Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Treated Wastewater
2.2. Experimental Set Up
2.3. Analytical Methods
2.4. Removal Efficiencies
- Ciin is the initial concentration of parameter i;
- Cifin is the final concentration of parameter i.
2.5. Economic Assessment of the Ozonation Stage
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Effect of Ozonation on Color Removal from Urban and Leather Tanning Wastewater
3.2. Variation of COD and Its Fractions Due to the Ozonation Process
3.3. Preliminary Cost Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crini, G.; Lichtfouse, E. Wastewater Treatment: An Overview. In Green Adsorbents for Pollutant Removal; Springer: Cham, Switzerland, 2018; Volume 18. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Stehle, S.; Bub, S.; Petschick, L.L.; Schulz, R. Water quality and ecological risks in European surface waters—Monitoring improves while water quality decreases. Environ. Int. 2021, 152, 106479. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Tasnim, A.; Rafa, N.; Uddin, A.; Inayat, A.; Mahlia, T.M.I.; Chyuan, H.; Yi, W.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Kermani, M.; Izanloo, H.; Kalantary, R.R.; Barzaki, H.S.; Kakavandi, B. Study of the performances of low-cost adsorbents extracted from rosa damascena in aqueous solutions decolorization. Desalin. Water Treat. 2017, 80, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Jafari, A.J.; Kakavandi, B.; Kalantary, R.R.; Gharibi, H.; Asadi, A.; Azari, A.; Babaei, A.A.; Takdastan, A. Application of mesoporous magnetic carbon composite for reactive dyes removal: Process optimization using response surface methodology. Korean J. Chem. Eng. 2016, 33, 2878–2890. [Google Scholar] [CrossRef]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for Advanced Oxidation Processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone application in different industries: A review of recent developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Wang, Z.; Chang, J. Ozonation of aromatic monomer compounds in water: Factors determining reaction outcomes. Front. Environ. Sci. Eng. 2023, 17, 54. [Google Scholar] [CrossRef]
- Demir-Duz, H.; Perez-Estrada, L.A.; Álvarez, M.G.; Gamal El-Din, M.; Contreras, S. O3/H2O2 and UV-C light irradiation treatment of oil sands process water. Sci. Total Environ. 2022, 832, 154804. [Google Scholar] [CrossRef]
- Mezzanotte, V.; Fornaroli, R.; Canobbio, S.; Zoia, L.; Orlandi, M. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing. Chemosphere 2013, 91, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, N.N.; Shukla, S.R. Decolorization of Reactive Blue 171 Dye Using Ozonation and UV/H2O2 and Elucidation of the Degradation Mechanism. Environ. Prog. Sustain. Energy 2015, 34, 1652–1661. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Yeganeh, M.; Fallah Jokandan, S.; Rahmatinia, M.; Kakavandi, B.; Noorisepehr, M.; Dehghanifard, E.; Baneshi, M.M. Catalytic ozonation assisted by Fe3O4@SiO2@TiO2 in the degradation of Aniline from aqueous solution: Modelling and optimisation by response surface methodology. Int. J. Environ. Anal. Chem. 2022, 102, 7863–7880. [Google Scholar] [CrossRef]
- Suresh, R.; Rajendran, S.; Gnanasekaran, L.; Show, P.L.; Chen, W.H.; Soto-Moscoso, M. Modified poly(vinylidene fluoride) nanomembranes for dye removal from water—A review. Chemosphere 2023, 322, 138152. [Google Scholar] [CrossRef]
- Naddeo, V.; Landi, M.; Belgiorno, V.; Napoli, R.M.A. Wastewater disinfection by combination of ultrasound and ultraviolet irradiation. J. Hazard. Mater. 2009, 168, 925–929. [Google Scholar] [CrossRef]
- Walter, W.G. Standard Methods for the Examination of Water and Wastewater. Am. J. Public Health Nations Health 1999, 51, 940. [Google Scholar] [CrossRef] [Green Version]
- Tatari, K.; Gülay, A.; Thamdrup, B.; Albrechtsen, H.; Smets, B.F. Challenges in using allylthiourea and chlorate as specific nitrification inhibitors. Chemosphere 2017, 182, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Campano, E. Idrico Piano d’Ambito Regionale. Available online: https://www.enteidricocampano.it/wp-content/uploads/2021/12/Relazione-PDA-Regionale_rev1_2021.pdf (accessed on 15 March 2023).
