A Review of Managed Aquifer Recharge Potential in the Middle East and North Africa Region with Examples from the Kingdom of Saudi Arabia and the United Arab Emirates
Abstract
:1. Introduction
2. Factors Affecting the Design and Implementation of MAR
2.1. Climate Change Impact on the Demand for Water and the Necessity for MAR
- Overexploitation of groundwater resources in the MENA region (Table 1) promotes aquifer exhaustion. In addition, climate change has a negative impact on certain areas, leading to depletion of aquifers and deterioration of groundwater quality due to saltwater intrusion in coastal areas and upward coning of saline water from deep aquifers in inland areas [27,34]. Declining irrigation water quantity and quality is causing several socio−economic problems, including lower revenue for farmers, a hike in joblessness, poverty, and decreased food security. It is estimated that even under baseline growth projections, policies and reform would be required to cope with water scarcity induced by climate change [16,22].
- Increase in water demand due to population growth, especially in urban areas, could lead to further unregulated exploitation of groundwater resources. Increased temperatures due to climate change will lead to increased water requirements for agriculture. There will also be other climate effects, including, importantly, sea−level rise and more extreme rainfall events [35]. Therefore, there is a need to raise the recharge efficiency of the existing recharge dams.
- With the expected increase in the precipitation events with more intensity in the region, feasible MAR methods, if applied properly within the framework of existing rainfall−harvesting infrastructure, could alleviate these problems.
- In addition, managed aquifer recharge has become unavoidable for targeted integrated water management in MENA countries [36]. This involves good water supply management from periods of availability to need, which is considered as a tactic to alleviate climate change. Although these interventions will not reverse climate change, they can control direct negative effects on the water supply.
2.2. Location of Recharge Schemes and Water Availability
Country | Demand (MCM) | Total Demand (MCM) | Supply (MCM) | Average Precipitation (mm/yr.) | Total Annual Precipitation (MCM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Use (Domestic, Industrial, and Commercial) | Agricultural Abstraction | Surface Water | Groundwater Abstraction | Desalination | Reused Water | Renewable Water from Rain | Total Renewable Water | Total Water Supply (MCM) | Water Use/Freshwater Availability (%) | ||||
KSA [46,47] | 4792 | 21,200 | 25,990 | 175 | 19,460 | 2300 | 230 | 4000 | 7180 | 25,990 | 0.04 | 70 | 192,795 |
UAE [27,48] | 2233 | 2854 | 5087 | 25 | 2200 | 2138 | 549 | 200 | 628 | 5087 | 0.13 | 90 | 5540 |
OMAN [46,47,49] | 330 | 2242 | 2572 | 102 | 800 | 326 | 46 | 1400 | 1736 | 2572 | 0.02 | 125 | 38,687 |
KUWAIT [46,47,50] | 768 | 858 | 1626 | nil | 838 | 717 | 144 | 20 | 149 | 1626 | 0.56 | 121 | 2156 |
QATAR | 654 | 250 | 904 | nil | 190 | 540 | 114 | 60 | 96 | 904 | 0.08 | 74 | 850 |
BAHRAIN | 271 | 153 | 424 | nil | 58 | 243 | 41 | 82 | 118 | 424 | 0.37 | 83 | 62 |
Yemen [51] | 850 | 3060 | 3910 | 1000 | 560 | 30 | 100 | 1500 | 2500 | 3910 | ND | 232 | 88,200 |
Jordan [52] | 400 | 1054 | 1454 | 288 | 619 | ND | 147 | 275 | 275 | 1329 | ND | 120 | 8191 |
Syria [53] | 4662 | 15,337 | 19,999 | 16,000 | ND | ND | 299 | 1500 | 16,000 | 17,799 | ND | 300 | 46,000 |
Lebanon [54] | 841 | 1000 | 1841 | 1300 | 2500 | ND | ND | 5000 | 6000 | 1841 | ND | 705 | 6900 |
Iraq [55] | 5255 | 37,815 | 43,070 | 30,000 | 11,810 | 60 | ND | 1200 | 31,200 | 43,070 | ND | 250 | 94,000 |
Egypt [56,57] | 15,400 | 64,550 | 79,950 | 55,500 | 2100 | 350 | 13,500 | 500 | 8000 | 79,950 | ND | 30 | 18,100 |
Libya [58] | 1020 | 4980 | 6000 | 150 | 3650 | 90 | 165 | 625 | 3000 | 4980 | ND | 56 | 98,500 |
Tunisia [59] | 841 | 2700 | 3541 | 1268 | 1991 | 73 | 260 | 1595 | 4595 | 3592 | ND | 158 | 34,000 |
Algeria [60] | 522 | 3314 | 3836 | 11,400 | 1342 | 535 | 1200 | 7600 | 19,000 | 3836 | ND | 86 | 212,000 |
Morocco [61,62] | 1900 | 14,000 | 15,900 | 10,400 | 3170 | 150 | 245 | 1519 | 2500 | 15,900 | ND | 302 | 155,000 |
IPT 1 [63] | 1122 | 1550 | 2672 | 170 | ND | 705 | 468 | 1780 | ND | 2672 | 290 | 10,000 |
2.3. Aquifer Suitability for MAR
2.4. Management of Reservoir Clogging and Dam Efficiency
3. Recharge Methods and Water Quality Protection
4. Results
4.1. Water Resources Renewability
4.2. Recharge Dams and MAR Development
Type | Number of Dams | Type | Number of Dams |
---|---|---|---|
Earth fill dams | 37,984 | Barrages | 300 |
Rock fill dams | 7745 | Arch dams | 2358 |
Gravity dams | 8323 | Multiple arch dams | 129 |
Buttress dams | 473 | Others | 1401 |
Country | Total Number of Dams | Total Storage Capacity (MCM) | Max. Measured Total Accumulated Water (MCM) | Natural Recharge (MCM) | Augmented Recharge by MAR (MCM) | MAR Percentage of Total Groundwater Use | Percentage of Reported Global MAR Capacity | Dam Purposes | Groundwater Reserve (MCM) | Groundwater Renewability Percentage (%) |
---|---|---|---|---|---|---|---|---|---|---|
KSA [11,12,45] | 563 | 2590 | ND | 2400–4526 | 333.5 | 2 | 3.06 | Drinking, irrigation, recharge, protection | 248,000–761,000 | 27 |
Oman [1,21,22,28,75] | 155 | 323 | ND | 1397–2000 | 109 | 3.5 | 1 | Drinking, irrigation, recharge, protection | 42,000 (Freshwater type) | 63 |
UAE [11,12,31,34,111,112,124,125] | 117 | 98 | 40 | 187–220 | 15 | 0.5 | 0.13 | Recharge, recreation, protection | 30,000–300,000 (Fresh and brackish water) | 6 |
Kuwait [11,12,50] | 0 | 0 | 0 | 20 | 0 | 0 | 0 | − | 881–1543 | 22 |
Qatar [11,12,126] | ND | ND | ND | 25 | 60 | 30 | 0.3 | ND | 2038–2500 | 40 |
Yemen [11,12,36,51] | 397 | 462 | ND | 1000–2100 | 5 | 0.21 | 0.045 | Drinking, irrigation, recharge, protection | 13,500–64,383 | 44 |
Jordan [1,11,12,114,115] | 42 | 350 | ND | 231–326 | 9 | 1.44 | 0.08 | Irrigation, recharge | 11,618 | 22 |
Syria [11,12,53,127] | 166 | 18,000 | ND | 6000 | ND | ND | ND | Drinking, irrigation, recharge | 38,872 | 88 |
Lebanon [11,12,54] | 20 | 888 | ND | 4728–7263 | ND | ND | Drinking, irrigation, recharge | 2929 | 70–100 | |
Iraq [11,12,114] | 13 | 26,762 | ND | 1200 | ND | ND | ND | Recharge | 50,963 | 29 |
Egypt [11,12,29,34,56,91,92,94,95,112] | 7 | 132,000 | ND | 6600 | 22 | 0.3 | 0.20 | Drinking, irrigation, recharge | 500,000 (NAS) 90,000,000 (NSAS) | 100% (NAS) 0.03% for the NSAS |
Libya [11,12,58,118] | 18 | 390 | ND | 650–700 | ND | ND | ND | Recharge, irrigation | 249,469–100,000,000 | 10 |
Tunisia [11,12,120,127,128] | 269 | 2546 | ND | 1595 | 6.1 | 0.26 | 0.0559 | Irrigation, recharge, protection | 18,944 | 69 |
Algeria [60,120,123,129,130] | 80 | 8600 | ND | 1517 | 1.7 | 0.06 | 0.0155 | Irrigation, recharge | 361,327–91,900,000 | 52 |
Morocco [11,12,62,131] | 245 | 18,000 | ND | 3400 | 100 | 2.4 | 0.91 | Irrigation, drinking, recharge, protection | 64,279–7400,000 | 60 |
IPT [11,12,37,132] | ND | ND | ND | 1780 | 138 | 11.5 | 1.3 | ND | 7134 | ND |
4.3. Sediment Control and Recharge Effectiveness
4.4. Local and Regional Impacts
4.5. Dam Management Practices/Evolution of Governance
- Streambed channel modifications: This represents the oldest form of recharge enhancement.
