# Analysis of Stress Characteristics of a Vertical Centrifugal Pump Based on Fluid-Structure Interaction

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Model and Boundary Conditions

#### 2.1. Computational Models

#### 2.2. Boundary Conditions

#### 2.3. Numerical Model

#### 2.4. Validation

^{3}/s, and the efficiency measurement uncertainty is less than ±0.2%. The test bench is equipped with a hydraulic mechanical energy performance test.

## 3. Impeller Modal Analysis

#### 3.1. Modal Analysis of Impeller in Air

#### 3.2. Modal Analysis of Impeller in Water

_{a}denotes the intrinsic frequency in air, f

_{w}denotes the intrinsic frequency in water, and η = f

_{w}/f

_{a}denotes the effect of the water body on the intrinsic frequency of the impeller.

## 4. Centrifugal Pump Impeller Full-Condition Stress Characterization

#### 4.1. Computational Modeling and Meshing

^{3}/h). In order to facilitate observation, Figure 8 illustrates the relationship between the static stress and deformation values at various mesh counts. It is evident that the number of meshes employed in the impeller design has a negligible impact on the deformation. Additionally, the maximum equivalent stress variation stabilizes as the number of meshes reaches 1,600,000, and considering the computational efficiency, this research utilizes a mesh count of 1,600,000 to conduct computations and analyze static stresses on the impeller.

#### 4.2. Boundary Conditions for Structural Field Calculations

^{2}. The water pressure at the interface of the fluid-structure interaction is determined by analyzing the outcomes of the flow field computation.

