Wildlife Roadkill Driven by Hydrological Regime in a Subtropical Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Roadkill Dataset Treatment
2.3. Hydrological Modeling and Dataset
- (i)
- Basin Module: this module processes monthly rainfall-runoff in areas contributing to Mangueira Lake by employing a simple runoff coefficient formulation and calculates the water balance in the lake. Evapotranspiration and rainfall time series are derived using Inverse Distance Weighting (IDW) interpolation based on rain gauge data, presenting a monthly spatial representation of evapotranspiration and rainfall across the study area’s watershed. This module provides an upstream boundary condition for the Wetland Module.
- (ii)
- Wetland Module: this module operates as a cell-based hydrodynamic model [92,93], integrating the inflow from Mangueira Lake, the wetland hydrodynamics, and the influence of the Mirim Lake as the downstream boundary condition. The hydrodynamics within the wetland are ruled by a combination of factors, including topography, channels, and internal lagoons, besides the spatial distribution of emergent macrophytes which play a crucial role by introducing roughness to the flow. The model encapsulates this intricate and heterogeneous system by representing it through a series of irregular cells. The model also includes equations to represent the functioning of hydraulic structures, such as the floodgates and the fauna tunnels, which can act as a drainage pipe during submersion.
2.4. Data Analysis
3. Results
3.1. Water Level Modeling
3.2. Roadkill Analysis
3.3. Combining Hydrological and Roadkill Analysis
3.4. Roadkill Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carp, E. International Conference on the Conservation of Wetlands and Waterfowl: Convention on Wetlands of International Importance. In Proceedings of the International Conference on the Conservation of Wetlands and Waterfowl, Ramsar, Iran, 30 January–3 February 1971; Volume 11, pp. 963–976. [Google Scholar]
- Zheng, Y.; Zhang, G.; Wu, Y.; Xu, Y.J.; Dai, C. Dam Effects on Downstream Riparian Wetlands: The Nenjiang River, Northeast China. Water 2019, 11, 2038. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H.; Barcelo, D. Global Wetlands: Potential Distribution, Wetland Loss, and Status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.M.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.; Rosenqvist, A.; et al. State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. SSRN Electron. J. 2015, 7, 1–20. [Google Scholar] [CrossRef]
- Sundar, K.S.G.; Chauhan, A.S.; Kittur, S.; Babu, S. Wetland Loss and Waterbird Use of Wetlands in Palwal District, Haryana, India: The Role of Agriculture, Urbanization and Conversion to Fish Ponds. Wetlands 2015, 35, 115–125. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of Wetland Conversion: A Global Meta-Analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Finlayson, C.M.; Bellio, M.G.; Lowry, J.B. A Conceptual Basis for the Wise Use of Wetlands in Northern Australia—Linking Information Needs, Integrated Analyses, Drivers of Change and Human Well-Being. Mar. Freshw. Res. 2005, 56, 269–277. [Google Scholar] [CrossRef]
- Finlayson, C.M.; Rea, N. Reasons for the Loss and Degradation of Australian Wetlands. Wetl. Ecol. Manag. 1999, 7, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Peng, K. Characterizing the Relationship between Road Infrastructure and Local Economy Using Structural Equation Modeling. Transp. Policy 2018, 61, 17–25. [Google Scholar] [CrossRef]
- Enderwick, P. The Economic Growth and Development Effects of China’s One Belt, One Road Initiative. Strateg. Chang. 2018, 27, 447–454. [Google Scholar] [CrossRef]
- Chi, G.; Voss, P.R.; Deller, S.C. Rethinking Highway Effects on Population Change. Public Work. Manag. Policy 2006, 11, 18–32. [Google Scholar] [CrossRef]
- Jacoby, H.G. Access to Markets and the Benefits of Rural Roads. Econ. J. 2000, 110, 713–737. [Google Scholar] [CrossRef]
- Eberts, R.W. The Importance of Transportation Infrastructure Investments to the Nation’ s Future. In Proceedings of the U.S. Congress. House. Subcommittee on Surface Transportation, Committee on Transportation and Infrastructure, Kalamazoo, MI, USA, 28 March 1996; Available online: https://research.upjohn.org/testimonies/25 (accessed on 12 December 2023).