- Bank filtration (BF): This is a controlled interaction process between surface water and groundwater where surface water infiltration is forced to flow to pumping wells installed on the banks of rivers and lakes to remove particles and pathogens and prevent overexploitation of aquifers. BF is also used to overcome surface−water abstraction problems caused by low seasonal river water levels and recurrent oil spills and other pollutants [37].
- Recharge dams: Dams are a well−known MAR method. The geometrical design (length, width, and height) of dams is usually governed by the width of the river/wadi bed, geological and geomorphological setting, volume of runoff into the river/wadi, and the purpose of the dam. Usually, water stored behind the dam is allocated to recharge the aquifer or diverted for domestic and irrigation purposes [100].
- Percolation pond with or without injection wells: Whether existing naturally or excavated artificially, the stored in these ponds is partially recharged into aquifers, thereby enhancing groundwater level and quality. Due to the high evaporation rate in the MENA region, a high percentage of accumulated water in ponds evaporates, leading to decreased recharge efficiency. Therefore, percolation ponds should be built on permeable land with injection wells to achieve the optimum advantages from these structures [128,149,183].
- Aquifer storage and recovery (ASR): This technology works by storing excess water in an aquifer system through infiltration ponds or by using injection wells during periods of high inflow, then extracting the water when needed. The ASR method is commonly used in GCC countries to meet emergency water demands.
- Aquifer storage, transfer, and recovery (ASTR)/aquifer recharge and recovery (ARR): ASTR/ARR is a common technique in the MENA region. It facilitates the occurrence of natural biological treatment processes with low carbon footprint and energy requirements and. Furthermore, ASTR strives to reduce the burden on fresh groundwater resources by utilizing reclaimed water [100].
- Soil aquifer treatment (SAT): Infiltration ponds are used to infiltrate the treated sewage effluent (TSE). Through this process, microorganisms in wastewater are removed as they pass through the unsaturated zone of the aquifer.
- Rooftop rainwater harvesting: Rooftop rainwater is directed through pipes towards a sand−filled soak pit or sump that can subsequently recharge the underlying aquifer. With appropriate building designs, it represents a potential method for adaptation to predicted climate change impacts in the MENA region.
- Aflaj/Karezes/Ain System: Aflaj (singular: Falaj) are old−fashioned surface/underground artificial channels used to collect and divert groundwater, surface water, or spring water towards demand areas using gravity. Oasis settlements typically used these systems to secure freshwater.
4.6. Applicability to Arid/MENA Regions
4.7. Research Gap and Limitation of MAR
- The availability of water for MAR is the main difficulty, because all MENA region countries are in semi−arid and arid regions. Increased usage of treated sewage water and harvested rainwater should be the focus of the initiatives;
- Recharge dams, which lack intentional recharge mechanisms, make up most of the rainfall harvesting methods in the MENA region;
- Extreme precipitation events are expected to become more intense, causing flash flood peaks to rise. The accumulated water behind dams might be more than their total capacity and water may flow to the sea or evaporate;
- Most of the aquifers in the MENA region are inert aquifers (such as sands and sandstones), where siltation and aquifer clogging problems are severe and necessitate strict clogging preventative measures.
5. Recharge Dams and MAR Examples in the KSA and the UAE
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Droogers, P.; Immerzeel, W.W.; Terink, W.; Hoogeveen, J.; Bierkens, M.F.P.; Beek, L.; Debele, B. Water Resources Trends in Middle East and North Africa towards 2050. Hydrol. Earth Syst. Sci. 2012, 16, 3101–3114. [Google Scholar] [CrossRef]
- Hameed, M.; Moradkhani, H.; Ahmadalipour, A.; Moftakhari, H.; Abbaszadeh, P.; Alipour, A. A Review of the 21st Century Challenges in the Food-Energy-Water Security in the Middle East. Water 2019, 11, 682. [Google Scholar] [CrossRef]
- Eberhard, B.; Israel, S. Managed Aquifer Recharge: Southern Africa; Guelph, ON, Canada; ISBN 978-1-77470-006-8. Available online: https://gw-project.org/books/managed-aquifer-recharge-southern-africa/ (accessed on 18 December 2022).
- Gonzalez, D.; Dillon, P.; Page, D.; Vanderzalm, J. The Potential for Water Banking in Australia’s Murray–Darling Basin to Increase Drought Resilience. Water 2020, 12, 2936. [Google Scholar] [CrossRef]
- Vanderzalm, J.; Page, D.; Dillon, P.; Gonzalez, D.; Petheram, C. Assessing the Costs of Managed Aquifer Recharge Options to Support Agricultural Development. Agric. Water Manag. 2022, 263, 107437. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving Agricultural Water Productivity: Between Optimism and Caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Almazroui, M.; Islam, M.N.; Balkhair, K.S.; Şen, Z.; Masood, A. Rainwater Harvesting Possibility under Climate Change: A Basin-Scale Case Study over Western Province of Saudi Arabia. Atmos. Res. 2017, 189, 11–23. [Google Scholar] [CrossRef]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of Climate Change in Saudi Arabia: Implications on Water Resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef]
- Kelly, S.; Plant, R.; Cunningham, R.; Maras, K. Water Scarcity Risk For Australian Farms & The Implications for the Financial Sector. Institute for Sustainable Future, University of Technology Sydney Australia. 2019. Available online: https://www.uts.edu.au/sites/default/files/2019-06/Water%20Risk%20Report%20-%20Jan%202019%20%28web%29.pdf (accessed on 11 July 2022).
- Lezzaik, K.; Milewski, A. A Quantitative Assessment of Groundwater Resources in the Middle East and North Africa Region. Hydrogeol. J. 2018, 26, 251–266. [Google Scholar] [CrossRef]
- Lezzaik, K.; Milewski, A.; Mullen, J. The Groundwater Risk Index: Development and Application in the Middle East and North Africa Region. Sci. Total Environ. 2018, 628, 1149–1164. [Google Scholar] [CrossRef]
- Oxford University and NAS. 2023. Available online: https://www.ox.ac.uk/news/2012-04-30-ancient-network-rivers-and-lakes-found-arabian-desert (accessed on 18 December 2022).
