Rainfall Forecast and Drought Analysis for Recent and Forthcoming Years in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptive Statistics on Rainfall and Drought in India
2.1.1. Analysis of Rainfall
2.1.2. Analysis of Drought
2.2. Rainfall Forecast Using LSTM
3. Results and Discussion
Rainfall Forecast and Drought Analysis in Future
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Graham, S. Tropical Rainfall Measuring Mission. Earth Observatory; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999.
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/india/fao-in-india/india-at-a-glance/en/#:~:text=Agriculture%2C%20with%20its%20allied%20sectors,275%20million%20tonnes%20(MT) (accessed on 5 June 2021).
- Ahmed, I.A.; Salam, R.; Naikoo, M.W.; Rahman, A.; Praveen, B.; Hoai, P.N.; Pham, Q.B.; Anh, D.T.; Tri, D.Q.; Elkhrachy, I. Evaluating the variability in long-term rainfall over India with advanced statistical techniques. Acta Geophys. 2022, 70, 801–818. [Google Scholar] [CrossRef]
- Meshram, S.G.; Gautam, R.; Kahya, E. Drought analysis in the Tons River Basin, India during 1969–2008. Theor. Appl. Climatol. 2018, 132, 939–951. [Google Scholar] [CrossRef]
- Carrao, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.A.; Channaveerappa; Dodamani, B. Comparison of two hydrological drought indices. Perspect. Sci. 2016, 8, 626–628. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. 8-Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. In Earth Observation, Hyperspectral Remote Sensing; Pandey, P.C., Prashant, K., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–146. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Ridwan, W.M.; Sapitang, M.; Aziz, A.; Kushiar, K.F.; Ahmed, A.N.; El-Shafie, A. Rainfall forecasting model using machine learning methods: Case study Terengganu, Malaysia. Ain Shams Eng. J. 2020, 12, 1651–1663. [Google Scholar] [CrossRef]
- Kashiwao, T.; Nakayama, K.; Ando, S.; Ikeda, K.; Lee, M.; Bahadori, A. A neural network-based local rainfall prediction system using meteorological data on the Internet: A case study using data from the Japan Meteorological Agency. Appl. Soft Comput. 2017, 56, 317–330. [Google Scholar] [CrossRef]
- Praveen, B.; Talukdar, S.; Shahfahad; Mahato, S.; Mondal, J.; Sharma, P.; Islam, A.R.M.T.; Rahman, A. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.; Vázquez-Patiño, A.; Zhiña, D.; Montenegro, M.; Avilés, A. Improved Rainfall Prediction through Nonlinear Autoregressive Network with Exogenous Variables: A Case Study in Andes High Mountain Region. Adv. Meteorol. 2020, 2020, 1828319. [Google Scholar] [CrossRef]
- Azimi, S.; Moghaddam, M.A. Modeling Short Term Rainfall Forecast Using Neural Networks, and Gaussian Process Classification Based on the SPI Drought Index. Water Resour. Manag. 2020, 34, 1369–1405. [Google Scholar] [CrossRef]
- Danladi, A.; Stephen, M.; Aliyu, B.; Gaya, G.; Silikwa, N.; Machael, Y. Assessing the influence of weather parameters on rainfall to forecast river discharge based on short-term. Alex. Eng. J. 2018, 57, 1157–1162. [Google Scholar] [CrossRef]
- Yen, M.-H.; Liu, D.-W.; Hsin, Y.-C.; Lin, C.-E.; Chen, C.-C. Application of the deep learning for the prediction of rainfall in Southern Taiwan. Sci. Rep. 2019, 9, 12774. [Google Scholar] [CrossRef]
- Poornima, S.; Pushpalatha, M. Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural Network with Weighted Linear Units. Atmosphere 2019, 10, 668. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Drought Early Warning System. Available online: https://sites.google.com/a/iitgn.ac.in/high_resolution_south_asia_drought_monitor/drought-early-warning-system (accessed on 31 June 2019).
- Attri, S.D.; Chug, S.S. Annual Report 2020; Indian Meteorological Department: Pune, India. Available online: https://metnet.imd.gov.in/imdnews/ar2020.pdf (accessed on 22 February 2021).
- Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive analytics: Literature review and research challenges. Int. J. Inf. Manag. 2020, 50, 57–70. [Google Scholar] [CrossRef]
- Cheval, S. The Standardized Precipitation Index—An overview. Rom. J. Meteorol. 2015, 12, 17–64. [Google Scholar]
- Poornima, S. Prediction of Rainfall Using Intensified LSTM and Rule Based Crop Recommendation over Drought Period; SRM Institute of Science and Technology: Kattankulathur, Tamilnadu, India, 5 May 2021; Available online: http://dspace.srmist.edu.in/jspui/handle/123456789/43686?mode=full&submit_simple=Show+full+item+record (accessed on 17 August 2021).
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Atmospheric Science Paper No. 634. Climatology Report 97–2; Department of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, May 1997; Available online: http://hdl.handle.net/10217/170176 (accessed on 4 December 2022).