- Queiroz, C.; Haas, R.; Cai, Y. National Economic Development and Prosperity Related to Paved Road Infrastructure. Tranportation Res. Rec. 1994, 1455, 147–152. [Google Scholar]
- Alamgir, M.; Campbell, M.J.; Sloan, S.; Goosem, M.; Clements, G.R.; Mahmoud, M.I.; Laurance, W.F. Economic, Socio-Political and Environmental Risks of Road Development in the Tropics. Curr. Biol. 2017, 27, R1130–R1140. [Google Scholar] [CrossRef]
- Laurance, W.F.; Balmford, A. A Global Map for Road Building. Nature 2013, 495, 308–309. [Google Scholar] [CrossRef]
- Baumann, C.; White, S. Making Better Choices: A Systematic Comparison of Adversarial and Collaborative Approaches to the Transport Policy Process. Transp. Policy 2012, 24, 83–90. [Google Scholar] [CrossRef]
- Hettige, H. When Do Rural Roads Benefit the Poor and How? An in-Depth Analysis Based on Case Studies; Asian Development Bank: Manila, Philippines, 2006; ISBN 971-561-601-1. [Google Scholar]
- Laurance, W.F.; Croes, B.M.; Tchignoumba, L.; Lahm, S.A.; Alonso, A.; Lee, M.E.; Campbell, P.; Ondzeano, C. Impacts of Roads and Hunting on Central African Rainforest Mammals. Conserv. Biol. 2006, 20, 1251–1261. [Google Scholar] [CrossRef]
- Laurance, S.G.W.; Stouffer, P.C.; Laurance, W.F. Effects of Road Clearings on Movement Patterns of Understory Rainforest Birds in Central Amazonia. Conserv. Biol. 2004, 18, 1099–1109. [Google Scholar] [CrossRef]
- Dwyer, M.B. “They Will Not Automatically Benefit”: The Politics of Infrastructure Development in Laos’s Northern Economic Corridor. Polit. Geogr. 2020, 78, 102118. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Frissell, C.A. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Gunson, K.E.; Ireland, D.; Schueler, F. A Tool to Prioritize High-Risk Road Mortality Locations for Wetland-Forest Herpetofauna in Southern Ontario, Canada. North. West. J. Zool. 2012, 8, 409–413. [Google Scholar]
- Li, Y.; Yu, J.; Ning, K.; Du, S.; Han, G.; Qu, F.; Wang, G.; Fu, Y.; Zhan, C. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.T.; Mowat, G.; Reid, A.; Smit, L.; Proctor, M.; McLellan, B.N.; Nielsen, S.E.; Boutin, S. Effects of Habitat Quality and Access Management on the Density of a Recovering Grizzly Bear Population. J. Appl. Ecol. 2018, 55, 1406–1417. [Google Scholar] [CrossRef]
- Bennett, V.J. Effects of Road Density and Pattern on the Conservation of Species and Biodiversity. Curr. Landsc. Ecol. Rep. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Jones, J.A.; Swanson, F.J.; Wemple, B.C.; Snyder, K.U. Effects of Roads on Hydrology, Geomorphology, and Disturbance Patches in Stream Networks. Conserv. Biol. 2000, 14, 76–85. [Google Scholar] [CrossRef]
- Findlay, C.S.; Bourdages, J. Response Time of Wetland Biodiversity to Road Construction on Adjacent Lands. Conservation Biology 2000, 14, 86–94. [Google Scholar] [CrossRef]
- Forman, R.T.T. Estimate of the Area Affected Ecologically by the Road System in the United States. Conserv. Biol. 2000, 14, 31–35. [Google Scholar] [CrossRef]
- Clark, R.W.; Brown, W.S.; Stechert, R.; Zamudio, K.R. Roads, Interrupted Dispersal, and Genetic Diversity in Timber Rattlesnakes. Conserv. Biol. 2010, 24, 1059–1069. [Google Scholar] [CrossRef]
- Bartonička, T.; Andrášik, R.; Duľa, M.; Sedoník, J.; Bíl, M. Identification of Local Factors Causing Clustering of Animal-Vehicle Collisions. J. Wildl. Manag. 2018, 82, 940–947. [Google Scholar] [CrossRef]
- Aquino, A.G.H.E.O.; Nkomo, S.L. Spatio-temporal Patterns and Consequences of Road Kills: A Review. Animals 2021, 11, 799. [Google Scholar] [CrossRef]
- Coffin, A.W. From Roadkill to Road Ecology: A Review of the Ecological Effects of Roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Gunson, K.E.; Chruszcz, B.; Clevenger, A.P. Large Animal-Vehicle Collisions in the Central Canadian Rocky Mountains: Patterns and Characteristics; University of California: Davis, CA, USA, 2003; Available online: https://escholarship.org/uc/item/3qm680qb (accessed on 1 November 2023).
- Langley, R.L.; Higgins, S.A.; Herrin, K.B. Risk Factors Associated with Fatal Animal-Vehicle Collisions in the United States, 1995–2004. Wilderness Environ. Med. 2006, 17, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.M. Trends and Characteristics of Animal-Vehicle Collisions in the United States. J. Saf. Res. 2011, 42, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Abra, F.D.; Granziera, B.M.; Huijser, M.P.; De Barros Ferraz, K.M.P.M.; Haddad, C.M.; Paolino, R.M. Pay or Prevent? Human Safety, Costs to Society and Legal Perspectives on Animal-Vehicle Collisions in São Paulo State, Brazil. PLoS ONE 2019, 14, e0215152. [Google Scholar] [CrossRef] [PubMed]
- Waetjen, D.P.; Shilling, F.M. Large Extent Volunteer Roadkill and Wildlife Observation Systems as Sources of Reliable Data. Front. Ecol. Evol. 2017, 5, 89. [Google Scholar] [CrossRef]
- Fabrizio, M.; Di Febbraro, M.; D’Amico, M.; Frate, L.; Roscioni, F.; Loy, A. Habitat Suitability vs Landscape Connectivity Determining Roadkill Risk at a Regional Scale: A Case Study on European Badger (Meles Meles). Eur. J. Wildl. Res. 2019, 65, 7. [Google Scholar] [CrossRef]
- Filius, J.; Van Der Hoek, Y.; Jarrín-V, P.; Van Hooft, P. Wildlife Roadkill Patterns in a Fragmented Landscape of the Western Amazon. Ecol. Evol. 2020, 10, 6623–6635. [Google Scholar] [CrossRef]