- NASA Landsat Antique Maps of the Middle East-Leen Helmink. Available online: https://www.helmink.com/Catalog/Asia/Middle-East/antique-maps-of-the-middle-east (accessed on 18 December 2022).
- NASA Landsat Composite Saudi Arabia Map and Satellite Image. Available online: https://geology.com/world/saudi-arabia-satellite-image.shtml (accessed on 18 December 2022).
- World Bank High and Dry: Climate Change, Water, and the Economy. Available online: https://www.worldbank.org/en/topic/water/publication/high-and-dry-climate-change-water-and-the-economy (accessed on 4 April 2022).
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Döll, P. Vulnerability to the Impact of Climate Change on Renewable Groundwater Resources: A Global-Scale Assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Candela, L.; von Igel, W.; Elorza, F.J.; Aronica, G. Impact Assessment of Combined Climate and Management Scenarios on Groundwater Resources and Associated Wetland (Majorca, Spain). J. Hydrol. 2009, 376, 510–527. [Google Scholar] [CrossRef]
- Loáiciga, H.A.; Maidment, D.R.; Valdes, J.B. Climate-Change Impacts in a Regional Karst Aquifer, Texas, USA. J. Hydrol. 2000, 227, 173–194. [Google Scholar] [CrossRef]
- Sherif, M.; Ksiksi, T.; Neumann, E.; Abuelgasim, A. Review of the Current Status of Climate Change Modeling in UAE and the Region; Ministry of Climate Change and Environment: Dubai, United Arab Emirates, 2019. Available online: https://www.moccae.gov.ae/ (accessed on 23 August 2022).
- UNDP. Mapping of Climate Change Threats and Human Development Impacts in the Arab Region; United Nations Development Programme: New York, NY, USA, 2010. [Google Scholar]
- IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- World Bank. Beyond Scarcity: Water Security in the Middle East and North Africa; World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1144-9. [Google Scholar]
- Ajjur, S.B.; Baalousha, H.M. A Review on Implementing Managed Aquifer Recharge in the Middle East and North Africa Region: Methods, Progress and Challenges. Water Int. 2021, 46, 578–604. [Google Scholar] [CrossRef]
- Dirks, H.; Al Ajmi, H.; Kienast, P.; Rausch, R. Hydrogeology of the Umm Er Radhuma Aquifer (Arabian Peninsula). Grundwasser 2018, 23, 5–15. [Google Scholar] [CrossRef]
- Sherif, M.; Sefelnasr, A.; Ebraheem, A.A.; Al Mulla, M.; Alzaabi, M.; Alghafli, K. Spatial and Temporal Changes of Groundwater Storage in the Quaternary Aquifer, UAE. Water 2021, 13, 864. [Google Scholar] [CrossRef]
- UN-ESCWA. BGR Inventory of Shared Water Resources in Western Asia. Available online: http://waterinventory.org/sites/waterinventory.org/files/00-inventory-of-shared-water-resources-in-western-asia-web.pdf (accessed on 13 November 2022).
- Ebraheem, A.M.; Riad, S.; Wycisk, P.; Seif El-Nasr, A.M. Simulation of Impact of Present and Future Groundwater Extraction from the Non-Replenished Nubian Sandstone Aquifer in Southwest Egypt. Environ. Geol. 2002, 43, 188–196. [Google Scholar] [CrossRef]
- Sherif, M.; Ebraheem, A.A.; Shetty, A.; Sefelnasr, A.; Alghafli, K.; Al Asam, M. Evaluation of the effect of the Wadi Bih Dam on groundwater recharge, UAE. In Wadi Flash Floods; Sumi, T., Kantoush, S.A., Saber, M., Eds.; Natural Disaster Science and Mitigation Engineering: DPRI Reports; Springer Singapore: Singapore, 2022; pp. 509–527. ISBN 9789811629037. [Google Scholar]
- Sherif, M.; Ebraheem, A.; Shetty, A. Groundwater Recharge from Dams in United Arab Emirates. Wadi Flash Floods 2017, 139–146. [Google Scholar] [CrossRef]
- Sherif, M.M.; Mohamed, M.M.; Shetty, A.; Almulla, M. Rainfall-Runoff Modeling of Three Wadis in the Northern Area of UAE. J. Hydrol. Eng. 2011, 16, 10–20. [Google Scholar] [CrossRef]
- Kirchherr, J.; Charles, K.J. The Social Impacts of Dams: A New Framework for Scholarly Analysis. Environ. Impact Assess. Rev. 2016, 60, 99–114. [Google Scholar] [CrossRef]
- Sherif, M.; Sefelnasr, A.; Ebraheem, A.A.; Javadi, A. Quantitative and Qualitative Assessment of Seawater Intrusion in Wadi Ham under Different Pumping Scenarios. J. Hydrol. Eng. 2014, 19, 855–866. [Google Scholar] [CrossRef]
- Verner, D. Adaptation to a Changing Climate in the Arab Countries: A Case for Adaptation Governance and Leadership in Building Climate Resilience; MENA Development Reports. World Bank Publications, 2012. Available online: www.openknowledge.worldbank.org (accessed on 9 July 2022).
- FAO AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: http://www.fao.org/aquastat/en/countries-and-basins/country-profiles/country/YEM (accessed on 28 February 2021).
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Al-Bassam, A.M.; Faisal, K. Zaidi aqueducts in Saudi Arabia. In Underground Aqueducts Handbook; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-315-36856-6. [Google Scholar]
- IGRAC. Artificial Recharge of Groundwater in the World; Acacia Institute: South Melbourne, Australia, 2007. [Google Scholar]
- MRMWR. Oman Water Resources Atlas; The Ministry of Regional Municipalities and Water Resources (MRMWR): Muscat, Sultanate of Oman, 2008. [Google Scholar]
- Duflo, E.; Pande, R. Dams. Q. J. Econ. 2007, 122, 601–646. [Google Scholar] [CrossRef]
- International Commission on Large Dams World Register of Dams (WRD). Available online: https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (accessed on 17 August 2021).
- International Commission on Large Dams ICOLD Constitution. Available online: https://www.icold-cigb.org/userfiles/files/CIGB/INSTITUTIONAL_FILES/Constitution2011.pdf (accessed on 7 August 2021).
- Fallatah, O. Assessment of modern recharge to arid region aquifers using an integrated geophysical, geochemical, and remote sensing approach. In Proceedings of the AGU Fall Meeting Abstracts, San Fransisco, CA, USA, 9–13 December 2019; Volume 2019, pp. 600–611. [Google Scholar]
- Obaid, R. Seasonal-Water Dams: A Great Potential for Hydropower Generation in Saudi Arabia. Int. J. Sustain. Water Environ. Syst. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- GCC Statistics Water Statistics Report in GCC Countries. Issue No. 3, April, 2018; Internal Report; GCC-Stat Office: Muscat, Oman, 2018.
- MPW. Annual Statistical Book, Ministry of Public Works, Kuwait 2021, Kuwait. Available online: https://www.mew.gov.kw/en/about/statistics (accessed on 7 August 2021).
- Alghafli, K.; Shi, X.; Sloan, W.; Shamsudduha, M.; Tang, Q.; Sefelnasr, A.; Ebraheem, A.A. Groundwater Recharge Estimation Using In-Situ and GRACE Observations in the Eastern Region of the United Arab Emirates. Sci. Total Environ. 2023, 867, 161489. [Google Scholar] [CrossRef]
- Fanack Water Water Resources in Oman. Available online: https://water.fanack.com/oman/water-resources-oman/ (accessed on 2 March 2021).
