Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China
Abstract
:1. Introduction
2. Geological Background
3. Data Sources and Research Methods
4. Results and Discussion
4.1. Distribution of the Metasilicate-Rich Groundwater
4.2. Discussion on the Origin of H2SiO3 Enrichment
4.2.1. Geochemical Conditions of Surrounding Rocks
4.2.2. Weathering Degree and Mechanism of Surrounding Rocks
4.2.3. Water-Rock Interaction
4.2.4. Conservation and Recharge Conditions of the Groundwater
4.3. Genetic Model of the Metasilicate Enrichment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; Van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling Global Water Use for the 21st Century: The Water Futures and Solutions (WFaS) Initiative and Its Approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wen, D.G.; Lü, L.; Li, W.; Zhang, F.C.; Wang, X.F.; Meng, S.X. Characteristics of karst groundwater flow systems of typical faulted basins in Yimeng Mountain area: A case study of Laiwu Basin. Bull. Geol. Sci. Technol. 2022, 41, 157–167. [Google Scholar]
- Xiao, Y.; Hao, Q.C.; Zhang, Y.H.; Zhu, Y.C.; Yin, S.Y.; Qin, L.M.; Li, X.H. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909. [Google Scholar] [CrossRef]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban Growth, Climate Change, and Freshwater Availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef]
- Polemio, M.; Voudouris, K. Groundwater Resources Management: Reconciling Demand, High Quality Resources and Sustainability. Water 2022, 14, 2107. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.C.; Li, Y.S.; Xiao, D.; Zhang, Y.J. Occurrence, Controlling Factors and Health Hazards of Fluoride Enriched Groundwater in the Lower Flood Plain of Yellow River, Northern China. Expo. Health 2022, 14, 345–358. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.C.; Xiao, D.; Zhu, Y.C.; Yin, S.Y.; Zhang, Y.H. Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena 2022, 212, 106020. [Google Scholar] [CrossRef]
- Zhou, C.S.; Zou, S.Z.; Zhu, D.N.; Lin, Y.S.; Wang, J.; Fan, L.J.; Li, J.; Lan, F.N.; Li, Y.Q.; Deng, R.X.; et al. Characteristics, causes and development suggestions of high quality groundwater containing metasilicate in Zhaojue area, Sichuan Province. Geol. China 2022, 49, 849–859. [Google Scholar]
- Kim, S.H.; Choi, B.Y.; Lee, G.Y.; Yun, S.T.; Kim, S.O. Compositional data analysis and geochemical modeling of CO2- water- rock interactions in three provinces of Korea. Environ. Geochem. Health 2019, 41, 357–380. [Google Scholar] [CrossRef]
- Sun, Q.F.; Tian, H.; Guo, X.D.; Yu, H.M.; Li, L.J. The discovery of silicic acid and strontium enrichment areas in groundwater of Changchun area, Jilin Province. Geol. China 2017, 44, 1031–1032. [Google Scholar]
- Sun, H.Y.; Wei, X.F.; Sun, X.M.; Jia, F.C.; Li, D.J.; He, Z.X.; Li, J. Formation mechanism and geological construction constraints of metasilicate mineral water in Yudaokou, Hannuoba basalt area. Earth Sci. 2020, 45, 4236–4253. [Google Scholar]
- Li, C.S.; Wu, X.C.; Sun, B.; Sui, H.B.; Geng, F.Q.; Qi, H.; Ma, X.Y. Hydrochemical characteristics and formation mechanism of geothermal water in northern Ji’nan. Earth Sci. 2018, 43, 313–325. [Google Scholar]
- Wang, S.J.; Zhang, C.J.; Yang, E.X.; Song, Z.Y.; Wang, L.F.; Xu, K.M. Division of Mesozoic intrusive stages in Luxi area. Shandong Land Resour. 2009, 25, 18–23. [Google Scholar]
- Shan, T.T.; Xu, S.G.; Fan, Z.G.; Ruan, W. Characteristics and formation mechanism of metasilicate mineral water in Xishan mountain of Kunming. J. Kunming Univ. Sci. Technol. 2019, 44, 39–47. [Google Scholar]