#### 4.3. Calculated Field Results in Structures Analyzed

#### 4.4. Stress Characterization of Impeller at Different Moments

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Adams, R. What Constitutes’ High Energy’ In Centrifugal Pumps? In Proceedings of the 30th International Pump Users Symposium, Houston, TX, USA, 23–25 September 2014; Turbomachinery Laboratories, Texas A&M Engineering Experiment Station: College Station, TX, USA, 2014. [Google Scholar]
- Chan, E.Y.Y.; Ho, J.Y.E. Urban water and health issues in Hong Kong. In Urban Drought: Emerging Water Challenges in Asia; Springer Nature: Singapore, 2019; pp. 241–262. [Google Scholar]
- Roy, A.; Palit, P.; Das, S.; Mukhyopadyay, G. Investigation of torsional fatigue failure of a centrifugal pump shaft. Eng. Fail. Anal.
**2020**, 112, 104511. [Google Scholar] [CrossRef] - Ye, C.; Tang, Y.; An, D.; Wang, F.; Zheng, Y.; van Esch, B.P.M. Investigation on stall characteristics of marine centrifugal pump considering transition effect. Ocean Eng.
**2023**, 280, 114823. [Google Scholar] [CrossRef] - Huang, X.; Fang, T.; Pang, K.; Guo, Q.; Qiu, B.; Lu, J. Air-entrained vortex in open intake: Time–frequency analysis and the interaction with subsurface vortices. Phys. Fluids
**2022**, 34, 113313. [Google Scholar] [CrossRef] - Zheng, L.; Chen, X.; Dou, H.-S.; Zhang, W.; Zhu, Z.; Cheng, X. Effects of clearance flow on the characteristics of centrifugal pump under low flow rate. J. Mech. Sci. Technol.
**2020**, 34, 189–200. [Google Scholar] [CrossRef] - Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Akbarzadeh, A.H. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chem. Eng. J.
**2021**, 413, 127497. [Google Scholar] [CrossRef] - Hirschhorn, M.; Tchantchaleishvili, V.; Stevens, R.; Rossano, J.; Throckmorton, A. Fluid–structure interaction modeling in cardiovascular medicine—A systematic review 2017–2019. Med. Eng. Phys.
**2020**, 78, 1–13. [Google Scholar] [CrossRef] - Cuamatzi-Meléndez, R.; Flores-Cuamatzi, E. Modelling fluid-structure interaction of water recirculating flow to predict damage and/or failure in a jet-pump assembly of a nuclear boiling water reactor. Eng. Struct.
**2020**, 206, 110155. [Google Scholar] [CrossRef] - De Donno, R.; Ghidoni, A.; Noventa, G.; Rebay, S. Shape optimization of the ERCOFTAC centrifugal pump impeller using open-source software. Optim. Eng.
**2019**, 20, 929–953. [Google Scholar] [CrossRef] - Olimstad, G.; Østby, P.T.K. Failure and redesign of a high-speed pump with respect to rotor-stator interaction. Eng. Fail. Anal.
**2019**, 104, 704–713. [Google Scholar] [CrossRef] - Wang, W.; Zhou, L.; Tao, R.; Song, X.; Wang, Z. Numerical simulation of dynamic characteristics of hydrofoil structure under cavitation conditions. Ocean Eng.
**2023**, 280, 114937. [Google Scholar] [CrossRef] - Griffith, B.E.; Patankar, N.A. Immersed Methods for Fluid–Structure Interaction. Annu. Rev. Fluid Mech.
**2020**, 52, 421–448. [Google Scholar] [CrossRef] [PubMed] - Mo, J.-O.; Lee, Y.-H. Performance Prediction and Flow Characteristics of a Hydraulic Pump for ABS and ESC Systems Using FSI Simulation. Int. J. Automot. Technol.
**2020**, 21, 1419–1429. [Google Scholar] [CrossRef] - Ye, C.; Wang, C.; Yan, H.; Wang, F.; Zheng, Y.; van Esch, B.P.M. Investigation on transition characteristics of laminar separation bubble on a hydrofoil. Phys. Fluids
**2023**, 35, 105154. [Google Scholar] [CrossRef] - Luo, H.; Zhou, P.; Shu, L.; Mou, J.; Zheng, H.; Jiang, C.; Wang, Y. Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model. Energies
**2022**, 15, 3309. [Google Scholar] [CrossRef] - Krzemianowski, Z.; Steller, J. High specific speed Francis turbine for small hydro purposes-Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience. Renew. Energy
**2021**, 169, 1210–1228. [Google Scholar] [CrossRef] - Krella, A.; Maurin, A.; Krzemianowski, Z. Degradation of Armco iron caused by cavitation: Part II—Correlation with stress analysis. Eng. Fail. Anal.
**2021**, 128, 105621. [Google Scholar] [CrossRef] - He, L.; Zhou, L.; Ahn, S.-H.; Wang, Z.; Nakahara, Y.; Kurosawa, S. Evaluation of gap influence on the dynamic response behavior of pump-turbine runner. Eng. Comput.
**2019**, 36, 491–508. [Google Scholar] [CrossRef] - Xia, X.; Zhou, L.; Lv, Y.; Wang, Z. Numerical investigation of two degree-of-freedom galloping oscillation of a cylinder attached with fixed fairing device. Ocean Eng.
**2021**, 240, 109971. [Google Scholar] [CrossRef] - Yang, J.; Zhou, L.-J.; Wang, Z.-W.; Jiang, X.-Y.; Zhou, X.-J.; Ding, J.-H.; Han, W.-F. Numerical investigation of the cavitation dynamic parameters in a Francis turbine draft tube with columnar vortex rope. J. Hydrodyn.
**2019**, 31, 931–939. [Google Scholar] [CrossRef] - Hübner, B.; Silva, D.R. Advanced simulation of coupled physics in thrust bearings. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 240, p. 062009. [Google Scholar]
- Hübner, B.; Seidel, U.; Roth, S. Application of fluid-structure coupling to predict the dynamic behavior of turbine components. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2010; Volume 12, p. 012009. [Google Scholar]
