Comparison of Dissolved Organic Matter Composition and Microbial Distribution between Distributed-Inflow Biological Reactor and Two-Stage Anoxic/Aerobic for Piggery Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setups
2.2. Sampling and Analysis
2.2.1. Water Sampling and Measurement
2.2.2. Excitation Emission Analysis
2.2.3. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing
2.2.4. Microbial Metabolome Analysis
3. Results and Discussion
3.1. Removal Performance of the DBR and the A/O/A/O Systems
3.2. Composition Characteristics of DOM
3.3. Characteristics of Fluorescence Spectral Indexes
3.4. Characteristics of the Microbial Community
3.5. Characteristics of Metabolite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Wang, X.; Zhou, Z. Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. Int. J. Environ. Res. Public Health 2017, 14, 1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Hu, H.; Wu, X.; Zhou, T.; Liu, Y.; Ruan, R.; Zheng, H. Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater. Sci. Total Environ. 2020, 701, 134935. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.; Guo, W.; Chang, S.; Nguyen, D.; Kumar, S. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour. Technol. 2019, 275, 109–122. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Riddicka, B.A.; Li, R.; Able, J.R.; Boakye-Boaten, N.A.; Shahbazi, A. Sustainable production of algal biomass and biofuels using swine wastewater in North Carolina, US. Sustainability 2016, 8, 477. [Google Scholar] [CrossRef]
- Min, B.; Kim, J.; Oh, S.; Regan, J.M.; Logan, B.E. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005, 39, 4961–4968. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Deng, L.; Wang, L.; Zheng, D.; Liu, Y.; Wang, S.; Huang, F. Comparison of three biomass-retaining reactors of the ASBR, the UBF and the USR treating swine wastewater for biogas production. Renew. Energy 2019, 138, 521–530. [Google Scholar] [CrossRef]
- Ward, A.J.; Arola, K.; Brewster, E.T.; Mehta, C.M.; Batstone, D.J. Nutrient recovery from wastewater through pilot scale electrodialysis. Water Res. 2018, 135, 57–65. [Google Scholar]
- Xu, Z.; Song, X.; Li, Y.; Li, G.; Luo, W. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. Sci. Total Environ. 2019, 684, 23–30. [Google Scholar] [CrossRef]
- Cheng, H.H.; Narindri, B.; Chu, H.; Whang, L.M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; Visvanathan, C.; Abeynayaka, A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 2011, 102, 5353–5360. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Y.; Zhang, Z.; Wei, T. Effect of Different Influent Flow Distribution Ratios on Multistage A/O Process for Removal of Carbon and Nitrogen. Asian J. Chem. 2014, 26, 709–713. [Google Scholar] [CrossRef]
- Zhong, Z.; Wu, X.; Gao, L.; Lu, X.; Zhang, B. Efficient and microbial communities for pollutant removal in a distributed-inflow biological reactor (DBR) for treating piggery wastewater. RSC Adv. 2016, 6, 95987–95998. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ghulam, A.; Trumbo, A.L.; Yang, J.; Ren, Y.; Jing, Y. Evaluation and estimation of surface water quality in an arid region based on EEM-PARAFAC and 3D fluorescence spectral index: A case study of the Ebinur Lake Watershed, China. Catena 2017, 155, 62–74. [Google Scholar] [CrossRef]
- Clesceri, L.S. Standard methods for examination of water and wastewater. Am. Public Health Assoc. 1998, 9. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, T.; Zhang, J.; Qin, Y.; Ly, Q.V.; Asif, M.B.; Zhang, X.; Zhang, Z. Seasonal occurrence of N-nitrosamines and their association with dissolved organic matter in full-scale drinking water systems: Determination by LC-MS and EEM-PARAFAC. Water Res. 2020, 183, 116096. [Google Scholar] [CrossRef]
- Xu, X.; Kang, J.; Shen, J.; Zhao, S.; Wang, B.; Zhang, X.; Chen, Z. EEM–PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China. Sci. Total Environ. 2021, 774, 145297. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Tang, S. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2009, 43, 1533–1540. [Google Scholar] [CrossRef]
- Wang, M.; Shi, L.D.; Wang, Y.; Hu, S.Q.; Tao, X.M.; Tian, G.M. The evolution of bacterial community structure and function in microalgal-bacterial consortia with inorganic nitrogen fluctuations in piggery digestate. J. Clean. Prod. 2021, 315, 128120. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, J.; Fan, J.; Wei, L.; He, S.; Wu, H. Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: Implications for water-quality control. Chemosphere 2022, 286, 131624. [Google Scholar] [CrossRef]
- Li, W.H.; Sheng, G.P.; Liu, X.W.; Yu, H.Q. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Res. 2008, 42, 3173–3181. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Hu, M.; Wang, X.; Wen, X.; Xia, Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour. Technol. 2012, 117, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shao, M.F.; Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012, 6, 1137–1147. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Song, C.; Zhang, B.; Chen, J.; Luo, A.; Wang, X.; Wu, S.; Ye, Y. Deciphering dissolved organic matter from freshwater aquaculture ponds in Eastern China based on optical and molecular signatures. Process Saf. Environ. Prot. 2021, 155, 122–130. [Google Scholar] [CrossRef]
- Wang, M.; Shi, L.D.; Lin, D.X.; Qiu, D.S.; Chen, J.P.; Tao, X.M.; Tian, G.M. Characteristics and performances of microalgal-bacterial consortia in a mixture of raw piggery digestate and anoxic aerated effluent. Bioresour. Technol. 2020, 309, 123363. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, H.; Chen, H.; Jing, X.; Zheng, W.; Li, R.; Sun, T.; Liu, J.; Fu, J.; Huo, L.; et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc. Natl. Acad. Sci. USA 2018, 115, E4255–E4263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Zhang, W.; Liu, R.; Li, Q.; Li, B.; Wang, S.; Song, C.; Qiao, C.; Mulchandani, A. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants. Environ. Sci. Technol. 2011, 45, 7408–7415. [Google Scholar] [CrossRef]
- Mauffret, A.; Baran, N.; Joulian, C. Effect of pesticides and metabolites on groundwater bacterial community. Sci. Total Environ. 2017, 576, 879–887. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, T.; Wang, T.; Fang, Z. Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing. Environ. Sci. Technol. 2012, 46, 13244–13252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Gao, J.; Zhong, Z.; Cheng, Y.; Zhang, B. Comparison of Dissolved Organic Matter Composition and Microbial Distribution between Distributed-Inflow Biological Reactor and Two-Stage Anoxic/Aerobic for Piggery Wastewater Treatment. Water 2023, 15, 410. https://doi.org/10.3390/w15030410
Liu J, Gao J, Zhong Z, Cheng Y, Zhang B. Comparison of Dissolved Organic Matter Composition and Microbial Distribution between Distributed-Inflow Biological Reactor and Two-Stage Anoxic/Aerobic for Piggery Wastewater Treatment. Water. 2023; 15(3):410. https://doi.org/10.3390/w15030410
Chicago/Turabian StyleLiu, Jingjing, Jinliang Gao, Zhenxing Zhong, Yayun Cheng, and Beiping Zhang. 2023. "Comparison of Dissolved Organic Matter Composition and Microbial Distribution between Distributed-Inflow Biological Reactor and Two-Stage Anoxic/Aerobic for Piggery Wastewater Treatment" Water 15, no. 3: 410. https://doi.org/10.3390/w15030410