- Fanack Water Water Resources in Kuwait. Available online: https://water.fanack.com/kuwait/water-resources-in-kuwait/ (accessed on 12 October 2021).
- Fanack Water Water Infrastructure in Yemen. Available online: https://water.fanack.com/yemen/water-infrastructure-yemen/ (accessed on 3 March 2021).
- Fanack Water Fanack Water Water Infrastructure in Jordan. Available online: Https://Water.Fanack.Com/Jordan/Water-Resources-in-Jordan/ (accessed on 3 March 2021).
- Fanack Water Water Infrastructure in Syria. Available online: https://water.fanack.com/syria/water-infrastructure/ (accessed on 25 February 2021).
- Fanack Water Water Infrastructure in Lebanon. Available online: https://water.fanack.com/lebanon/water-infrastructure/?gclid=EAIaIQobChMIuNmQ4KSP8AIVCZntCh1oJgafEAAYASAAEgL_3PD_BwE (accessed on 4 May 2021).
- Fanack Water Fanack Water Water Infrastructure in Iraq. Available online: Https://Water.Fanack.Com/Iraq/ (accessed on 18 July 2022).
- MWRI Strategy of Water Resources of Egypt till 2050 (Internal Report); Ministry of Water Resources and Irrigation: Cairo, Egypt, 2012.
- Hamza, M.S.; Aly, A.I.M.; Awad, M.A. Estimation of Recharge from Nile Aquifer to the Desert Fringes at Qena Area, Egypt; International Atomic Energy Agency (IAEA): Vienna, Austria, 1999. [Google Scholar]
- Fanack Water Fanack Water Water Infrastructure in Egypt. Available online: Https://Water.Fanack.Com/Egypt/Water-Resources/ (accessed on 3 March 2021).
- Fanack Water Water Infrastructure in Libya. Available online: https://water.fanack.com/libya/water-infrastructure-in-libya/ (accessed on 1 March 2021).
- Fanack Water Water Infrastructure in Tunisia. Available online: https://Water.Fanack.Com/Tunisia/Water-Infrastructure-Tunisia/ (accessed on 25 February 2021).
- Fanack Water Water Infrastructure in Algeria. Available online: https://water.fanack.com/algeria/water-infrastructure/ (accessed on 15 February 2021).
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef]
- Fanack Water Water Infrastructure in Morocco. Available online: https://water.fanack.com/morocco/water-infrastructure-in-morocco/ (accessed on 25 February 2021).
- Fanack Water Fanack Water Water Infrastructure in Israel. Available online: Https://Water.Fanack.Com/Israel/Water-Resources/ (accessed on 25 February 2021).
- Awadh, S.; Almimar, H.; Yaseen, Z. Groundwater Availability and Water Demand Sustainability over the Upper Mega Aquifers of Arabian Peninsula and West Region of Iraq. Environ. Dev. Sustain. 2021, 23, 1–21. [Google Scholar] [CrossRef]
- Sedimentary Basins and Petroleum Geology of the Middle East; Alsharhan, A.S.; Nairn, A.E.M. (Eds.) Elsevier Science B.V.: Amsterdam, The Netherlands, 1997; p. vii. ISBN 978-0-444-82465-3. [Google Scholar]
- Dillon, P.; Toze, S.; Page, D.; Vanderzalm, J.; Bekele, E.; Sidhu, J.; Rinck-Pfeiffer, S. Managed Aquifer Recharge: Rediscovering Nature as a Leading Edge Technology. Water Sci. Technol. 2010, 62, 2338–2345. [Google Scholar] [CrossRef]
- Bundesanstalt für Geowissenschaften und Rohstoffe WHYMAP World-Wide Hydrogeological Mapping & Assessment Programme. Available online: http://www-naweb.iaea.org/napc/ih/documents/WAVE/WHYMAP-IAEA-May2010.pdf (accessed on 25 February 2021).
- Standen, K.; Costa, L.R.D.; Monteiro, J.-P. In-Channel Managed Aquifer Recharge: A Review of Current Development Worldwide and Future Potential in Europe. Water 2020, 12, 3099. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The Global Volume and Distribution of Modern Groundwater. Nat. Geosci. 2016, 9, 161–167. [Google Scholar] [CrossRef]
- Sanford, W. Recharge and Groundwater Models: An Overview. Hydrogeol. J. 2002, 10, 110–120. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Y.; Sun, X.; Wang, W. Development of Managed Aquifer Recharge in China. Boletín Geológico Y Min. 2014, 125, 227–233. [Google Scholar]
- Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.; Kimoto, M.; Meehl, G.A.; et al. Near-term climate change: Projections and predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 953–1028. [Google Scholar]
- Hashemi, H.; Berndtsson, R.; Kompani-Zare, M.; Persson, M. Natural vs. Artificial Groundwater Recharge, Quantification through Inverse Modeling. Hydrol. Earth Syst. Sci. 2013, 17, 637–650. [Google Scholar] [CrossRef]
- Sen, Z. Practical and Applied Hydrogeology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–406. [Google Scholar]
- Dillon, P.J.; Pavelic, P.; Page, D.; Beringen, H.; Ward, J. Managed Aquifer Recharge; 2009. National Water Commission, 95 Northbourne Avenue Canberra, Australia. Available online: https://.recharge.iah.org (accessed on 25 February 2022).
- IAH-MAR. International Association of Hydrogeologists Commission on Managing Aquifer Recharge Report of Activities in 2018; International Association of Hydrogeologists, 2018. Available online: https://iah.org (accessed on 25 February 2021).
- van Steenbergen, F.; Lawrence, P.; Haile, A.M.; Salman, M.; Faurès, J.M.; Anderson, I.M.; Nawaz, K.; Ratsey, J. Guidelines on Spate Irrigation. In FAO Irrigation and Drainage Paper; FAO: Yokohama, Japan, 2010; xvii + 233pp. [Google Scholar]
- Zhang, H.; Xu, Y.; Kanyerere, T. A Review of the Managed Aquifer Recharge: Historical Development, Current Situation and Perspectives. Phys. Chem. Earth 2020, 118, 102887. [Google Scholar] [CrossRef]
- Bouri, S.; Dhia, H.B. A Thirty-Year Artificial Recharge Experiment in a Coastal Aquifer in an Arid Zone: The Teboulba Aquifer System (Tunisian Sahel). Comptes Rendus Geosci. 2010, 342, 60–74. [Google Scholar] [CrossRef]
- Ebrahim, G.Y.; Lautze, J.F.; Villholth, K.G. Managed Aquifer Recharge in Africa: Taking Stock and Looking Forward. Water 2020, 12, 1844. [Google Scholar] [CrossRef]
- USEPA Safe Drinking Water Act Provisions and Underground Injection Control Regulations. Available online: https://www.epa.gov/uic/underground-injection-control-regulations-and-safe-drinking-wateract-provisions (accessed on 14 March 2021).