- Trivedi, C.; Cervantes, M.J. Fluid-structure interactions in Francis turbines: A perspective review. Renew. Sustain. Energy Rev.
**2017**, 68, 87–101. [Google Scholar] [CrossRef] - Badshah, M.; Badshah, S.; Jan, S. Comparison of computational fluid dynamics and fluid structure interaction models for the performance prediction of tidal current turbines. J. Ocean Eng. Sci.
**2020**, 5, 164–172. [Google Scholar] [CrossRef] - Zanetti, G.; Cavazzini, G.; Santolin, A. Effect of the von Karman Shedding Frequency on the Hydrodynamics of a Francis Turbine Operating at Nominal Load. Int. J. Turbomach. Propuls. Power
**2023**, 8, 27. [Google Scholar] [CrossRef] - Kan, K.; Zheng, Y.; Fu, S.; Liu, H.; Yang, C.; Zhang, X. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction. J. Mech. Sci. Technol.
**2017**, 31, 1561–1568. [Google Scholar] [CrossRef] - Quan, H.; Cheng, J.; Guo, Y.; Kang, L.; Peng, G. Influence of Screw Centrifugal Inducer on Internal Flow Structure of Vortex Pump. J. Fluids Eng.
**2020**, 142, 091203. [Google Scholar] [CrossRef] - Presas, A.; Valentin, D.; Zhao, W.; Egusquiza, M.; Valero, C.; Egusquiza, E. On the use of neural networks for dynamic stress prediction in Francis turbines by means of stationary sensors. Renew. Energy
**2021**, 170, 652–660. [Google Scholar] [CrossRef] - Valentín, D.; Presas, A.; Valero, C.; Egusquiza, M.; Egusquiza, E.; Gomes, J.; Avellan, F. Transposition of the mechanical behavior from model to prototype of Francis turbines. Renew. Energy
**2020**, 152, 1011–1023. [Google Scholar] [CrossRef] - Chen, X.; Lai, X.; Gou, Q.; Song, D. Effect of guide vane profile on the hydraulic performance of moderate low-specific-speed Francis turbine. J. Mech. Sci. Technol.
**2023**, 37, 1289–1300. [Google Scholar] [CrossRef] - Menéndez -Blanco, A.; Oro, J.M.F.; Meana-Fernández, A. Unsteady three-dimensional modeling of the Flu-id-Structure Interaction in the check valves of diaphragm volumetric pumps. J. Fluids Struct.
**2019**, 90, 432–449. [Google Scholar] [CrossRef] - Li, W.; Ji, L.; Shi, W.; Zhou, L.; Jiang, X.; Zhang, Y. Fluid-structure interaction study of a mixed-flow pump impeller during startup. Eng. Comput.
**2018**, 35, 18–34. [Google Scholar] [CrossRef] - Birajdar, R.; Keste, A. Prediction of Flow-Induced Vibrations due to Impeller Hydraulic Unbalance in Vertical Turbine Pumps Using One-Way Fluid-Structure Interaction. J. Vib. Eng. Technol.
**2020**, 8, 417–430. [Google Scholar] [CrossRef] - Shi, L.; Zhu, J.; Wang, L.; Chu, S.; Tang, F.; Jin, Y. Comparative Analysis of Strength and Modal Characteristics of a Full Tubular Pump and an Axial Flow Pump Impellers Based on Fluid-Structure Interaction. Energies
**2021**, 14, 6395. [Google Scholar] [CrossRef] - Wang, H.; Wang, F.; Wang, B.; Wu, J.; Lu, H.; Wang, C. Partial flow separation in guide-vane region of large-capacity/low-head pumped hydro energy storage system with horizontal shaft. J. Energy Storage
**2023**, 71, 108173. [Google Scholar] [CrossRef] - Ye, C.; An, D.; Huang, W.; Heng, Y.; Zheng, Y. Investigation on Stall Characteristics of Centrifugal Pump with Guide Vanes. Water
**2023**, 15, 21. [Google Scholar] [CrossRef] - Yan, H.; Heng, Y.; Zheng, Y.; Tao, R.; Ye, C. Investigation on Pressure Fluctuation of the Impellers of a Double-Entry Two-Stage Double Suction Centrifugal Pump. Water
**2022**, 14, 4065. [Google Scholar] [CrossRef] - Wang, C.; Wang, F.; Li, C.; Chen, W.; Wang, H.; Lu, L. Investigation on energy conversion instability of pump mode in hydro-pneumatic energy storage system. J. Energy Storage
**2022**, 53, 105079. [Google Scholar] [CrossRef] - Zeng, Y.; Yao, Z.; Huang, B.; Wu, Q.; Wang, F. Experimental investigation of the hydrodynamic damping of a vibrating hydrofoil in cavitating flow. Ocean Eng.
**2022**, 266, 112734. [Google Scholar] [CrossRef] - Tickoo, S. ANSYS Workbench 2021 R1: A Tutorial Approach; CADCIM Technologies: Schererville, IN, USA, 2021. [Google Scholar]
- Zhou, W.; Zhou, P.; Xiang, C.; Wang, Y.; Mou, J.; Cui, J. A Review of Bionic Structures in Control of Aerodynamic Noise of Centrifugal Fans. Energies
**2023**, 16, 4331. [Google Scholar] [CrossRef]