- Sun, H.Y.; Sun, X.M.; Wei, X.F.; Chen, Z.R.; Liu, W.; Huang, X.K.; Li, X.; Yin, Z.Q.; Liu, W.B. Formation mechanisms of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction. Geol. China 2022, 49, 1088–1113. [Google Scholar]
- Ye, N.; Li, Y.T.; Huang, B.W.; Xi, B.B.; Jiang, H.; Lu, Z.Y.; Chen, Q.L.; You, D.H.; Xu, J. Hydrothermal silicification and its impact on Lower–Middle Ordovician carbonates in Shunnan area, Tarim Basin, NW China. Geol. J. 2022, 57, 3538–3557. [Google Scholar] [CrossRef]
- Liang, C.C.; Wang, W.; Ke, X.M.; Ou, A.F.; Wang, D.H. Hydrochemical Characteristics and Formation Mechanism of Strontium-Rich Groundwater in Tianjiazhai, Fugu, China. Water 2022, 14, 1874. [Google Scholar] [CrossRef]
- Moses, C.; Robinson, D.; Barlow, J. Methods for measuring rock surface weathering and erosion: A critical review. Earth-Sci. Rev. 2014, 135, 141–161. [Google Scholar] [CrossRef]
- Wu, B.J.; Peng, B.; Zhang, K.; Kuang, X.L.; Fang, X.H.; Zeng, D.Z. A new chemical index of identifying the weathering degree of black shales. Acta Geol. Sin. 2016, 90, 818–832. [Google Scholar]
- Ofili, S.; Soesoo, A.; Panova, E.G.; Hints, R.; Hade, S. Geochemical Reconstruction of the Provenance, Tectonic Setting and Paleoweathering of Lower Paleozoic Black Shales from Northern Europe. Minerals 2022, 12, 602. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Romero-Mujalli, G.; Hartmann, J.; Hosono, T.; Louvat, P.; Okamura, K.; Delmelle, P.; Amann, T.; Böttcher, M.E. Hydrothermal and magmatic contributions to surface waters in the Aso caldera, southern Japan: Implications for weathering processes in volcanic area. Chem. Geol. 2022, 588, 120612. [Google Scholar] [CrossRef]
- Rouzaut, S.; Campodonico, V.A.; Pasquini, A.I. Weathering and paleoprecipitation indices in a Late Pleistocene–Holocene loess–paleosol sequence in central Argentina. Environ. Earth Sci. 2021, 80, 28. [Google Scholar] [CrossRef]
- Gao, Z.J.; Wang, Z.S.; He, K.Q.; Victor, K.; Liu, J.T. Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River basin. Bull. Geol. Sci. Technol. 2022, 41, 264–272. [Google Scholar]
- Hu, X.B.; Fang, J.C.; Zhai, H.W.; Zhang, K.; Ma, Y.M.; Jin, J.H.; Gao, X.B. Application of sulfur and oxygen isotopes in identifying the source of sulfate in karst water from Xin’an spring area. Bull. Geol. Sci. Technol. 2022, 41, 333–340. [Google Scholar]
- Kale, A.; Bandela, N.; Kulkarni, J.; Sahoo, S.K.; Kumar, A. Hydrogeochemistry and multivariate statistical analysis of groundwater quality of hard rock aquifers from Deccan trap basalt in Western India. Environ. Earth Sci. 2021, 80, 288. [Google Scholar] [CrossRef]
- Liu, P.; Yang, M.; Sun, Y.J. Hydro-geochemical processes of the deep Ordovician groundwater in a coal mining area, Xuzhou, China. Hydrogeol. J. 2019, 27, 2231–2244. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Bagas, L.; Santosh, M.; Yao, E.Y. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth-Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Guo, Q.H.; Wang, Y.X. Simulation of geochemical processes affecting groundwater in Quaternary porous aquifers of Taiyuan basin: A typical Cenozoic rift basin. Earth Sci. Front. 2014, 21, 83–90. [Google Scholar]
- Wang, H.H.; Li, X.Z.; Shen, L.J.; Zhu, Y.Z.; Zhou, M.L. Geological characteristics and metallogenic model of “Yucheng Type” rich ion deposit in Qihe Yucheng area in Shandong Province. Shandong Land Resour. 2021, 37, 26–35. [Google Scholar]
- Jia, C.; Wang, C.; Liu, S.; Yang, X.; Liu, W.; Gao, S.; Zhu, H.H. Study on hydrogeochemical characteristics of groundwater in the alluvial plain of western Ji’nan. Water Resour. Hydropower Eng. 2022, 53, 49–60. [Google Scholar]