- Ramp, D.; Caldwell, J.; Edwards, K.A.; Warton, D.; Croft, D.B. Modelling of Wildlife Fatality Hotspots along the Snowy Mountain Highway in New South Wales, Australia. Biol. Conserv. 2005, 126, 474–490. [Google Scholar] [CrossRef]
- Gomes, L.; Grilo, C.; Silva, C.; Mira, A. Identification Methods and Deterministic Factors of Owl Roadkill Hotspot Locations in Mediterranean Landscapes. Ecol. Res. 2009, 24, 355–370. [Google Scholar] [CrossRef]
- Meza-Joya, F.L.; Ramos, E.; Cardona, D. Spatio-Temporal Patterns of Mammal Road Mortality in Middle Magdalena Valley, Colombia. Oecologia Aust. 2019, 23, 575–588. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Spatial Patterns and Factors Influencing Small Vertebrate Fauna Road-Kill Aggregations. Biol. Conserv. 2002, 109, 15–26. [Google Scholar] [CrossRef]
- Mountrakis, G.; Gunson, K. Multi-Scale Spatiotemporal Analyses of Moose-Vehicle Collisions: A Case Study in Northern Vermont. Int. J. Geogr. Inf. Sci. 2009, 23, 1389–1412. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Highway Mitigation Fencing Reduces Wildlife-Vehicle Collisions. Wildl. Soc. Bull. 2001, 29, 646–653. [Google Scholar]
- Clevenger, A.P.; Wierzchowski, J.; Chruszcz, B.; Gunson, K. GIS-Generated, Expert-Based Models for Identifying Wildlife Habitat Linkages and Planning Mitigation Passages. Conserv. Biol. 2002, 16, 503–514. [Google Scholar] [CrossRef]
- Dodd, C.K.; Barichivich, W.J.; Smith, L.L. Effectiveness of a Barrier Wall and Culverts in Reducing Wildlife Mortality on a Heavily Traveled Highway in Florida. Biol. Conserv. 2004, 118, 619–631. [Google Scholar] [CrossRef]
- Husby, M. Factors Affecting Road Mortality in Birds. Ornis Fenn. 2016, 93, 212–224. [Google Scholar] [CrossRef]
- Lehnert, M.E.; Bissonette, J.A. Effectiveness of Highway Crosswalk Structures at Reducing Deer-Vehicle Collisions. Wildl. Soc. Bull. 1997, 25, 809–818. [Google Scholar]
- Romin, L.; Dalton, L. Lack of Response by Mule Deer to Wildlife Warning Whistles. Wildl. Soc. Bull. 1992, 20, 382–384. [Google Scholar] [CrossRef]
- Rytwinski, T.; Soanes, K.; Jaeger, J.A.G.; Fahrig, L.; Findlay, C.S.; Houlahan, J. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis. PLoS ONE 2016, 11, 166941. [Google Scholar] [CrossRef] [PubMed]
- Kattelmann, R.; Embury, M. Riparian Areas and Wetlands. In Sierra Nevada Ecosystem Project: Final Report to Congress; Assessments and Scientific Basis for Management Options; University of California: Davis, CA, USA, 1996; Volume III. [Google Scholar]
- Beevers, L.; Douven, W.; Lazuardi, H.; Verheij, H. Cumulative Impacts of Road Developments in Floodplains. Transp. Res. D Transp. Environ. 2012, 17, 398–404. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H.; Fahrig, L.; France, R.; Goldman, C.R.; Heanue, K.; et al. Road Ecology: Science and Solutions; Island Press: Washington, DC, USA, 2003; Volume 40, ISBN 1559639326. [Google Scholar]
- Blanton, P.; Marcus, W.A. Roads, Railroads, and Floodplain Fragmentation Due to Transportation Infrastructure Along Rivers. Ann. Assoc. Am. Geogr. 2014, 104, 413–431. [Google Scholar] [CrossRef]
- Demenge, J.; Alba, R.; Welle, K.; Manjur, K.; Addisu, A.; Mehta, L.; Woldearegay, K. Multifunctional Roads. J. Infrastruct. Dev. 2015, 7, 165–180. [Google Scholar] [CrossRef]
- Glista, D.J.; DeVault, T.L.; DeWoody, J.A. A Review of Mitigation Measures for Reducing Wildlife Mortality on Roadways. Landsc. Urban. Plan. 2009, 91, 1–7. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Gilman, K. Hydrology and Wetland Conservation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Sklar, F.H.; McVoy, C.; Van Zee, R.; Gawlik, D.; Swift, D.; Park, W.; Fitz, H.C.; Wu, Y.; Rudnick, D.; Fontaine, T.; et al. Chapter 2: Hydrologic Needs: The Effects of Altered Hydrology on the Everglades. In Everglades Interim Report; SFWMD: West Palm Beach, FL, USA, 1999; p. 70. [Google Scholar]
- Casanova, M.T.; Brock, M.A. How Do Depth, Duration and Frequency of Flooding Influence the Establishment of Wetland Plant Communities? Plant Ecol. 2000, 147, 237–250. [Google Scholar] [CrossRef]
- Roberts, J.; Young, B.; Marston, F. Estimating the Water Requirements for Plants of Floodplain Wetlands: A Guide; Land and Water Resources Research and Development Corporation: Canberra, Australia, 2000. [Google Scholar]
- Snodgrass, J.W.; Ackerman, J.W.; Bryan, A.L.; Burger, J. Influence of Hydroperiod, Isolation, and Heterospecifics on the Distribution of Aquatic Salamanders (Siren and Amphiuma) among Depression Wetlands. Copeia 1999, 1999, 107–113. [Google Scholar] [CrossRef]
- Bennitt, E.; Bonyongo, M.C.; Harris, S. Habitat Selection by African Buffalo (Syncerus caffer) in Response to Landscape-Level Fluctuations in Water Availability on Two Temporal Scales. PLoS ONE 2014, 9, e101346. [Google Scholar] [CrossRef]
- Escalera-Vázquez, L.H.; Calderón-Cortés, N.; Zambrano-González, L. Fish Population Responses to Hydrological Variation in a Seasonal Wetland in Southeast México. Neotrop. Ichthyol. 2017, 15, e160129. [Google Scholar] [CrossRef]
- Bauder, E.T. The Effects of an Unpredictable Precipitation Regime on Vernal Pool Hydrology. Freshw. Biol. 2005, 50, 2129–2135. [Google Scholar] [CrossRef]
