Source Identification and Ecological Risk of Potentially Harmful Trace Elements in Lacustrine Sediments from the Middle and Lower Reaches of Huaihe River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Sample Collection and Geochemical Analysis
2.3. Risk Assessment and Statistical Analysis
3. Results
3.1. Descriptive Statistics of Element Composition in Sediments
3.2. Lead Isotopic Ratios
3.3. Ecological Risk Assessment of Potentially Harmful Trace Elements
4. Discussion
4.1. Source Identification of the Potentially Harmful Trace Elements
4.2. Ecological Risk and Implication for Lake Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Env. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Birch, G.F. Determination of sediment metal background concentrations and enrichment in marine environments—A critical review. Sci. Total Environ. 2017, 580, 813–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shan, B. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China. Sci. Total Environ. 2008, 399, 113–120. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Chen, M.; Ding, S.; Li, C.; Tang, Y.; Fan, X.; Xu, H.; Tsang, D.C.W.; Zhang, C. High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. Water Res. 2021, 190, 116711. [Google Scholar] [CrossRef]
- Malferrari, D.; Brigatti, M.F.; Laurora, A.; Pini, S. Heavy metals in sediments from canals for water supplying and drainage: Mobilization and control strategies. J. Hazard. Mater. 2009, 161, 723–729. [Google Scholar] [CrossRef]
- Guo, W.; Huo, S.; Xi, B.; Zhang, J.; Wu, F. Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecol. Eng. 2015, 81, 243–255. [Google Scholar] [CrossRef]
- Yang, J.; Chen, L.; Liu, L.-Z.; Shi, W.-L.; Meng, X.-Z. Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol. Environ. Saf. 2014, 102, 129–135. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, E.; Zhang, E.; Nath, B.; Shen, J.; Yuan, H.; Wang, R. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing. Sci. Total Environ. 2018, 613, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Pratte, S.; Bao, K.; Shen, J.; De Vleeschouwer, F.; Le Roux, G. Centennial records of cadmium and lead in NE China lake sediments. Sci. Total Environ. 2019, 657, 548–557. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, E.; Lin, Q.; Zhang, E.; Yang, F.; Wei, C.; Shen, J. Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning. Environ. Pollut. 2021, 269, 116212. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.-Y.; Li, Z.-G.; Wang, S.-X.; Zhang, L.; Xu, R.; Liu, J.-L.; Yang, H.-M.; Guo, M.-Z. Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing. Environ. Sci. Technol. 2017, 51, 13502–13508. [Google Scholar] [CrossRef] [PubMed]
- Bing, H.; Wu, Y.; Zhou, J.; Li, R.; Wang, J. Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. Chemosphere 2016, 148, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Yang, H.; Jin, Z.; Xue, B.; Song, L.; Mao, X.; Yang, J. Spatiotemporal trends of atmospheric Pb over the last century across inland China. Sci. Total Environ. 2020, 729, 138399. [Google Scholar] [CrossRef]
- Wang, L.W.; Jin, Y.L.; Weiss, D.J.; Schleicher, N.J.; Wilcke, W.; Wu, L.H.; Guo, Q.J.; Chen, J.B.; O’Connor, D.; Hou, D.Y. Possible application of stable isotope compositions for the identification of metal sources in soil. J. Hazard. Mater. 2021, 407, 124812. [Google Scholar] [CrossRef]
- Xu, D.; Gao, B.; Peng, W.; Qu, X.; Zhang, M.; Wang, J. Novel insights into Pb source apportionment in sediments from two cascade reservoirs, North China. Sci. Total Environ. 2019, 689, 1030–1036. [Google Scholar] [CrossRef]
- Zhong, Q.; Yin, M.; Zhang, Q.; Beiyuan, J.; Liu, J.; Yang, X.; Wang, J.; Wang, L.; Jiang, Y.; Xiao, T.; et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments. J. Hazard. Mater. 2021, 411, 125015. [Google Scholar] [CrossRef]
- Dai, C.; Qin, X.S.; Lu, W.T.; Huang, Y. Assessing adaptation measures on agricultural water productivity under climate change: A case study of Huai River Basin, China. Sci. Total Environ. 2020, 721, 137777. [Google Scholar] [CrossRef]
- Guo, C.; Chen, Y.; Xia, W.; Qu, X.; Yuan, H.; Xie, S.; Lin, L.-S. Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project. Sci. Total Environ. 2020, 711, 134543. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, X.; Liu, C.; Wang, Y.; Li, M. Variation of net anthropogenic phosphorus inputs (NAPI) and riverine phosphorus fluxes in seven major river basins in China. Sci. Total Environ. 2020, 742, 140514. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qu, S.; Nel, W.; Ji, J. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere 2021, 262, 127897. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Ma, R.; Zhang, L.; Jiang, J.; Yao, S.; Zhang, M.; Zeng, H. Lake status, major problems and protection strategy in China. J. Lake Sci. 2010, 22, 799–810. [Google Scholar]