Parameters | Value |
---|---|

Modulus of elasticity E (Gpa) | 206 |

Poisson ratio μ | 0.288 |

Material density ρ (kg/m^{3}) | 7700 |

Meshing | 8-node tetrahedral solid unit solid 45 |

Mode Order | ƒ_{a} (Hz) | ƒ_{w} (Hz) | η = ƒ_{w}/ƒ_{a} |
---|---|---|---|

1 | 767.54 | 352.84 | 0.46 |

2 | 768.19 | 354.42 | 0.46 |

3 | 917.33 | 354.43 | 0.39 |

4 | 1105.8 | 477.61 | 0.43 |

5 | 1259.2 | 573.66 | 0.46 |

6 | 1260.6 | 574.01 | 0.46 |

7 | 1696.7 | 591.56 | 0.35 |

8 | 1704.7 | 591.56 | 0.35 |

9 | 1708.9 | 604.96 | 0.35 |

10 | 1747.3 | 695.88 | 0.40 |

Physical Quantity | Measure Value | Physical Quantity | Measure Value |
---|---|---|---|

Density ρ (kg/m^{3}) | 7700 | Tensile strength σ_{b} (MPa) | 580 |

Modulus of elasticity E (GPa) | 206 | Yield limit σ_{s} (MPa) | 950 |

Poisson’s ratio μ | 0.288 | Permissible stress [σ], (MPa) | 560 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, S.; Tu, Y.; Ye, C.; Yan, H.; Dai, J.; Dang, M.; Yang, C.; Zheng, Y.; Li, Y.
Analysis of Stress Characteristics of a Vertical Centrifugal Pump Based on Fluid-Structure Interaction. *Water* **2023**, *15*, 4269.
https://doi.org/10.3390/w15244269

**AMA Style**

Li S, Tu Y, Ye C, Yan H, Dai J, Dang M, Yang C, Zheng Y, Li Y.
Analysis of Stress Characteristics of a Vertical Centrifugal Pump Based on Fluid-Structure Interaction. *Water*. 2023; 15(24):4269.
https://doi.org/10.3390/w15244269

**Chicago/Turabian Style**

Li, Siwei, Yongsha Tu, Changliang Ye, Hongyeyu Yan, Jin Dai, Mengfan Dang, Chunxia Yang, Yuan Zheng, and Yongbiao Li.
2023. "Analysis of Stress Characteristics of a Vertical Centrifugal Pump Based on Fluid-Structure Interaction" *Water* 15, no. 24: 4269.
https://doi.org/10.3390/w15244269