- Megdal, S.B.; Dillon, P.; Seasholes, K. Water Banks: Using Managed Aquifer Recharge to Meet Water Policy Objectives. Water 2014, 6, 1500. [Google Scholar] [CrossRef]
- Sheng, Z.; Zhao, X. Special Issue on Managed Aquifer Recharge: Powerful Management Tool for Meeting Water Resources Challenges. J. Hydrol. Eng. 2015, 20, B2014001. [Google Scholar] [CrossRef]
- Maliva, R.G.; Herrmann, R.; Coulibaly, K.; Guo, W. Advanced Aquifer Characterization for Optimization of Managed Aquifer Recharge. Environ. Earth Sci. 2015, 73, 7759–7767. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial Recharge of Groundwater: Hydrogeology and Engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Maliva, R.G.; Guo, W.; Missimer, T.M. Aquifer Storage and Recovery: Recent Hydrogeological Advances and System Performance. Water Environ. Res. 2006, 78, 2428–2435. [Google Scholar] [CrossRef]
- Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D. Hydrogeophysical Methods for Analyzing Aquifer Storage and Recovery Systems. Groundwater 2011, 49, 250–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statista Designed Capacity of Dams in Oman from 2007 to 2015. Available online: https://www.statista.com/statistics/802671/oman-designed-capacity-of-dams/ (accessed on 1 March 2021).
- Zekri, S.; Al Maamari, A. Water Policies in MENA Countries; Global Issues in Water Policy; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-29274-4. [Google Scholar]
- Ebraheem, A.-A.M.; Senosy, M.M.; Dahab, K.A. Geoelectrical and Hydrogeochemical Studies for Delineating Ground-Water Contamination Due to Salt-Water Intrusion in the Northern Part of the Nile Delta, Egypt. Groundwater 1997, 35, 216–222. [Google Scholar] [CrossRef]
- Al-Agha, D.E.; Closas, A.; Molle, F. Survey of Groundwater Use in the Central Part of the Nile Delta; International Water Management Institute (IWMI), Water Management Research Institute, and Australian Center for International Agriculture Research: Colombo, Sri Lanka, 2015. [Google Scholar]
- Sefelnasr, A.; Sherif, M. Impacts of Seawater Rise on Seawater Intrusion in the Nile Delta Aquifer, Egypt. Groundwater 2014, 52, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Sherif, M. The Nile Delta Aquifer in Egypt; Chapter 17 in Seawater Intrusion in Coastal Aquifers, Concepts Methods and Practices; Theory and Application of Transport in Porous Media; Kluwer Academic Publishers: Alphen am Rhine, The Netherlands, 1999. [Google Scholar]
- Nofal, E.R.; Fekry, A.M.; Ahmed, M.H.; El-Kharakany, M.M. Groundwater: Extraction versus Recharge; Vulnerability Assessment. Water Sci. 2018, 32, 287–300. [Google Scholar] [CrossRef]
- Alam, S.; Borthakur, A.; Ravi, S.; Gebremichael, M.; Mohanty, S.K. Managed Aquifer Recharge Implementation Criteria to Achieve Water Sustainability. Sci Total Env. 2021, 768, 144992. [Google Scholar] [CrossRef] [PubMed]
- Wood, W.W. Groundwater “Durability” Not “Sustainability”? Groundwater 2020, 58, 858–859. [Google Scholar] [CrossRef]
- Prathapar, S. Bawain Impact of Sedimentation on Groundwater Recharge at Sahalanowt Dam, Salalah, Oman. Water Int. 2014, 39, 381–393. [Google Scholar] [CrossRef]
- Parimalarenganayaki, S. Managed Aquifer Recharge an integrated Approach for Assessing the Impact of a Check Dam. Doctoral’s Thesis, Anna University, Chennai, India, 2014. Available online: http://www.secheresse.info/spip.php?article45209 (accessed on 25 July 2021).
- Alataway Abed; El Alfy Mohamed Rainwater Harvesting and Artificial Groundwater Recharge in Arid Areas: Case Study in Wadi Al-Alb, Saudi Arabia. J. Water Resour. Plan. Manag. 2019, 145, 05018017. [CrossRef]
- Al-Othman, A. Enhancing Groundwater Recharge in Arid Region-a Case Study from Central Saudi Arabia. Sci. Res. Essays 2011, 6, 2757–2762. [Google Scholar]
- Missimer, T.M.; Maliva, R.G.; Ghaffour, N.; Leiknes, T.; Amy, G.L. Managed Aquifer Recharge (MAR) Economics for Wastewater Reuse in Low Population Wadi Communities, Kingdom of Saudi Arabia. Water 2014, 6, 2322. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Alhaj, M.; Mohammed, S.; Darwish, M.; Hassan, A.; Al-Ghamdi, S.G. A Review of Qatar’s Water Resources, Consumption and Virtual Water Trade. Desalination Water Treat. 2017, 90, 70–85. [Google Scholar] [CrossRef]
- Al-Maktoumi, A. Silting of Recharge Dams in Oman: Problems and Management Strategies; 2018; Volume 4, p. 117. Available online: https://henry.baw.de/bitstream/20.500.11970/109430/1/HydroLink_2018_04_Silting%20of%20recharge%20dams%20in%20Oman%20-%20problems%20and%20management%20strategies.pdf (accessed on 25 July 2021).
- El-Rawy, M.; Al-Maktoumi, A.; Zekri, S.; Abdalla, O.; Al-Abri, R. Hydrological and Economic Feasibility of Mitigating a Stressed Coastal Aquifer Using Managed Aquifer Recharge: A Case Study of Jamma Aquifer, Oman. J. Arid Land 2019, 11, 148–159. [Google Scholar] [CrossRef]
- Abdalla, O.A.E.; Al-Rawahi, A.S. Groundwater Recharge Dams in Arid Areas as Tools for Aquifer Replenishment and Mitigating Seawater Intrusion: Example of AlKhod, Oman. Environ. Earth Sci. 2013, 69, 1951–1962. [Google Scholar] [CrossRef]
- Ebraheem, A.; Mulla, M.; Sherif, M.; Awad, O.; Akram, S.; Suweidi, N.; Shetty, A. Mapping Groundwater Conditions in Different Geological Environments in the Northern Area of UAE Using 2D Earth Resistivity Imaging Survey. Environ. Earth Sci. 2014, 72, 1599–1614. [Google Scholar] [CrossRef]
- Ebraheem, A.M.; Sherif, M.M.; Al Mulla, M.M.; Akram, S.F.; Shetty, A.V. A Geoelectrical and Hydrogeological Study for the Assessment of Groundwater Resources in Wadi Al Bih, UAE. Environ. Earth Sci. 2012, 67, 845–857. [Google Scholar] [CrossRef]
- MoEI. 2020 Energy and Water Statistical Yearbook; Ministry of Energy and Industry: Dubai, United Arab Emirates, 2020. [Google Scholar]
- Sherif, M.; Ebraheem, A.A.; Almulla, M. Application of Resistivity Imaging in the Assessment of Groundwater in Areas of Springs; Ngwa: Westerville, OH, USA, 2014. [Google Scholar]
- Sherif, M.; Kacimov, A.; Ebraheem, A.; AlMulla, M. Three-dimensional mapping of seawater intrusion using geophysical methods. In Proceedings of the World Environmental and Water Resources Congress 2010, Providence, Rhode Island, 16–20 May 2010; pp. 1136–1145. [Google Scholar] [CrossRef]
- Hadadin, N. Dams in Jordan Current and Future Prespective. Can. J. Pure Appl. Sci. 2015, 9, 3279–3290. [Google Scholar]
- Salameh, E.; Abdallat, G.; van der Valk, M. Planning Considerations of Managed Aquifer Recharge (MAR) Projects in Jordan. Water 2019, 11, 182. [Google Scholar] [CrossRef]
- Latifrashid.iq Dams, Barrages and Regulators in Iraq. Available online: http://latifrashid.iq/dams-barrages-and-regulators-in-iraq/ (accessed on 1 March 2021).
- Fienen, M.N.; Arshad, M. The international scale of the groundwater issue. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–48. ISBN 978-3-319-23576-9. [Google Scholar]
- Knoema Libya—Total Dam Capacity. Available online: https://knoema.com/atlas/Libya/topics/Water/Dam-Capacity/Total-dam-capacity (accessed on 2 March 2021).