- Farmer, R.G.; Brooks, R.J. Integrated Risk Factors for Vertebrate Roadkill in Southern Ontario. J. Wildl. Manag. 2012, 76, 1215–1224. [Google Scholar] [CrossRef]
- Philcox, C.K.; Grogan, A.L.; Macdonald, D.W. Patterns of Otter Lutra lutra Road Mortality in Britain. J. Appl. Ecol. 1999, 36, 748–761. [Google Scholar] [CrossRef]
- Langen, T.A.; Ogden, K.M.; Schwarting, L.L. Predicting Hot Spots of Herpetofauna Road Mortality Along Highway Networks. J. Wildl. Manag. 2009, 73, 104–114. [Google Scholar] [CrossRef]
- Marchand, M.N.; Litvaitis, J.A. Effects of Habitat Features and Landscape Composition on the Population Structure of a Common Aquatic Turtle in a Region Undergoing Rapid Development. Conserv. Biol. 2004, 18, 758–767. [Google Scholar] [CrossRef]
- Coelho, I.P.; Teixeira, F.Z.; Colombo, P.; Coelho, A.V.P.; Kindel, A. Anuran Road-Kills Neighboring a Peri-Urban Reserve in the Atlantic Forest, Brazil. J. Environ. Manag. 2012, 112, 17–26. [Google Scholar] [CrossRef]
- Grilo, C.; Coimbra, M.R.; Cerqueira, R.C.; Barbosa, P.; Dornas, R.A.P.; Gonçalves, L.O.; Teixeira, F.Z.; Coelho, I.P.; Schmidt, B.R.; Pacheco, D.L.K.; et al. BRAZIL ROAD-KILL: A Data Set of Wildlife Terrestrial Vertebrate Road-Kills. Ecology 2018, 99, 2625. [Google Scholar] [CrossRef]
- Jenkins, D.G.; Grissom, S.; Miller, K. Consequences of Prairie Wetland Drainage for Crustacean Biodiversity and Metapopulations. Conserv. Biol. 2003, 17, 158–167. [Google Scholar] [CrossRef]
- Tassi, R.; Marques, D.D.M.; Collischonn, W. Advances in Water Management of Southern Brazilian Sub-Tropical Wetlands Using Bio-Indicators. In Changes in Water Resources Systems: Methodologies to Maintain Water Security and Ensure Integrated Management, Proceedings of the Symposium HS3006 at IUGG2007, Perugia, Italy, 2–13 July 2007; IAHS-AISH Publication: Wallingford, UK, 2007; pp. 1–8. [Google Scholar]
- Keil, P.; Storch, D.; Jetz, W. On the Decline of Biodiversity Due to Area Loss. Nat. Commun. 2015, 6, 8837. [Google Scholar] [CrossRef] [PubMed]
- Grilo, C.; Ferreira, F.Z.; Revilla, E. No Evidence of a Threshold in Traffic Volume Affecting Road-Kill Mortality at a Large Spatio-Temporal Scale. Environ. Impact Assess. Rev. 2015, 55, 54–58. [Google Scholar] [CrossRef]
- Beier, P.; Majka, D.R.; Spencer, W.D. Forks in the Road: Choices in Procedures for Designing Wildland Linkages. Conserv. Biol. 2008, 22, 836–851. [Google Scholar] [CrossRef]
- Rendall, A.R.; Webb, V.; Sutherland, D.R.; White, J.G.; Renwick, L.; Cooke, R. Where Wildlife and Traffic Collide: Roadkill Rates Change through Time in a Wildlife-Tourism Hotspot. Glob. Ecol. Conserv. 2021, 27, e01530. [Google Scholar] [CrossRef]
- Ramsar Sites RIS for Site No. 2298; Taim Ecological Station: Brazil, 2017; Available online: https://rsis.ramsar.org/ (accessed on 10 July 2023).
- Rosa, C.N.d.; Tassi, R.; Piccilli, D.G.A.; Pereira Filho, W.; Favaretto, J.R.; Fontoura, J.R. Identificação do Padrão de Distribuição de Macrófitas Aquáticas Emergentes No Banhado do Taim-Rs-Brasil, Frente a Diferentes Condições Hidrológicas. Geosci. = Geociências 2017, 36, 771–784. [Google Scholar] [CrossRef]
- Da Paz, A.R.; Villanueva, A.N.; Schettini, E.B.C. The Influence of Spatial Vegetation Distribution on Taim Wetland Hydrodynamics. In Dyn Biogeochem River Corridors Wetland; IAHS-AISH Publication: Wallingford, UK, 2005; pp. 78–85. [Google Scholar]
- Villanueva, A.O.N.; Marques, D.d.M.; Tucci, C.E.M. The Taim Wetland Conflict: A Compromise between Environment Conservation and Irrigation. Water Int. 2000, 25, 610–616. [Google Scholar] [CrossRef]
- Tassi, R.; Bravo, J.M.; Villanueva, A.; Da Motta Marques, D.; Allasia, D.; Tassinari, L. Climate Changes and Their Major Impacts on Environmental Conditions of a Freshwater Brazilian Wetland. IAHS-AISH Proc. Rep. 2013, 359, 333–339. [Google Scholar]
- Huijser, M.P.; Abra, F.D.; Duffield, J.W. Mammal Road Mortality and Cost–Benefit Analyses of Mitigation Measures Aimed at Reducing Collisions with Capybara (Hydrochoerus hydrochaeris) in São Paulo State, Brazil. Oecologia Aust. 2013, 17, 129–146. [Google Scholar] [CrossRef]
- Bager, A.; Fontoura, V. Evaluation of the Effectiveness of a Wildlife Roadkill Mitigation System in Wetland Habitat. Ecol. Eng. 2013, 53, 31–38. [Google Scholar] [CrossRef]
- Motta Marques, D.; Rodrigues, L.R.; Fragoso, C.R.; Tassi, R.; Bravo, J.M.; Tucci, C.; Calazans, D.; Callegaro, V.L.M.; Villanueva, A. O Sistema Hidrológico do TAIM. In Os Sites e o Programa Brasileiro de Pesquisas Ecológicas de Longa Duração; PELD-CNPq: Belo Horizonte, MG, Brazil, 2002; p. 188. [Google Scholar]
- Tassi, R. Gerenciamento Hidroambiental de Terras Úmidas. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2008. [Google Scholar]
- Villanueva, A.O.N. Simulação de Áreas de Inundação Dinâmicas: Canais Compostos e Wetlands. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, 1997. [Google Scholar]
- Cunge, J.A.; Holly, F.M.; Verwey, A. Practical Aspects of Computational River Hydraulics; Pitman Advanced Pub. Program: Lanham, MD, USA, 1980. [Google Scholar]
- QGIS Development Team. QGIS.org, %Y. QGIS Geographic Information System. QGIS Association. 2021. Available online: http://www.qgis.org (accessed on 15 October 2023).
