Removal of Nitrate Nitrogen from Municipal Wastewater Using Autotrophic Denitrification Based on Magnetic Pyrite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Denitrification Batch Experiments
2.3. Culture of Microorganisms
2.4. Chemical Testing
2.5. Characterization of Magnetic Pyrite
2.6. Data Analysis
3. Results
3.1. Characterization of Magnetic Pyrite
3.2. Screening of Purified Strains for Autotrophic Denitrification Capacity
3.3. Accumulation of Sulfate
3.4. Analysis of Microbial Community Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Romanelli, A.; Soto, D.X.; Matiatos, I.; Martínez, D.E.; Esquius, S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci. Total Environ. 2020, 715, 136909. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, Q.; Fang, F.; Hu, Z.; Wu, J.; Miao, A.; Xiao, L.; Chen, X.; Yang, L. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water. Bioresour. Technol. 2013, 142, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Leng, P.; Li, F.; Gu, C.; Zhu, N.; Qiao, Y.; Hao, S.; Du, K. Analysis of nitrate pollution in rivers around Bohai Sea Based on integrated analysis. J. Environ. Sci. 2018, 38, 1537–1548. [Google Scholar]
- Li, H.; Li, Y.; Guo, J.; Song, Y.; Hou, Y.; Lu, C.; Han, Y.; Shen, X.; Liu, B. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms: Electron transfer and biofilm properties. Environ. Res. 2021, 194, 110708. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, J.; Li, Y.; Liu, Z.; Zhang, L.; Che, H.; Cui, H.; Zhang, Y. Elemental sulfur-driven autotrophic denitrification process for effective removal of nitrate in mariculture wastewater: Performance, kinetics and microbial community. Chemosphere 2023, 337, 139354. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, X.; Yuan, Q.; Qiu, T.; Xu, R.; Yan, H. Research Status of Iron Sulfide Minerals in Wastewater Treatment. Nonferrous Met. Sci. Eng. 2020, 11, 78–84. [Google Scholar]
- Liu, Z. Preliminary Study on The Simultaneous Removal of Nitrate and Arsenic from Water with Nature Pyrrhotite; Nanjing University: Nanjing, China, 2016. [Google Scholar]
- Li, R.; Morrison, L.; Collins, G.; Li, A.; Zhan, X. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction. Water Res. 2016, 96, 32–41. [Google Scholar] [CrossRef]
- Wei, Y.; Dai, J.; Mackey, H.R.; Chen, G.H. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control. Water Res. 2017, 122, 226–233. [Google Scholar] [CrossRef]
- Wu, H.; Li, A.; Gao, S.; Xing, Z.; Zhao, P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. Sci. Total Environ. 2023, 903, 166491. [Google Scholar] [CrossRef]
- Di Capua, F.; Pirozzi, F.; Lens, P.N.; Esposito, G. Electron donors for autotrophic denitrification. Chem. Eng. J. 2019, 362, 922–937. [Google Scholar] [CrossRef]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef] [PubMed]
- Trouve, C.; Chazal, P.M.; Gueroux, B.; Sauvaitre, N. Denitrification by new strains of Thiobacillus denitrificans under non-standard physicochemical conditions. Effect of temperature, pH, and sulphur source. Environ. Technol. 1998, 19, 601–610. [Google Scholar] [CrossRef]
- Pu, J.; Feng, C.; Liu, Y.; Li, R.; Kong, Z.; Chen, N.; Tong, S.; Hao, C.; Liu, Y. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. Bioresour. Technol. 2014, 173, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection. Water Quality-Determination of Inorganic Anions (F−, Cl−, NO2−, Br−, NO3−, PO43−, SO32−, SO42−)-Ion Chromatography; HJ 84-2016; China Environmental Science Press: Beijing, China, 2016. [Google Scholar]
- Ministry of Environmental Protection. Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method; HJ 636-2012; China Environmental Science Press: Beijing, China, 2012. [Google Scholar]
- Torrentó, C.; Cama, J.; Urmeneta, J.; Otero, N.; Soler, A. Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem. Geol. 2010, 278, 80–91. [Google Scholar] [CrossRef]
- Zhang, W. Simultaneous Removal of Nitrogen and Phosphorus from Secondary Effluent by Autotrophic Denitrification Based on Pyrite; China University of Geosciences: Beijing, China, 2019. [Google Scholar]
- Zhou, Y.; Mai, W.; Dai, J.; Sun, P.; Zeng, L.; Tang, Q. Study on autotrophic denitrification performance of sodium thiosulfate combined with pyrite system. China Environ. Sci. 2020, 40, 2081–2086. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Oberauner, L.; Zachow, C.; Lackner, S.; Högenauer, C.; Smolle, K.H.; Berg, G. The ignored diversity: Complex bacterial communities in intensive care units revealed by 16S pyrosequencing. Sci. Rep. 2013, 3, 1413. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, Z.; Wang, A.; Zhang, S.; Li, N.; Liang, Z.; Lai, J.; Kang, P.; Liang, Y.; Yu, G. Remediate black-odorous sediment by slow-release calcium nitrate: Migration, transformation and microbial succession. J. Clean. Prod. 2023, 413, 137458. [Google Scholar] [CrossRef]