- Knoema World Data Atlas. Available online: https://knoema.com/atlas/country/topics/Water/Dam (accessed on 28 February 2021).
- Sadaoui, M.; Ludwig, W.; Bourrin, F.; Bissonnais, Y.L.; Romero, E. Anthropogenic Reservoirs of Various Sizes Trap Most of the Sediment in the Mediterranean Maghreb Basin. Water 2018, 10, 927. [Google Scholar] [CrossRef]
- Loudyi, D.; Hasnaoui, M.D.; Fekri, A. Flood risk management practices in Morocco: Facts and challenges. In Wadi Flash Floods; Sumi, T., Kantoush, S.A., Saber, M., Eds.; Natural Disaster Science and Mitigation Engineering: DPRI Reports; Springer Singapore: Singapore, 2022; pp. 35–94. ISBN 9789811629037. [Google Scholar]
- Knoema Tunisia—Total Dam Capacity. Available online: https://knoema.com/atlas/Tunisia/topics/Water/Dam-Capacity/Total-dam-capacity (accessed on 20 February 2021).
- Earthwise Africa Groundwater Atlas -Hydrogeology by Country-Hydrogeology of Algeria. Available online: http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Algeria (accessed on 20 February 2021).
- MoEI. 2016 Energy and Water Statistical Yearbook; Ministry of Energy and Industry: Dubai, United Arab Emirates, 2017. [Google Scholar]
- Sherif, M.M.; Ebraheem, A.M.; Al Mulla, M.M.; Shetty, A.V. New System for the Assessment of Annual Groundwater Recharge from Rainfall in the United Arab Emirates. Environ. Earth Sci. 2018, 77, 412. [Google Scholar] [CrossRef]
- Water Security Mega Reservoirs Project Report on Qatar. Available online: http://www.watermegareservoirs.qa (accessed on 1 March 2021).
- Salman, M.; Mualla, W. Water Demand Management in Syria: Centralized and Decentralized Views. Water Policy 2008, 10, 549–562. [Google Scholar] [CrossRef]
- Kebede, S.; Hailu, A.; Crane, E.; Dochartaigh, B.; Bellwood-Howard, I. Bellwood-Howard British Geological Survey: Africa Groundwater Atlas. Available online: http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Tunisia (accessed on 1 March 2021).
- Jarraya Horriche, F.; Benabdallah, S. Assessing Aquifer Water Level and Salinity for a Managed Artificial Recharge Site Using Reclaimed Water. Water 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, A.M.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative Maps of Groundwater Resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Afrik Morocco: Government Aims to Build 50 Dams by 2050. Available online: https://www.afrik21.africa/en/morocco-government-aims-to-build-50-dams-by-2050/ (accessed on 27 March 2021).
- OECD. Policies to Manage Agricultural Groundwater Use; OECD: Paris, France, 2015; Available online: https://www.oecd.org/greengrowth/sustainable-agriculture/groundwater-country-note-ISR-2015 (accessed on 11 September 2022).
- Stefan, C.; Ansems, N. Web-Based Global Inventory of Managed Aquifer Recharge Applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef]
- EEA. European Environmental Agency Core Set Indicator CSI 18, Based on Data from Eurostat Data Table: Annual Water Abstraction by Source and by Sector; European Environmental Agency: Copenhagen, Denmark, 2010. [Google Scholar]
- Al-Muraikhi, A.A.; Shamrukh, M. Historical Overview of Enhanced Recharge of Groundwater in Qatar. Int. Assoaic. Hydrogeol. 2016, 42. Available online: https://recharge.iah.org/files/2017/11/Qatar-MAR-history-short-paper-29nov17.pdf (accessed on 29 November 2017).
- Schlumberger Water Service (SWS). Studying and Developing the Natural and Artificial Recharge of Ground Water Aquifer in the State of Qatar; Final Report; Department of Agriculture and Water Research (DAWR) and Ministry of Environment (MoE): Doha, Qatar, 2009. [Google Scholar]
- Ahmad, A.Y. Approaches to Achieve Sustainable Use and Management of Groundwater Resources in Qatar: A Review. Groundw. Sustain. Dev. 2020, 11, 100367. [Google Scholar] [CrossRef]
- Senay, Y. Groundwater Resources and Artificial Recharge in Rawdatain Water Field; Groundwater Section, Kuwait Ministry of Electricity and Water. 1977; p. 44. Available online: https://www.mew.gov.kw (accessed on 27 September 2022).
- Al Rukaibi, D.; McKinney, D. Urban Planning Design to Supply Freshwater By ASR Technique Operations. Int. J. Chem. Environ. Biol. Sci. IJCEBS 2013, 1, 559–564. [Google Scholar]
- Al-Otaibi, M.; Mukhopadhyay, A. Options for Managing Water Resources in Kuwait. Arab. J. Sci. Eng. 2005, 30, 55. [Google Scholar]
- Mukhopadhyay, A.; Al-Sulaimi, J.; Al-Sumait, A.A. Creation of Potable Water Reserve in Kuwait through Artificial Recharge. Balkema Rotterdam 1998, 175–180. [Google Scholar]
- Al-Huwaishel, A.S.; Elmi, A.; Mukhopadhyay, A. Aquifer Storage of Treated Wastewater for Subsequent Recovery as an Important Strategy for Sustainable Water Security in Kuwait. Water Supply 2022, 22, 2067–2081. [Google Scholar] [CrossRef]
- Alderwish, A.M. Induced Recharge at New Dam Sites—Sana’a Basin, Yemen. Arab. J. Geosci. 2010, 3, 283–293. [Google Scholar] [CrossRef]
- Sanabani, M. Runoff and Infiltration Rate Pattern in Water Basins for Aquifer Recharge: A Case Study in Sanaa, Yemen. 2018. Available online: https://medcraveonline.com/IJH/runoff-and-infiltration-rate-pattern-in-water-basins-for-aquifer-recharge-a-case-study-in-sanaa-yemen.html (accessed on 25 July 2021).
- Al-Azawi. Preliminary Study on Feeding Underground Water Reservoirs in Bahrain with Treated Sewage Water; Bahrain Ministry of Works and Agriculture (Institut Fresenius, Chemical and Biological Laboratories Ltd., TaunussteinNeuhof, Germany, UNESCO Consultancy Mission): TaunussteinNeuhof, Germany, 1989; p. 30. [Google Scholar]
- Zubari, W.K. The Dammam Aquifer in Bahrain–Hydrochemical Characterization and Alternatives for Management of Groundwater Quality. Hydrogeol. J. 1999, 7, 197–208. [Google Scholar] [CrossRef]
- Zubari, W.K.; Lori, I.J. Management and Sustainability of Groundwater Resources in Bahrain. Water Policy 2006, 8, 127–145. [Google Scholar] [CrossRef]
- Mohammed, G.; Zubari, W. Identifying Optimal Locations for Artificial Groundwater Recharge by Rainfall in the Kingdom of Bahrain. Earth Syst. Environ. 2020, 4, 551–566. [Google Scholar] [CrossRef]
- McDonnell, R. Groundwater Governance in the Arab World; Taking Stock and Addressing the Challenges: 2016. Available online: https://gw-mena.iwmi.org (accessed on 16 June 2022).