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Mendiburu, F. Package “agricolae” Title Statistical Procedures for Agricultural Research. In Statistical Procedures for Agricultural Research (Version 1.3-5); 2021; Available online: https://CRAN.R-project.org/package=agricolae (accessed on 3 February 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org (accessed on 3 February 2023).
- Seidel, E.J.; Pazini, J.B.; Tomazella, V.L.D.; Vieira, A.M.C.; Silva, F.F.; Martins, J.F.S.; Barrigossi, J.A.F. Predicting Rice Stem Stink Bug Population Dynamics Based on GAMLSS Models. Environ. Entomol. 2020, 49, 1145–1154. [Google Scholar] [CrossRef]
- Ribeiro, T.F.; Seidel, E.J.; Guerra, R.R.; Peña-Ramírez, F.A.; Silva, A.M. da Soybean Production Value in the Rio Grande Do Sul under the GAMLSS Framework. Commun. Stat. Case Stud. Data Anal. Appl. 2021, 7, 146–165. [Google Scholar] [CrossRef]
- Dantas, L.G.; dos Santos, C.A.C.; de Olinda, R.A.; de Brito, J.I.B.; Santos, C.A.G.; Martins, E.S.P.R.; de Oliveira, G.; Brunsell, N.A. Rainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Models. Water 2020, 12, 2478. [Google Scholar] [CrossRef]
- Scala, P.; Cipolla, G.; Treppiedi, D.; Noto, L.V. The Use of GAMLSS Framework for a Non-Stationary Frequency Analysis of Annual Runoff Data over a Mediterranean Area. Water 2022, 14, 2848. [Google Scholar] [CrossRef]
- Debele, S.E.; Strupczewski, W.G.; Bogdanowicz, E. A Comparison of Three Approaches to Non-Stationary Flood Frequency Analysis. Acta Geophys. 2017, 65, 863–883. [Google Scholar] [CrossRef]
- Rigby, R.; Stasinopolulos, D.M. A Flexible Regression Approach Using GAMLSS in R; London Metropolitan University: London, UK, 2008. [Google Scholar]
- Rigby, R.A.; Stasinopoulos, D.M.; Lane, P.W. Generalized Additive Models for Location, Scale and Shape. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A Refined Index of Model Performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Veith Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Pinto, F.A.S.; Cirino, D.W.; Cerqueira, R.C.; Rosa, C.; Freitas, S.R. How Many Mammals Are Killed on Brazilian Roads? Assessing Impacts and Conservation Implications. Diversity 2022, 14, 835. [Google Scholar] [CrossRef]
- Valerio, F.; Carvalho, F.; Barbosa, A.M.; Mira, A.; Santos, S.M. Accounting for Connectivity Uncertainties in Predicting Roadkills: A Comparative Approach between Path Selection Functions and Habitat Suitability Models. Environ. Manag. 2019, 64, 329–343. [Google Scholar] [CrossRef]
- Kim, K.; Serret, H.; Clauzel, C.; Andersen, D.; Jang, Y. Spatio-Temporal Characteristics and Predictions of the Endangered Leopard Cat Prionailirus bengalensis euptilura Road-kills in the Republic of Korea. Glob. Ecol. Conserv. 2019, 19, e00673. [Google Scholar] [CrossRef]
- Romin, L.A.; Bissonette, J.A. Temporal and Spatial Distribution of Highway Mortality of Mule Deer on Newly Constructed Roads at Jordanelle Reservoir, Utah. Great Basin Nat. 1996, 56, 1–11. [Google Scholar]
- Eloff, P.; van Niekerk, A. Temporal Patterns of Animal-Related Traffic Accidents in the Eastern Cape, South Africa. Afr. J. Wildl. Res. 2008, 38, 153–162. [Google Scholar] [CrossRef]
- Machado, F.S.; Fontes, M.A.L.; Mendes, P.B.; Moura, A.S.; RomãO, B. dos S. Roadkill on Vertebrates in Brazil: Seasonal Variation and Road Type Comparison. North. West. J. Zool. 2015, 11, 247–252. [Google Scholar]
- Carvalho, C.F.; Custódio, A.E.I.; Júnior, O.M. Influence of Climate Variables on Roadkill Rates of Wild Vertebrates in the Cerrado Biome, Brazil. Biosci. J. 2017, 33, 1632–1641. [Google Scholar] [CrossRef]
- Kazemi, V.D.; Jafari, H.; Yavari, A. Spatio-Temporal Patterns of Wildlife Road Mortality in Golestan National Park-North East of Iran. Open J. Ecol. 2016, 6, 312–324. [Google Scholar] [CrossRef]