- Wang, J.L.; Jin, M.G.; Lu, G.P.; Zhang, D.L.; Kang, F.X.; Jia, B.J. Investigation of discharge-area groundwaters for recharge source characterization on different scales: The case of Ji’nan in northern China. Hydrogeol. J. 2016, 24, 1723–1737. [Google Scholar] [CrossRef]
- Xing, L.T.; Yu, M.; Su, Q.W.; Zhao, Z.H.; Gao, Y.; Zhang, Y.F. Influence and repair of underground engineering construction on karst flow field. Bull. Geol. Sci. Technol. 2022, 41, 242–254. [Google Scholar]
Position | Borehole Number | Content of H2SiO3 | Borehole Number | Content of H2SiO3 |
---|---|---|---|---|
West side | HR-5 | 19.76 | HR-3 | 23.12 |
HR-4 | 19.72 | |||
East side | SO | 18.656 | MH | 19.53 |
Northeast side | LR-2 | 32.5 | LR-6 | 22.9 |
LR-3 | 33.8 | LR-8 | 23.4 | |
LR-4 | 21.45 | PLS | 57 | |
LR-5 | 23.73 | |||
South side | QS | 13.4 | SY-11 | 16.4 |
QB | 12.5 | XSJ | 16.58 | |
XWZ | 16.4 | KLZ | 16.73 | |
SY-10 | 17.48 | |||
Northwest side | QR-2 | 30.72 | QR-5 | 29.3 |
TR-5 | 28.87 | SY-1 | 28.98 | |
TR-6 | 32.78 | SY-6 | 23.5 | |
TR-3 | 31.2 | ZK3 | 30.66 | |
TR-4 | 28.87 | QR-4 | 25.98 |
No. | Lithology | K2O | Al2O3 | CaO | TFe2O3 | MgO | SiO2 | TiO2 | L.O.I | FeO |
---|---|---|---|---|---|---|---|---|---|---|
1 | Gabbro | 1.13 | 16.34 | 8.51 | 4.71 | 2.66 | 58.50 | 0.99 | 0.69 | 2.80 |
2 | Gabbro | 1.45 | 17.21 | 7.54 | 8.30 | 4.74 | 55.86 | 0.75 | 0.31 | 4.57 |
3 | Gabbro | 1.27 | 16.21 | 9.07 | 10.06 | 6.33 | 51.81 | 0.84 | 0.65 | 6.43 |
4 | Gabbro | 0.76 | 14.70 | 10.22 | 10.26 | 9.75 | 51.40 | 0.49 | −0.07 | 6.47 |
5 | Gabbro | 1.16 | 14.44 | 9.37 | 10.03 | 8.98 | 52.28 | 0.68 | 0.03 | 6.55 |
6 | Gabbro | 0.47 | 14.65 | 9.32 | 10.31 | 8.89 | 52.46 | 0.74 | −0.23 | 7.67 |
7 | Gabbro | 0.80 | 13.42 | 11.00 | 10.06 | 11.20 | 50.73 | 0.48 | −0.01 | 7.31 |
8 | Diorite | 1.12 | 17.39 | 7.91 | 9.09 | 6.59 | 50.14 | 0.84 | 2.52 | 4.86 |
9 | Marble | 0.24 | 3.96 | 32.40 | 1.33 | 10.10 | 23.86 | 0.17 | 28.09 | 0.08 |
10 | Limestone | 0.48 | 3.70 | 32.93 | 2.25 | 7.92 | 22.35 | 0.16 | 30.52 | 1.55 |
11 | Domolite | 0.05 | 0.60 | 31.49 | 0.16 | 19.19 | 4.13 | 0.03 | 44.74 | 0.15 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
IOL | 34.56 | 26.46 | 31.35 | 33.65 | 32.69 | 31.89 | 32.24 | 31.64 |
CIA | 56.83 | 50.75 | 57.26 | 54.16 | 52.10 | 52.13 | 53.48 | 48.72 |
H2SiO3 | TDS | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− | |
---|---|---|---|---|---|---|---|---|---|
H2SiO3 | 1 | ||||||||
TDS | 0.463 * | 1 | |||||||
Ca2+ | 0.635 ** | 0.951 ** | 1 | ||||||
Mg2+ | 0.696 ** | 0.905 ** | 0.986 ** | 1 | |||||
Na+ | 0.228 | 0.948 ** | 0.806 ** | 0.726 ** | 1 | ||||
K+ | 0.368 | 0.981 ** | 0.881 ** | 0.812 ** | 0.986 ** | 1 | |||
HCO3− | 0.081 | −0.396 | −0.31 | −0.276 | −0.431 | −0.404 | 1 | ||
Cl− | 0.2 | 0.939 ** | 0.789 ** | 0.708 ** | 0.998 ** | 0.979 ** | −0.432 | 1 | |
SO42− | 0.705 ** | 0.907 ** | 0.991 ** | 0.992 ** | 0.730 ** | 0.821 ** | −0.259 | 0.708 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Hu, C.; Zhu, L.; Song, G.; Peng, W.; Yang, S.; Song, J. Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China. Water 2023, 15, 713. https://doi.org/10.3390/w15040713
Xu M, Hu C, Zhu L, Song G, Peng W, Yang S, Song J. Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China. Water. 2023; 15(4):713. https://doi.org/10.3390/w15040713
Chicago/Turabian StyleXu, Meng, Caiping Hu, Lixin Zhu, Guangzeng Song, Wenquan Peng, Shijiao Yang, and Jinyu Song. 2023. "Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China" Water 15, no. 4: 713. https://doi.org/10.3390/w15040713
APA StyleXu, M., Hu, C., Zhu, L., Song, G., Peng, W., Yang, S., & Song, J. (2023). Spatial Distribution Characteristics and Genetic Mechanism of the Metasilicate-Rich Groundwater in Ji’nan Rock Mass Area, Shandong Province, China. Water, 15(4), 713. https://doi.org/10.3390/w15040713