- Shah, R.; Bharadiya, N.; Manekar, V. Drought Index Computation Using Standardized Precipitation Index (SPI) Method For Surat District, Gujarat. Aquat. Procedia 2015, 4, 1243–1249. [Google Scholar] [CrossRef]
- Cagliarini, A.; Rush, A. Economic Development and Agriculture in India; Bulletin; Reserve Bank of Australia: Sydney, Australia, 2011; pp. 15–22.
- Mishra, V.; Tiwari, A.D.; Aadhar, S.; Shah, R.; Xiao, M.; Pai, D.S.; Lettenmaier, D. Drought and Famine in India, 1870–2016. Geophys. Res. Lett. 2019, 46, 2075–2083. [Google Scholar] [CrossRef]
- Parida, Y.; Dash, D.P.; Bhardwaj, P.; Chowdhury, J.R. Effects of Drought and Flood on Farmer Suicides in Indian States: An Empirical Analysis. Econ. Disasters Clim. Chang. 2018, 2, 159–180. [Google Scholar] [CrossRef]
- Bhushan, C.; Srinidhi, A.; Kumar, V.; Singh, G. Lived Anomaly: How to Enable Farmers in India Cope with Extreme Weather Events; Centre for Science and Environment: New Delhi, India, 2015. [Google Scholar]
- Yadav, B.P.; Saxena, R.; Das, A.K.; Manik, S.K.; Asok Raja, S.K. Rainfall Statistics of India-2018. Indian Meteorological Department, India. Available online: https://hydro.imd.gov.in/hydrometweb/(S(yetk5b2fro4iec55kfzkdkja))/PRODUCTS/Publications/Rainfall%20Statistics%20of%20India%20-%202018/Rainfall%20Statistics%20of%20India%202018.pdf (accessed on 30 November 2020).
- Yadav, B.P.; Saxena, R.; Das, A.K.; Manik, S.K.; Asok Raja, S.K. Rainfall Statistics of India-2019. Indian Meteorological Department, India. Available online: https://hydro.imd.gov.in/hydrometweb/(S(rfunuv45jwjlwhzmz1dbpc55))/PRODUCTS/Publications/Rainfall%20Statistics%20of%20India%20-%202019/Rainfall%20Statistics%20of%20India%20-%202019.pdf (accessed on 30 November 2020).
- Annual Report 2021. Indian Meteorological Department, India. Available online: https://mausam.imd.gov.in/imd_latest/contents/ar2021.pdf (accessed on 25 February 2022).
Measure | Rainfall_67 years | Rainfall_Recent Years | Percent Change |
---|---|---|---|
Mean | 119.029 | 115.012 | −3.37% |
Standard Error | 33.979 | 32.943 | −3.05% |
Median | 65.08 | 63.6 | −2.27% |
Standard Deviation | 117.706 | 114.120 | −3.05% |
Sample Variance | 13,854.86 | 13,023.449 | −6% |
Kurtosis | −0.5106 | −0.5679 | 11.22% |
Skewness | 0.9738 | 0.9662 | −0.78% |
Range | 329.66 | 317.63 | −3.65% |
Minimum | 19.43 | 16.66 | −14.26% |
Maximum | 349.09 | 334.29 | −4.24% |
Sum | 1428.34 | 1380.15 | −3.37% |
SPI Range | Category |
---|---|
+2 to more | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
0.99 to 0 | Mild wet |
0 to −0.99 | Mild dry |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2 to less | Extremely dry |
Year | Annual Rainfall (mm) | Maximum Rainfall Level (mm) |
---|---|---|
2021 | 1242.75 | 333.49 |
2022 | 1206.88 | 302.29 |
2023 | 1212.54 | 323.53 |
2024 | 1210.59 | 318.47 |
2025 | 1212.76 | 321.40 |
2026 | 1217.28 | 319.34 |
2027 | 1224.56 | 324.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poornima, S.; Pushpalatha, M.; Jana, R.B.; Patti, L.A. Rainfall Forecast and Drought Analysis for Recent and Forthcoming Years in India. Water 2023, 15, 592. https://doi.org/10.3390/w15030592
Poornima S, Pushpalatha M, Jana RB, Patti LA. Rainfall Forecast and Drought Analysis for Recent and Forthcoming Years in India. Water. 2023; 15(3):592. https://doi.org/10.3390/w15030592
Chicago/Turabian StylePoornima, S., M. Pushpalatha, Raghavendra B. Jana, and Laxmi Anusri Patti. 2023. "Rainfall Forecast and Drought Analysis for Recent and Forthcoming Years in India" Water 15, no. 3: 592. https://doi.org/10.3390/w15030592
APA StylePoornima, S., Pushpalatha, M., Jana, R. B., & Patti, L. A. (2023). Rainfall Forecast and Drought Analysis for Recent and Forthcoming Years in India. Water, 15(3), 592. https://doi.org/10.3390/w15030592