- Arca-Rubio, J.; Moreno-Rueda, G.; Ortega, Z. The Distribution of Vertebrate Roadkill Varies by Season, Surrounding Environment, and Animal Class. Eur. J. Wildl. Res. 2023, 69, 42. [Google Scholar] [CrossRef]
- Santos, S.M.; Carvalho, F.; Mira, A. How Long Do the Dead Survive on the Road? Carcass Persistence Probability and Implications for Road-Kill Monitoring Surveys. PLoS ONE 2011, 6, e25383. [Google Scholar] [CrossRef] [PubMed]
- Faria-Corrêa, M.; Balbueno, R.A.; Vieira, E.M.; de Freitas, T.R.O. Activity, Habitat Use, Density, and Reproductive Biology of the Crab-Eating Fox (Cerdocyon thous) and Comparison with the Pampas Fox (Lycalopex gymnocercus) in a Restinga Area in the Southern Brazilian Atlantic Forest. Mamm. Biol. 2009, 74, 220–229. [Google Scholar] [CrossRef]
- Main, M.B.; Allen, G.M. Landscape and Seasonal Influences on Roadkill of Wildlife in Southwest Florida. Fla. Sci. 2002, 65, 149–158. [Google Scholar]
- Ojasti, J. Notes on the Mating Behavior of the Capybara. J. Mammal. 1968, 49, 534–535. [Google Scholar] [CrossRef]
- Ojasti, J.; Sosa Burgos, L.M. Density Regulation in Populations of Capybara. Acta Zool. Fenn. 1985, 173, 81–83. [Google Scholar]
- Herrera, E.A.; Macdonald, D.W. Group Stability and the Structure of a Capybara Population. In Symposia of the Zoological Society of London; Cambridge University Press: Cambridge, UK, 1987; Volume 58. [Google Scholar]
- Herrera, E.A.; Barreto, G.R. Capybaras as a Source of Protein: Utilization and Management in Venezuela. In Capybara: Biology, Use and Conservation of an Exceptional Neotropical Species; Springer: New York, NY, USA, 2013; ISBN 9781461440000. [Google Scholar]
- Schaller, G.B. Mammals and Their Biomass on a Brazilian Ranch. Arq. Zool. 1983, 31, 1–36. [Google Scholar] [CrossRef]
- Mori, E.; Andreoni, A.; Cecere, F.; Magi, M.; Lazzeri, L. Patterns of Activity Rhythms of Invasive Coypus Myocastor coypus Inferred through Camera-Trapping. Mamm. Biol. 2020, 100, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Gosling, L.M.; Guyon, G.E.; Wright, K.M.H. Diurnal Activity of Feral Coypus (Myocastor coypus) during the Cold Winter Of1978–9. J. Zool. 1980, 192, 143–146. [Google Scholar] [CrossRef]
- Canova, L.; Balestrieri, A. Long-Term Monitoring by Roadkill Counts of Mammal Populations Living in Intensively Cultivated Landscapes. Biodivers. Conserv. 2019, 28, 97–113. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Muñoz-Igualada, J.; San Miguel-Ayanz, A. Rabbit Warren Distribution in Relation to Pasture Communities in Mediterranean Habitats: Consequences for Management of Rabbit Populations. Wildl. Res. 2005, 32, 723–731. [Google Scholar] [CrossRef]
- Campos, Z.; Coutinho, M.; Mourão, G.; Bayliss, P.; Magnusson, W.E. Long Distance Movements by Caiman crocodilus yacare: Implications for Management of the Species in the Brazilian Pantanal. Herpetol. J. 2006, 16, 123–132. [Google Scholar]
- de Souza, J.C.; da Cunha, V.P.; Markwith, S.H. Spatiotemporal Variation in Human-Wildlife Conflicts along Highway BR-262 in the Brazilian Pantanal. Wetl. Ecol. Manag. 2015, 23, 227–239. [Google Scholar] [CrossRef]
- Gonçalves, L.O.; Alvares, D.J.; Teixeira, F.Z.; Schuck, G.; Coelho, I.P.; Esperandio, I.B.; Anza, J.; Beduschi, J.; Bastazini, V.A.G.; Kindel, A. Reptile Road-Kills in Southern Brazil: Composition, Hot Moments and Hotspots. Sci. Total Environ. 2018, 615, 1438–1445. [Google Scholar] [CrossRef]
- Ortega, Z.; Martín-Vallejo, F.J. Main Factors Affecting Lacertid Lizard Thermal Ecology. Integr. Zool. 2019, 14, 293–305. [Google Scholar] [CrossRef]
- Fahrig, L.; Rytwinski, T. Effects of Roads on Animal Abundance: An Empirical Review and Synthesis. Ecol. Soc. 2009, 14, 21. [Google Scholar] [CrossRef]