- Vaccari, M.; Foladori, P.; Nembrini, S.; Vitali, F. Benchmarking of energy consumption in municipal wastewater treatment plants—A survey of over 200 plants in Italy. Water Sci. Technol. 2018, 77, 2242–2252. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A.; Madkour, F.F.; Idris, A.M.; Said, T.O.; Sahlabji, T.; Alghamdi, M.M.; El-Zahhar, A.A. Advanced oxidation of acid yellow 11 dye; detoxification and degradation mechanism. Toxin Rev. 2021, 40, 1472–1480. [Google Scholar] [CrossRef]
- Tuncer, N.; Sönmez, G. Removal of COD and Color from Textile Wastewater by the Fenton and UV/H2O2 Oxidation Processes and Optimization. Water Air Soil Pollut. 2023, 234, 70. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, W. A review for tannery wastewater treatment: Some thoughts under stricter discharge requirements. Environ. Sci. Pollut. Res. 2019, 26, 26102–26111. [Google Scholar] [CrossRef] [PubMed]
- Sivagami, K.; Sakthivel, K.P.; Nambi, I.M. Advanced oxidation processes for the treatment of tannery wastewater. J. Environ. Chem. Eng. 2018, 6, 3656–3663. [Google Scholar] [CrossRef]
- Hao, O.J.; Kim, H.; Chiang, P.C. Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol. 2000, 30, 449–505. [Google Scholar] [CrossRef]
- He, Z.; Li, M.; Zuo, D.; Xu, J.; Yi, C. Dyes and Pigments E ff ects of color fading ozonation on the color yield of reactive-dyed cotton. Dye. Pigment. 2019, 164, 417–427. [Google Scholar] [CrossRef]
- Preethi, V.; Parama Kalyani, K.S.; Iyappan, K.; Srinivasakannan, C.; Balasubramaniam, N.; Vedaraman, N. Ozonation of tannery effluent for removal of cod and color. J. Hazard. Mater. 2009, 166, 150–154. [Google Scholar] [CrossRef]
- Saranya, D.; Shanthakumar, S. An integrated approach for tannery effluent treatment with ozonation and phycoremediation: A feasibility study. Environ. Res. 2020, 183, 109163. [Google Scholar] [CrossRef] [PubMed]
- Korpe, S.; Rao, P.V. Application of advanced oxidation processes and cavitation techniques for treatment of tannery wastewater—A review. J. Environ. Chem. Eng. 2021, 9, 105234. [Google Scholar] [CrossRef]
- Phan, L.T.; Schaar, H.; Saracevic, E.; Krampe, J.; Kreuzinger, N. Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. Sci. Total Environ. 2022, 812, 152466. [Google Scholar] [CrossRef] [PubMed]
- Hansen, É.; Monteiro de Aquim, P.; Gutterres, M. Current technologies for post-tanning wastewater treatment: A review. J. Environ. Manag. 2021, 294, 113003. [Google Scholar] [CrossRef] [PubMed]
- Lofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci. Total Environ. 2013, 461–462, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Orhon, D.; Dulkadiroǧlu, H.; Doǧruel, S.; Kabdaşli, I.; Sozen, S.; Germirli Babuna, F. Ozonation application in activated sludge systems for a textile mill effluent. Water Sci. Technol. 2002, 45, 305–313. [Google Scholar] [CrossRef]
E1 | E2 | E3 | |
---|---|---|---|
pH | 7.5 | 7.8 | 8.2 |
Color (λ = 426 nm) | 0.066 ± 0.001 | 0.069 ± 0.002 | 0.266 ± 0.006 |
Color (λ = 558 nm) | 0.025 ± 0.008 | 0.028 ± 0.001 | 0.111 ± 0.003 |
Color (λ = 660 nm) | 0.013 ± 0.002 | 0.009 ± 0.001 | 0.047 ± 0.001 |
COD (mg∙L−1) | 119.0 ± 2.0 | 148.0 ± 3.5 | 457.0 ± 5.2 |
TSS (mg∙L−1) | 39.0 ± 1.0 | 66.0 ± 0.0 | 225.0 ± 0.0 |
Cr (mg∙L−1) | / | / | 1.20 |
Cr III (mg∙L−1) | / | / | 0.81 |
Cr VI (mg∙L−1) | / | / | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzetta, A.; Papirio, S.; Oliva, A.; Cesaro, A.; Pucci, L.; Capasso, E.M.; Esposito, G.; Pirozzi, F. Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater. Water 2023, 15, 2362. https://doi.org/10.3390/w15132362
Lanzetta A, Papirio S, Oliva A, Cesaro A, Pucci L, Capasso EM, Esposito G, Pirozzi F. Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater. Water. 2023; 15(13):2362. https://doi.org/10.3390/w15132362
Chicago/Turabian StyleLanzetta, Anna, Stefano Papirio, Armando Oliva, Alessandra Cesaro, Luca Pucci, Emanuele Mariano Capasso, Giovanni Esposito, and Francesco Pirozzi. 2023. "Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater" Water 15, no. 13: 2362. https://doi.org/10.3390/w15132362
APA StyleLanzetta, A., Papirio, S., Oliva, A., Cesaro, A., Pucci, L., Capasso, E. M., Esposito, G., & Pirozzi, F. (2023). Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater. Water, 15(13), 2362. https://doi.org/10.3390/w15132362