- Sorman, A.U.; Abdul Razzak, M.J.; Al-Hames, A. A Proposed Artificial Groundwater Recharge Scheme for Wadi Systems. J. King AbdulAziz Univ. 1990, 1, 11–32. [Google Scholar] [CrossRef]
- Al-Turbak, A.S.; Al-Muttair, F.F. Evaluation of Dams as a Recharge Method. Int. J. Water Resour. Dev. 1989, 5, 119–124. [Google Scholar] [CrossRef]
- Maliva, R.; Missimer, T. Arid Lands Water Evaluation and Management; Maliva, R., Missimer, T., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; pp. 1027–1042. ISBN 978-3-642-29104-3. [Google Scholar]
- Mohammadzadeh-Habili, J.; Soltani, M.; Khalili, D. Effect of Reservoir Geometry on Functionality of Recharge Dams Influenced by Sedimentation: Case Study of the Meymand Recharge Dam. Arab. J. Geosci. 2021, 14, 487. [Google Scholar] [CrossRef]
- Adam, N.; Erpicum, S.; Archambeau, P.; Pirotton, M.; Dewals, B. Stochastic Modelling of Reservoir Sedimentation in a Semi-Arid Watershed. Water Resour. Manag. 2015, 29, 785–800. [Google Scholar] [CrossRef]
- Alahiane, N.; Elmouden, A.; Aitlhaj, A.; Boutaleb, S. Small Dam Reservoir Siltation in the Atlas Mountains of Central Morocco: Analysis of Factors Impacting Sediment Yield. Environ. Earth Sci. 2016, 75, 1035. [Google Scholar] [CrossRef]
- Bessenasse, M.; Paquier, A.; Moulla, A.S. A Contribution to the Numerical Modelling of Dam Reservoir Siltation Cycles. Int. Water Technol. J. 2012, 2, 236–249. [Google Scholar]
- de Trincheria, J.; Leal, W.F.; Otterpohl, R. Towards a Universal Optimization of the Performance of Sand Storage Dams in Arid and Semi-Arid Areas by Systematically Minimizing Vulnerability to Siltation: A Case Study in Makueni, Kenya. Int. J. Sediment Res. 2018, 33, 221–233. [Google Scholar] [CrossRef]
- Mupfiga, E.; Munkhwakwata, R.; Mudereri, B.; Nyatondo, U. Assessment of Sedimentation in Tuli -Makwe Dam Using Remotely Sensed Data. J. Soil Sci. Environ. Manag. 2016, 7, 230–238. [Google Scholar] [CrossRef]
- Poleto C Siltation and Erosion Processes on a Tributary of Lake Itaipu Due a Dam Reservoir. Lakes Reserv. Ponds 2012, 6, 108–119.
- Al-Ismaily Said, S.; Al-Maktoumi Ali, K.; Kacimov Anvar, R.; Al-Saqri Said, M.; Al-Busaidi Hamad, A. Impact of a Recharge Dam on the Hydropedology of Arid Zone Soils in Oman: Anthropogenic Formation Factor. J. Hydrol. Eng. 2015, 20, 04014053. [Google Scholar] [CrossRef]
- Al-Maktoumi, A.; Kacimov, A.; Al-Ismaily, S.; Al-Busaidi, H.; Al-Saqri, S. Infiltration into Two-Layered Soil: The Green–Ampt and Averyanov Models Revisited. Transp. Porous Media 2015, 109, 169–193. [Google Scholar] [CrossRef]
- Al-Nuaimi, H.S.; Murad, A.A. The Role of Dams in Securing the Surface Water in the Northern and Eastern Parts of the United Arab Emirates (UAE). Water Energy Abstr. 2008, 18, 31. [Google Scholar]
- Al-Saqri, S.; Al-Maktoumi, A.; Al-Ismaily, S.; Kacimov, A.; Al-Busaidi, H. Hydropedology and Soil Evolution in Explaining the Hydrological Properties of Recharge Dams in Arid Zone Environments. Arab. J. Geosci. 2015, 9, 47. [Google Scholar] [CrossRef]
- Al-Maktoumi, A.; Kacimov, A.; Al-Busaidi, H.; Al-Ismaily, S.; Al-Mayahi, A.; Al-Khanbashi, S.; Al-Sulaimi, A. Enhancement of Infiltration Rate of Clogged Porous Beds in the Vicinity of Dams in Arid Zones by the Roots of Indigenous Ziziphus Spina-Christ Trees. Hydrol. Process. 2020, 34, 4226–4238. [Google Scholar] [CrossRef]
- Palmieri, A.; Shah, F.; Dinar, A. Economics of Reservoir Sedimentation and Sustainable Management of Dams. J. Environ. Manag. 2001, 61, 149–163. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Bateni, S.M.; Nielson, J.R. Evaluation of Different Strategies for Management of Reservoir Sedimentation in Semi-Arid Regions: A Case Study (Dez Reservoir). Lake Reserv. Manag. 2018, 34, 270–282. [Google Scholar] [CrossRef]
- Al-Turbak, A. Effectiveness of recharge from a surface reservoir to an underlying unconfined aquifer. In Proceedings of the Hydrology of Natural and Manmade Lakes, Vienna, Austria, 14–18 November 1991; Volume 206, pp. 191–196. [Google Scholar]
- Zaidi, M.; Ahfir, N.-D.; Alem, A.; El Mansouri, B.; Wang, H.; Taibi, S.; Duchemin, B.; Merzouk, A. Assessment of Clogging of Managed Aquifer Recharge in a Semi-Arid Region. Sci. Total Environ. 2020, 730, 139107. [Google Scholar] [CrossRef]
- WCD. Dams and Development: A New Framework for Decision-Making; World Commission on Dams, 2000; Available online: https://archive.internationalrivers.org/resources (accessed on 3 March 2022).
- Gupta, H.; Kao, S.-J.; Dai, M. The Role of Mega Dams in Reducing Sediment Fluxes: A Case Study of Large Asian Rivers. J. Hydrol. 2012, 464, 447–458. [Google Scholar] [CrossRef]
- Si, Z. A Theoretical Framework for Social Impact Analysis with Special Reference to Population Relocation at the Mactaquac Dam Project on the Saint John River; Dalhousie University: Halifax, NS, Canada, 1993; Available online: http://dalspace.library.dal.ca//handle/10222/55366 (accessed on 18 July 2022).
- Tilt, B.; Braun, Y.; He, D. Social Impacts of Large Dam Projects: A Comparison of International Case Studies and Implications for Best Practice. J. Environ. Manag. 2009, 90, S249–S257. [Google Scholar] [CrossRef] [PubMed]
- Vanclay, F. International Principles For Social Impact Assessment. Impact Assess. Proj. Apprais. 2003, 21, 5–12. [Google Scholar] [CrossRef]
- Jaafar, H. Feasibility of Groundwater Recharge Dam Projects in Arid Environments. J. Hydrol. 2014, 512, 16–26. [Google Scholar] [CrossRef]
- Kerr, R.A.; Stone, R. A Human Trigger for the Great Quake of Sichuan? Science 2009, 323, 322. [Google Scholar] [CrossRef] [PubMed]
- Wang, P. Social Impact Analysis of Large Dams: A Case Study of Cascading Dams on the Upper-Mekong River, China. J. Environ. Manag. 2012, 117, 131–140. [Google Scholar] [CrossRef]
- Internal Displacement Monitoring Centre Dams and Internal Displacement: An Introduction. Available online: https://www.internal-displacement.org/home (accessed on 17 August 2021).