- Both, C.; Kaefer, I.L.; Santos, T.G.; Cechin, S.T.Z. An Austral Anuran Assemblage in the Neotropics: Seasonal Occurrence Correlated with Photoperiod. J. Nat. Hist. 2008, 42, 205–222. [Google Scholar] [CrossRef]
- Ferreguetti, A.C.; Graciano, J.M.; Luppi, A.P.; Pereira-Ribeiro, J.; Rocha, C.F.D.; Bergallo, H.G. Roadkill of Medium to Large Mammals along a Brazilian Road (BR-262) in Southeastern Brazil: Spatial Distribution and Seasonal Variation. Stud. Neotrop. Fauna Environ. 2020, 55, 216–225. [Google Scholar] [CrossRef]
- Coelho, I.P.; Kindel, A.; Coelho, A.V.P. Roadkills of Vertebrate Species on Two Highways through the Atlantic Forest Biosphere Reserve, Southern Brazil. Eur. J. Wildl. Res. 2008, 54, 689–699. [Google Scholar] [CrossRef]
- D’Amico, M.; Román, J.; de los Reyes, L.; Revilla, E. Vertebrate Road-Kill Patterns in Mediterranean Habitats: Who, When and Where. Biol. Conserv. 2015, 191, 234–242. [Google Scholar] [CrossRef]
- Ascensão, F.; Ribeiro, Y.G.G.; Campos, Z.; Yogui, D.R.; Desbiez, A.L.J. Forecasting Seasonal Peaks in Roadkill Patterns for Improving Road Management. J. Environ. Manag. 2022, 321, 115903. [Google Scholar] [CrossRef]
- Jorgeson, J.P. Notes on the Ecology and Behavior of Capybaras in Northeastern Colômbia. Vida Silv. Neotrop. 1986, 1, 31–40. [Google Scholar]
- Moreira, J.R.; Macdonald, D.W. Capybara Use and Conservation in South America. In The Exploitation of Mammal Populations; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Peterson, R. Beaver, Muskrat and Nutria on Small Woodlands; Woodland Fish and Wildlife: Portland, OR, USA, 1998. [Google Scholar]
- Bartlam-Brooks, H.L.A.; Bonyongo, M.C.; Harris, S. How Landscape Scale Changes Affect Ecological Processes in Conservation Areas: External Factors Influence Land Use by Zebra (Equus burchelli) in the Okavango Delta. Ecol. Evol. 2013, 3, 2795–2805. [Google Scholar] [CrossRef]
- Herrera, E.A.; Salas, V.; Congdon, E.R.; Corriale, M.J.; Tang-Martínez, Z. Capybara Social Structure and Dispersal Patterns: Variations on a Theme. J. Mammal. 2011, 92, 12–20. [Google Scholar] [CrossRef]
- Sheffels, T.; Sytsma, M. Report on Nutria Management and Research in the Pacific Northwest; Center for Lakes and Reservoirs Publications and Presentations: Portland, OR, USA, 2007. [Google Scholar]
- Bager, A. Áreas Protegidas: Conservação no Âmbito do Cone Sul; Alex Bager: Pelotas, Brazil, 2003. [Google Scholar]
Period | Total | Mammals | Reptiles | Birds | Capybara | Coypu | Other Mammals |
---|---|---|---|---|---|---|---|
BWPS | 45.2 a | 42.2 a | 5.0 a | 1.1 a | 16.2 a | 23.0 a | 3.0 a |
AWPS | 22.9 b | 19.9 b | 3.7 b | 0.6 a | 10.9 b | 7.6 b | 1.4 b |
PDWPS | 17.3 c | 16.3 c | 2.3 c | 0.1 b | 9.8 b | 5.3 c | 1.3 b |
KW p-value | <0.0001 | <0.0001 | 0.0004 | 0.0003 | <0.0001 | <0.0001 | 0.0014 |
Period | Total | Mammals | Reptiles | Birds | Capybara | Coypu | Other Mammals |
---|---|---|---|---|---|---|---|
Spring | 20.7 b | 17.4 bc | 3.9 a | 0.4 a | 9.4 bc | 7.1 a | 1.0 a |
Summer | 16.3 b | 13.6 c | 4.3 a | 0.4 a | 7.4 c | 4.2 a | 2.0 a |
Autumn | 25.6 b | 24.4 b | 3.1 a | 0.4 a | 13.0 b | 9.1 a | 2.2 a |
Winter | 45.4 a | 43.4 a | 3.0 a | 0.9 a | 17.7 a | 23.7 a | 2.0 a |
KW p-value | 0.0040 | 0.0004 | 0.2330 | 0.8965 | <0.0001 | 0.0882 | 0.1551 |
Period | Season | Total | Mammals | Reptiles | Birds | Capybara | Coypu | Other Mammals |
---|---|---|---|---|---|---|---|---|
BWPS | Spring | 29.9 a | 26.3 a | 4.6 a | 0.4 a | 14.7 a | 10.1 a | 1.4 a |
Summer | 25.7 a | 22.7 a | 4.8 a | 0.5 a | 11.8 a | 8.5 a | 2.3 a | |
Autumn | 33.6 a | 31.8 a | 4.8 a | 0.7 a | 16.3 a | 11.8 a | 3.7 a | |
Winter | 72.8 a | 69.0 a | 5.5 a | 2.0 a | 19.2 a | 46.1 a | 3.8 a | |
p-value * | 0.2399 | 0.1069 | 0.9950 | 0.6199 | 0.0934 | 0.5584 | 0.2048 | |
AWPS | Spring | 21.0 ab | 18.5 ab | 5.2 a | 0.7 a | 10.3 b | 8.6 a | 1.1 a |
Summer | 14.0 b | 13.0 b | 4.5 a | 0.7 a | 5.8 c | 3.4 a | 2.1 a | |