- Zhang, Q. The South-to-North Water Transfer Project of China: Environmental Implications and Monitoring Strategy. J. Am. Water Resour. Assoc. 2009, 45, 1238–1247. [Google Scholar] [CrossRef]
- Zhuang, W.; Ying, S.C.; Frie, A.L.; Wang, Q.; Song, J.; Liu, Y.; Chen, Q.; Lai, X. Distribution, pollution status, and source apportionment of trace metals in lake sediments under the influence of the South-to-North Water Transfer Project, China. Sci. Total Environ. 2019, 671, 108–118. [Google Scholar] [CrossRef]
- Zhang, L.; Song, X.; Xia, J.; Yuan, R.; Zhang, Y.; Liu, X.; Han, D. Major element chemistry of the Huai River basin, China. Appl. Geochem. 2011, 26, 293–300. [Google Scholar] [CrossRef]
- Han, L.; Hao, Q.; Qiao, Y.; Wang, L.; Peng, S.; Li, N.; Gao, X.; Fu, Y.; Xu, B.; Gu, Z. Geochemical evidence for provenance diversity of loess in southern China and its implications for glacial aridification of the northern subtropical region. Quat. Sci. Rev. 2019, 212, 149–163. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, X.; Liu, J.; Sun, C.; Mu, Y.; Gao, J.; Guo, W.; An, S.; Lu, C. Geochemistry of sediments from the Huaibei Plain (east China): Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River. J. Asian Earth Sci. 2016, 121, 72–83. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Cheng, H.; Li, M.; Zhao, C.; Yang, K.; Li, K.; Peng, M.; Yang, Z.; Liu, F.; Liu, Y.; Bai, R.; et al. Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. J. Geochem. Explor. 2015, 157, 15–26. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Tang, W.; Shan, B.; Zhang, H.; Mao, Z. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J. Hazard. Mater. 2010, 176, 945–951. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Yang, X.; Yang, H. Spatial distribution and ecological risk assessment of heavy metal pollution in surface sediments from shallow lakes in East China. J. Geochem. Explor. 2020, 213, 106490. [Google Scholar] [CrossRef]
- Liu, E.; Shen, J.; Yang, X.; Zhang, E. Spatial distribution and human contamination quantification of trace metals and phosphorus in the sediments of Chaohu Lake, a eutrophic shallow lake, China. Environ. Monit. Assess. 2012, 184, 2105–2118. [Google Scholar] [CrossRef] [PubMed]
- Moyle, M.; Boyle, J.F. A method for reconstructing past lake water phosphorus concentrations using sediment geochemical records. J. Paleolimnol. 2021, 65, 461–478. [Google Scholar] [CrossRef]
- Smoak, J.M.; Swarzenski, P.W. Recent increases in sediment and nutrient accumulation in Bear Lake, Utah/Idaho, USA. Hydrobiologia 2004, 525, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shan, B. Historical distribution and partitioning of phosphorus in sediments in a agricultural watershed in the Yangtze-Huaihe region, China. Environ. Sci. Technol. 2008, 42, 2328–2333. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, S.; Wu, Y.; Pu, J. Response of phosphorus fractionation in lake sediments to anthropogenic activities in China. Sci. Total Environ. 2020, 699, 134242. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, W.-B.; Lu, S.-Y.; Yan, S.-W.; Hu, R.-J.; Chen, L.; Zhang, L.-L.; Yu, J.-P. Spatial distribution characteristics of surface sediments nutrients in Lake Hongze and their pollution status evaluation. Environ. Sci. 2010, 31, 961–968. [Google Scholar]
- Li, H.; Yang, Z.; Dai, M.; Diao, X.; Dai, S.; Fang, T.; Dong, X. Input of Cd from agriculture phosphate fertilizer application in China during 2006-2016. Sci. Total Environ. 2020, 698, 134149. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Martin, J.A.; Lopez Arias, M.; Grau Corbi, J.M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, Q.; Wu, M.; Lin, L.; Scholz, M. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J. Environ. Manag. 2016, 181, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Renberg, I.; Brännvall, M.-L.; Bindler, R.; Emteryd, O. Stable lead isotopes and lake sediments—A useful combination for the study of atmospheric lead pollution history. Sci. Total Environ. 2002, 292, 45–54. [Google Scholar] [CrossRef]
- Chen, F.; Lv, H.; Yu, G. Subdivision of tectonogeochemical provinces in Eastern Yangtze Plate. Geol. Miner. Resour. South China 1998, 3, 48–54. [Google Scholar]