- Abd-Elhamid, H.; Abdelaty, I.; Sherif, M. Evaluation of Potential Impact of Grand Ethiopian Renaissance Dam on Seawater Intrusion in the Nile Delta Aquifer. Int. J. Environ. Sci. Technol. 2019, 16, 2321–2332. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Water Resources and Water Consumption Pattern in Saudi Arabia; 2012. In Proceedings of the Gulf Water Conference, Doha, Qata, 22–24 April 2012. [Google Scholar] [CrossRef]
- Remini, W.; Remini, B. La sédimentation dans les barrages de l’Afrique duNord. Larhyss 2003, 2, 45–54. [Google Scholar]
- Michel, D.; Pandya, A.; Hasnain, S.I.; Sticklor, R.; Panuganti, S. Water Challenges and Cooperative Response in the Middle East and North Africa; Brookings Insititution: New York, NY, USA, 2012. [Google Scholar]
- Sakthivadivel, R. The Groundwater Recharge Movement in India; Giordano, M., Villholth, K.G., Eds.; The Agricultural Revolution: Opportunities and Threats to Development; IWMI: Colombo, Sri Lanka, 2007. [Google Scholar]
- Yang, Y.; Wu, Y.; Lu, Y.; Shi, M.; Chen, W. Microorganisms and Their Metabolic Activities Affect Seepage through Porous Media in Groundwater Artificial Recharge Systems: A Review. J. Hydrol. 2021, 598, 126256. [Google Scholar] [CrossRef]
- Al-Muttair, F.F.; Sendil, U.; Al-Turbak, A.S. Management of Recharge Dams in Saudi Arabia. J. Water Resour. Plan. Manag. 1994, 120, 749–763. [Google Scholar] [CrossRef]
- Arshad, M.; Guillaume, J.H.A.; Ross, A. Assessing the Feasibility of Managed Aquifer Recharge for Irrigation under Uncertainty. Water 2014, 6, 2748. [Google Scholar] [CrossRef]
- Ringleb, J.; Sallwey, J.; Stefan, C. Assessment of Managed Aquifer Recharge through Modeling—A Review. Water 2016, 8, 579. [Google Scholar] [CrossRef]
- Levantesi, C.; La Mantia, R.; Masciopinto, C.; Böckelmann, U.; Ayuso-Gabella, M.N.; Salgot, M.; Tandoi, V.; Van Houtte, E.; Wintgens, T.; Grohmann, E. Quantification of Pathogenic Microorganisms and Microbial Indicators in Three Wastewater Reclamation and Managed Aquifer Recharge Facilities in Europe. Sci. Total Environ. 2010, 408, 4923–4930. [Google Scholar] [CrossRef]
- Dillon, P. Future Management of Aquifer Recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- Casanova, J.; Devau, N.; Pettenati, M. Managed Aquifer Recharge: An Overview of Issues and Options. Integr. Groundw. Manag. 2016, 413–434. [Google Scholar]
- Dillon, P.; Arshad, M. Managed aquifer recharge in integrated water resource management. In Integrated Groundwater Management; Springer: Cham, Switzerland, 2016; pp. 435–452. [Google Scholar]
- Parimalarenganayaki, S. Managed Aquifer Recharge in the Gulf Countries: A Review and Selection Criteria. Arab. J. Sci. Eng. 2021, 46, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kay, S. Some ancient Dams of the Hejaz. In Proceedings of the Seminar for Arabian Studies, London, UK, 4–6 August 1978. [Google Scholar]
- Al-Rāshid, S.B.A. Sadd Al-Khanaq: An early Umayyad Dam near Medina, Saudi Arabia. In Proceedings of the Seminar for Arabian Studies, London, UK, 19–21 July 2007; pp. 265–275. [Google Scholar]
- Abdulrazzak, M.; Sorman, A.U.; Al-Hames, A. Techniques of Artificial Recharge from an Ephemeral Wadi Channel Under Extreme Arid Conditions. In Proceedings of the International Symposium California, Anaheim, CA, USA, 23–27 August 1988; Available online: https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0061866 (accessed on 2 March 2021).
- Missimer, T.M.; Guo, W.; Maliva, R.G.; Rosas, J.; Jadoon, K.Z. Enhancement of Wadi Recharge Using Dams Coupled with Aquifer Storage and Recovery Wells. Environ. Earth Sci. 2015, 73, 7723–7731. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Nazzal, Y.; Ahmed, I.; Naeem, M.; Jafri, M.K. Identification of Potential Artificial Groundwater Recharge Zones in Northwestern Saudi Arabia Using GIS and Boolean Logic. J. Afr. Earth Sci. 2015, 111, 156–169. [Google Scholar] [CrossRef]
- Lopez, O.M.; Jadoon, K.Z.; Missimer, T.M. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia. Water 2015, 7, 6411–6426. [Google Scholar] [CrossRef] [Green Version]
- MoEW Dams: Protecting from Floods and Harvesting More Rainwater; Ministry of Electricity and Water: Riyadh, Saudi Arabia, 2012.
- Al-Muttair, F.; Al-Turbak, S.; Sendil, U. Management of Water Stored behind Recharge Dams in Central Saudi Arabia; King Abdulaziz City for Science and Technology (KACST): Riyadh, Saudi Arabia, 1989. [Google Scholar]
- Sefelnasr, A.; Ebraheem, A.A.; Faiz, M.A.; Shi, X.; Alghafli, K.; Baig, F.; Al-Rashed, M.; Alshamsi, D.; Ahamed, M.B.; Sherif, M. Enhancement of Groundwater Recharge from Wadi Al Bih Dam, UAE. Water 2022, 14, 3448. [Google Scholar] [CrossRef]
- Sherif, M.; A Al Mahmoudy, H.; Garamoon, A.; Kasimov, S.; Akram, A.; Ebraheem, A.S. Assessment of the Effectiveness of Al Bih, Al Tawiyean and Ham Dams in Ground-Water Recharge Using Numerical Models, UAE; Final Report; Ministry of Energy and Infra-Structure: Dubai, United Arab Emirates, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherif, M.; Sefelnasr, A.; Al Rashed, M.; Alshamsi, D.; Zaidi, F.K.; Alghafli, K.; Baig, F.; Al-Turbak, A.; Alfaifi, H.; Loni, O.A.; et al. A Review of Managed Aquifer Recharge Potential in the Middle East and North Africa Region with Examples from the Kingdom of Saudi Arabia and the United Arab Emirates. Water 2023, 15, 742. https://doi.org/10.3390/w15040742
Sherif M, Sefelnasr A, Al Rashed M, Alshamsi D, Zaidi FK, Alghafli K, Baig F, Al-Turbak A, Alfaifi H, Loni OA, et al. A Review of Managed Aquifer Recharge Potential in the Middle East and North Africa Region with Examples from the Kingdom of Saudi Arabia and the United Arab Emirates. Water. 2023; 15(4):742. https://doi.org/10.3390/w15040742
Chicago/Turabian StyleSherif, Mohsen, Ahmed Sefelnasr, Muhammad Al Rashed, Dalal Alshamsi, Faisal K. Zaidi, Khaled Alghafli, Faisal Baig, Abdulaziz Al-Turbak, Hussain Alfaifi, Oumar Allafouza Loni, and et al. 2023. "A Review of Managed Aquifer Recharge Potential in the Middle East and North Africa Region with Examples from the Kingdom of Saudi Arabia and the United Arab Emirates" Water 15, no. 4: 742. https://doi.org/10.3390/w15040742
APA StyleSherif, M., Sefelnasr, A., Al Rashed, M., Alshamsi, D., Zaidi, F. K., Alghafli, K., Baig, F., Al-Turbak, A., Alfaifi, H., Loni, O. A., Ahamed, M. B., & Ebraheem, A. A. (2023). A Review of Managed Aquifer Recharge Potential in the Middle East and North Africa Region with Examples from the Kingdom of Saudi Arabia and the United Arab Emirates. Water, 15(4), 742. https://doi.org/10.3390/w15040742