Autumn | 16.5 b | 14.5 b | 2.6 a | 0.3 a | 13.0 bc | 9.7 a | 1.6 a | |
Winter | 31.5 a | 28.5 a | 1.5 a | 0.5 a | 18.0 a | 10.0 a | 0.3 a | |
p-value * | 0.0415 | 0.0171 | 0.1028 | 0.6387 | 0.0043 | 0.1351 | 0.2759 | |
PDWPS | Spring | 10.2 a | 8.6 a | 2.1 a | 0.0 a | 4.7 a | 3.4 a | 0.5 a |
Summer | 12.6 a | 10.8 a | 3.6 a | 0.0 a | 6.5 a | 2.5 a | 1.8 a | |
Autumn | 19.2 a | 18.5 a | 2.2 a | 0.2 a | 10.4 a | 6.5 a | 1.6 a | |
Winter | 25.6 a | 25.4 a | 1.3 a | 0.0 a | 16.2 a | 8.1 a | 1.2 a | |
p-value * | 0.3404 | 0.1992 | 0.2412 | 0.1136 | 0.0525 | 0.9591 | 0.2340 |
Roadkill Class/Group | Parameter | Estimate | Standard Error | p-Value |
---|---|---|---|---|
Total roadkill AIC = 922.11; BIC = 935.79 | ) | |||
Intercept | 2.81 | 0.30 | <0.0001 | |
AWPS | −0.95 | 0.18 | <0.0001 | |
PDWPS | −1.34 | 0.17 | <0.0001 | |
Water level | 0.41 | 0.11 | 0.0005 | |
) | ||||
Intercept | −0.79 | 0.18 | <0.0001 | |
Model equation | ||||
Mammals roadkill AIC = 905.84; BIC = 919.52 | ) | |||
Intercept | 2.69 | 0.32 | <0.0001 | |
AWPS | −1.04 | 0.19 | <0.0001 | |
PDWPS | −1.35 | 0.18 | <0.0001 | |
Water level | 0.42 | 0.12 | 0.0005 | |
) | ||||
Intercept | −0.68 | 0.18 | <0.0002 | |
Model equation | ||||
Birds roadkill AIC = 194.28 e BIC = 202.48. | ) | |||
Intercept | −0.22 | 0.23 | 0.3396 | |
PDWPS | −2.84 | 0.78 | 0.0004 | |
) | ||||
Intercept | 0.97 | 0.52 | 0.0654 | |
Model equation |
Roadkill Class/Group | Parameter | Estimate | Standard Error | p-Value |
---|---|---|---|---|
Capybara roadkill AIC = 756.89; BIC = 770.57 | ) | |||
Intercept | 2.13 | 0.29 | <0.0001 | |
AWPS | −0.75 | 0.18 | <0.0001 | |
PDWPS | −0.91 | 0.17 | <0.0001 | |
Water level | 0.31 | 0.11 | 0.0065 | |
) | ||||
Intercept | −0.99 | 0.20 | <0.0001 | |
Model equation | ||||
Coypus roadkill AIC = 706.71; BIC = 720.39 | ) | |||
Intercept | 0.65 | 0.47 | 0.1730 | |
AWPS | −1.68 | 0.27 | <0.0001 | |
PDWPS | −2.27 | 0.27 | <0.0001 | |
Water level | 0.94 | 0.18 | <0.0001 | |
) | ||||
Intercept | 0.11 | 0.22 | 0.6380 | |
Model equation | ||||
Other mammals roadkill AIC = 396.97; BIC = 405.18 | ) | |||
Intercept | 3.24 | 0.52 | <0.0001 | |
Water level | −0.94 | 0.18 | <0.0001 | |
) | ||||
Intercept | −0.46 | 0.36 | 0.1940 | |
Model equation |
Roadkill Class | Parameter | Estimate | Standard Error | p-Value |
---|---|---|---|---|
Reptiles roadkill AIC = 524.14; BIC = 535.09 | ) | |||
Intercept | 2.49 | 0.38 | <0.0001 | |
PDWPS | −0.61 | 0.20 | 0.0034 | |
Water level | −0.37 | 0.14 | 0.0084 | |
) | ||||
Intercept | 0.94 | 0.16 | <0.0001 | |
Model equation |
Roadkill | Overall | BWPS | AWPS | PDWPS |
---|---|---|---|---|
Total | 0.58 | 0.33 | 0.42 | 0.39 |
Mammals | 0.57 | 0.32 | 0.36 | 0.37 |
Birds | 0.34 | 0.14 | 0.30 | 0.00 |
Reptiles | 0.34 | 0.41 | 0.18 | 0.38 |
Capybara | 0.54 | 0.55 | 0.26 | 0.30 |
Coypu | 0.55 | 0.39 | 0.53 | 0.55 |
Other mammals | 0.53 | 0.28 | 0.32 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassi, R.; Seidel, E.J.; Motta-Marques, D.d.; Villanueva, A.; Kalin, L. Wildlife Roadkill Driven by Hydrological Regime in a Subtropical Wetland. Water 2023, 15, 4307. https://doi.org/10.3390/w15244307
Tassi R, Seidel EJ, Motta-Marques Dd, Villanueva A, Kalin L. Wildlife Roadkill Driven by Hydrological Regime in a Subtropical Wetland. Water. 2023; 15(24):4307. https://doi.org/10.3390/w15244307
Chicago/Turabian StyleTassi, Rutineia, Enio Júnior Seidel, David da Motta-Marques, Adolfo Villanueva, and Latif Kalin. 2023. "Wildlife Roadkill Driven by Hydrological Regime in a Subtropical Wetland" Water 15, no. 24: 4307. https://doi.org/10.3390/w15244307
APA StyleTassi, R., Seidel, E. J., Motta-Marques, D. d., Villanueva, A., & Kalin, L. (2023). Wildlife Roadkill Driven by Hydrological Regime in a Subtropical Wetland. Water, 15(24), 4307. https://doi.org/10.3390/w15244307