- Zhang, L.; Xing, F. Lead isotope compositions of Mesozoic granitoids and lead isotopic provinces from Anhui Province. Acta Petrol. Sin. 1993, 9, 105–114. [Google Scholar]
- Choi, M.-S.; Yi, H.-I.; Yang, S.Y.; Lee, C.-B.; Cha, H.-J. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Mar. Chem. 2007, 107, 255–274. [Google Scholar] [CrossRef]
- Jones, C.E.; Halliday, A.N.; Rea, D.K.; Owen, R.M. Eolian inputs of lead to the North Pacific. Geochim. Et Cosmochim. Acta 2000, 64, 1405–1416. [Google Scholar] [CrossRef]
- Millot, R.; Allègre, C.-J.; Gaillardet, J.; Roy, S. Lead isotopic systematics of major river sediments: A new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem. Geol. 2004, 203, 75–90. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.J.; Liu, H.; Lam, P.K.S. Tracking historical mobility behavior and sources of lead in the 59-year sediment core from the Huaihe River using lead isotopic compositions. Chemosphere 2017, 184, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Tan, M.G.; Li, Y.L.; Zhang, Y.M.; Lu, W.W.; Tong, Y.P.; Zhang, G.L.; Li, Y. A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos. Environ. 2005, 39, 1245–1253. [Google Scholar] [CrossRef]
- Chen, J.; Tan, M.; Li, Y.; Zheng, J.; Zhang, Y.; Shan, Z.; Zhang, G.; Li, Y. Characteristics of trace elements and lead isotope ratios in PM2.5 from four sites in Shanghai. J. Hazard. Mater. 2008, 156, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Sun, Y.; Ding, Z.; Zhang, Y.; Wu, J.; Lian, H.; Wang, T. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and Isotopic compositions. Environ. Pollut. 2014, 187, 42–48. [Google Scholar] [CrossRef]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef]
- Mukai, H.A.; Tanaka, A.; Fujii, T.; Zeng, Y.Q.; Hong, Y.T.; Tang, J.; Guo, S.; Xue, H.S.; Sun, Z.L.; Zhou, J.T.; et al. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ. Sci. Technol. 2001, 35, 1064–1071. [Google Scholar] [CrossRef]
- Hu, X.; Wang, C.; Zou, L. Characteristics of heavy metals and Pb isotopic signatures in sediment cores collected from typical urban shallow lakes in Nanjing, China. J. Environ. Manag. 2011, 92, 742–748. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.L.; Zhu, Q.; Li, B.J.; Wang, J.X.; Wang, C.H.; Chen, L.; Wu, S.H. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China. Environ. Pollut. 2018, 240, 709–716. [Google Scholar] [CrossRef]
- Yao, S.; Xue, B.; Tao, Y. Sedimentary lead pollution history: Lead isotope ratios and conservative elements at East Taihu Lake, Yangtze Delta, China. Quat. Int. 2013, 304, 5–12. [Google Scholar] [CrossRef]
- Li, H.-B.; Yu, S.; Li, G.-L.; Liu, Y.; Yu, G.-B.; Deng, H.; Wu, S.-C.; Wong, M.-H. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks. Sci. Total Environ. 2012, 432, 202–209. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, H.; Chang, J.; Qu, J.; Yu, L. Lead (Pb) isotopes as a tracer of Pb origin in Yangtze River intertidal zone. Chem. Geol. 2008, 257, 257–263. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Wu, N.; Dong, F.; Shi, W. How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 2019, 123, 96–103. [Google Scholar] [CrossRef] [PubMed]
Al | Ti | P | As | Cd | Cr | Cu | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
Minimum | 58527.3 | 2674.6 | 288.1 | 6.9 | 0.06 | 52.3 | 17.4 | 24.9 | 19.5 | 40.8 |
Maximum | 99199.2 | 5395.9 | 997.0 | 35.0 | 0.89 | 111.9 | 68.4 | 56.1 | 44.3 | 168.4 |
Average | 80637.0 | 4410.0 | 587.8 | 17.5 | 0.25 | 88.2 | 34.6 | 44.4 | 31.0 | 99.9 |
Coefficient of variation | 0.14 | 0.14 | 0.26 | 0.41 | 0.65 | 0.17 | 0.32 | 0.18 | 0.21 | 0.30 |
Background a | 11.1 | 0.2 | 83.0 | 30.8 | 36.6 | 29.4 | 87.0 | |||
TEL | 9.8 | 1.0 | 43.4 | 31.6 | 22.7 | 35.8 | 121.0 | |||
PEL | 33.0 | 5.0 | 111.0 | 149.0 | 48.6 | 128.0 | 459.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Wang, R.; Sun, W.; Wang, D.; Wu, X. Source Identification and Ecological Risk of Potentially Harmful Trace Elements in Lacustrine Sediments from the Middle and Lower Reaches of Huaihe River. Water 2023, 15, 544. https://doi.org/10.3390/w15030544
Xu M, Wang R, Sun W, Wang D, Wu X. Source Identification and Ecological Risk of Potentially Harmful Trace Elements in Lacustrine Sediments from the Middle and Lower Reaches of Huaihe River. Water. 2023; 15(3):544. https://doi.org/10.3390/w15030544
Chicago/Turabian StyleXu, Min, Rong Wang, Weiwei Sun, Dianchang Wang, and Xinghua Wu. 2023. "Source Identification and Ecological Risk of Potentially Harmful Trace Elements in Lacustrine Sediments from the Middle and Lower Reaches of Huaihe River" Water 15, no. 3: 544. https://doi.org/10.3390/w15030544