012, 41, 7228–7246. [Google Scholar] [CrossRef] [PubMed]
- Sekar, N.; Ramasamy, R.P. Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization. J. Microb. Biochem. Technol. 2013, 6.2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.; Savadogo, O.; Guiot, S.R.; Tartakovsky, B. Electrochemical characterization of anodic biofilm development in a microbial fuel cell. J. Appl. Electrochem. 2013, 43, 533–540. [Google Scholar] [CrossRef]
Fitted Parameters | M-MnO2 | CFA | P-MnO2 | BC | AC |
---|---|---|---|---|---|
RS (Ω) | 32 | 81 | 31 | 75 | 90 |
RBF (Ω) | 36 | 35 | 35 | 39 | 114 |
RCT (Ω) | 2 | 17 | 8 | 60 | 75 |
CBF (F) | 3 × 10−3 | 2 × 10−7 | 5 × 10−3 | 2 × 10−3 | 2 × 10−13 |
CCT (F) | 9 × 10−7 | 9 × 10−3 | 0.7 × 10−4 | 5 × 10−3 | 1 × 10−3 |
RINT (Ω) * | 70 | 133 | 68 | 174 | 279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremouli, A.; Pandis, P.K.; Kamperidis, T.; Argirusis, C.; Stathopoulos, V.N.; Lyberatos, G. Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst. Water 2023, 15, 862. https://doi.org/10.3390/w15050862
Tremouli A, Pandis PK, Kamperidis T, Argirusis C, Stathopoulos VN, Lyberatos G. Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst. Water. 2023; 15(5):862. https://doi.org/10.3390/w15050862
Chicago/Turabian StyleTremouli, Asimina, Pavlos K. Pandis, Theofilos Kamperidis, Christos Argirusis, Vassilis N. Stathopoulos, and Gerasimos Lyberatos. 2023. "Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst" Water 15, no. 5: 862. https://doi.org/10.3390/w15050862
APA StyleTremouli, A., Pandis, P. K., Kamperidis, T., Argirusis, C., Stathopoulos, V. N., & Lyberatos, G. (2023). Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst. Water, 15(5), 862. https://doi.org/10.3390/w15050862