- Men, Y.; Liu, L.; Zhu, Y.; Bi, Y.; Meng, F.; Yu, J.; Wang, S. Effect of Organic Matter Concentration Variation on Nitrogen Removal Performance and Bacteria Community Structure in a Hybrid SBR Anammox System. Environ. Eng. 2023, 41, 83–90. [Google Scholar]
- Ma, J.; Wei, J.; Kong, Q.; Li, Z.; Pan, J.; Chen, B.; Qiu, G.; Wu, H.; Zhu, S.; Wei, C. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal. Chemosphere 2021, 280, 130726. [Google Scholar] [CrossRef]
- Fan, C.; Zhou, W.; He, S.; Huang, J. Sulfur transformation in sulfur autotrophic denitrification using thiosulfate as electron donor. Environ. Pollut. 2021, 268, 115708. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Pan, J.; Ma, J.; Wang, F.; Wu, H.; Wu, C. Deep removal of total nitrogen from coking wastewater using sulfur-containing iron chemical sludge as denitrification electron donor. Environ. Sci. 2018, 39, 3262–3270. [Google Scholar]
- Zhou, L.; Lai, Y.; Shao, Z.; Jian, Y.; Zhuang, W.Q. Keystone bacteria in a thiosulfate-driven autotrophic denitrification microbial community. Chem. Eng. J. 2023, 470, 144321. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Li, J.; Xie, H.; Zhao, W. A novel iron-mediated nitrogen removal technology of ammonium oxidation coupled to nitrate/nitrite reduction: Recent advances. J. Environ. Manag. 2022, 319, 115779. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L. Iron-Mediated Sulfur Autotrophic Denitrification System for Improving Deep Nitrogen Removal from Landfill Leachate; Guangzhou University: Guangzhou, China, 2023. [Google Scholar]
- Straub, K.L.; Benz, M.; Schink, B.; Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 1996, 62, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.P.; Wood, A.P. Halothiobacillus; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Vikromvarasiri, N.; Pisutpaisal, N. Hydrogen sulfide removal in biotrickling filter system by Halothiobacillus neapolitanus. Int. J. Hydrog. Energy 2016, 41, 15682–15687. [Google Scholar] [CrossRef]
- Tan, X. Study on the Diversity of Sulfur Oxidizing Bacteria and Their Thiometabolic Pathways in Pearl River Water; South China University of Technology: Guangzhou, China, 2016. [Google Scholar]
- Rickard, D.; Luther, G.W. Chemistry of Iron Sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef]
- Han, S.; Cui, Y.; Yan, H.; Cui, Y.; Chen, Z. Enhancing simultaneous nitrate and phosphate removal in sulfur-iron (II) autotrophic denitrification biofilters by endogenous magnetic fields: Performance and mechanism. J. Water Process Eng. 2023, 53, 103767. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, D.; Morrison, L.; Ge, Z.; Zhan, X.; Li, R. Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control. Sci. Total Environ. 2019, 662, 287–296. [Google Scholar] [CrossRef]
- Xia, D.; Li, Y.; Huang, G.; Yin, R.; An, T.; Li, G.; Zhao, H.; Lu, A.; Wong, P.K. Activation of persulfates by natural magnetic pyrrhotite for water disinfection: Efficiency, mechanisms, and stability. Water Res. 2017, 112, 236–247. [Google Scholar] [CrossRef]
- Hu, S.; Wu, G.; Li, R.; Xiao, L.; Zhan, X. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Res. 2020, 179, 115914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, M.; Tian, J.; Zhu, X.; Cheng, Y. Synergetic effects of pyrrhotite and biochar on simultaneous removal of nitrate and phosphate in autotrophic denitrification system. Water Environ. Res. 2023, 95, e10855. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, L.; Chen, F.; Song, Q.; Feng, C.; Liu, X.; Li, M. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor. Bioresour. Technol. 2022, 346, 126669. [Google Scholar] [CrossRef] [PubMed]
Element | C (%) | O (%) | S (%) | Ca (%) | Fe (%) |
---|---|---|---|---|---|
Percentage of atoms | 5.23 | 15.10 | 62.19 | 1.53 | 15.95 |
Number | Number of Sequences | Number of OTUs |
---|---|---|
TE-1 | 71,866 | 1410 |
TE-2 | 68,374 | 1235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhao, C.; Liu, T.; Wang, X. Removal of Nitrate Nitrogen from Municipal Wastewater Using Autotrophic Denitrification Based on Magnetic Pyrite. Water 2023, 15, 4292. https://doi.org/10.3390/w15244292
Zhang B, Zhao C, Liu T, Wang X. Removal of Nitrate Nitrogen from Municipal Wastewater Using Autotrophic Denitrification Based on Magnetic Pyrite. Water. 2023; 15(24):4292. https://doi.org/10.3390/w15244292
Chicago/Turabian StyleZhang, Bowei, Changsheng Zhao, Ting Liu, and Xiaokai Wang. 2023. "Removal of Nitrate Nitrogen from Municipal Wastewater Using Autotrophic Denitrification Based on Magnetic Pyrite" Water 15, no. 24: 4292. https://doi.org/10.3390/w15244292
APA StyleZhang, B., Zhao, C., Liu, T., & Wang, X. (2023). Removal of Nitrate Nitrogen from Municipal Wastewater Using Autotrophic Denitrification Based on Magnetic Pyrite. Water, 15(24), 4292. https://doi.org/10.3390/w15244292