# Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

#### 2.1. Eulerian–Eulerian Two-Phase Model

#### 2.2. Turbulence Model

## 3. Simulation Method

#### 3.1. Physical Model

#### 3.2. Grid Independent Test

#### 3.3. Solution Techniques

## 4. Results and Discussion

#### 4.1. Pipe Inclination

#### 4.2. Pipe Diameter

#### 4.3. Inlet Sand Content

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

CFD | computational fluid dynamics |

DEM | discrete element method |

## References

- Diniz, V.; Coiado, E.M. Two-phase (solid-liquid) flow in inclined pipes. In Proceedings of the 14th International Conference on Slurry Handling and Pipeline Transport, Maastricht, The Netherlands, 8–10 September 1999; Volume 36, pp. 555–566. [Google Scholar]
- Juez, C.; Sandra, S.; Javier, M.; Pilar, G. Experimental and numerical simulation of bed load transport over steep slopes. J. Hydraul. Res.
**2017**, 66, 455–469. [Google Scholar] [CrossRef] - Li, Y.; Zhang, J.L.; Bai, Y.C.; Fu, J. Study on characteristics of sediment transport and sorting in pressure pipe. J. Sediment Res.
**2021**, 46, 10–15, 27. [Google Scholar] - Yue, J.W.; Huang, X.J.; Xing, X.X.; Zhao, L.M.; Kong, Q.M.; Yang, X.; Zhu, Y.D.; Zhang, J.W. Experimental Study on the Improvement of the Particle Gradation of the Yellow River Silt Based on MICP Technology. Adv. Eng. Sci.
**2021**, 53, 89–98. [Google Scholar] - Dabirian, R.; Mohan, R.; Shoham, O.; Kouba, G. Critical sand deposition velocity for gas-liquid stratified flow in horizontal pipes. J. Nat. Gas Sci. Eng.
**2016**, 33, 527–537. [Google Scholar] [CrossRef] - Shamlou, P.A. Hydraulic transport of particulate solids. Chem. Eng. Commun.
**1987**, 62, 233–249. [Google Scholar] [CrossRef] - Doron, P.; Barnea, D. Flow pattern maps for solid-liquid flow in pipes. Int. J. Multiph. Flow
**1996**, 22, 273–283. [Google Scholar] [CrossRef] - Gopaliya, M.; Kaushal, D.R. A Correlation for Pressure Drop Prediction for Solid-Liquid Slurry Flows through Horizontal Pipelines. Multiph. Sci. Technol.
**2020**, 32, 311–324. [Google Scholar] [CrossRef] - Skudarnov, P.V.; Lin, C.X.; Ebadian, M.A. Double-species slurry flow in a horizontal pipeline. J. Fluids-Eng.-Trans. ASME
**2004**, 126, 125–132. [Google Scholar] [CrossRef] - Soepyan, F.B.; Cremaschi, S.; Sarica, C.; Subramani, H.J.; Kouba, G.E. Solids transport models comparison and fine-tuning for horizontal, low concentration flow in single-phase carrier fluid. AICHE J.
**2014**, 60, 76–122. [Google Scholar] [CrossRef] - Zhao, L.A.; Wang, T.L. Study on the flow of water sand slurry with sliding bed in inclined pipe. J. Exp. Fluid Mech.
**2016**, 30, 43–49. [Google Scholar] - Ogunsesan, O.A.; Hossain, M.; Iyi, D.; Dhroubi, M.G. CFD Modelling of Pipe Erosion Due to Sand Transport. In Proceedings of the 1st International Conference on Numerical Modelling in Engineering, Ghent, Belgium, 28–29 August 2018; Springer: Singapore, 2019; pp. 274–289. [Google Scholar]
- Pereira, G.C.; de Souza, F.J.; de Moro Martins, D.A. Numerical prediction of the erosion due to particles in elbows. Powder Technol.
**2014**, 261, 105–117. [Google Scholar] [CrossRef] - Mazumder, Q.H.; Shirazi, S.A.; Mclaury, B.S.; Shadley, J.R.; Rybicki, E.F. Development and validation of a mechanistic model to predict solid particle erosion in multiphase flow. Wear
**2005**, 259, 203–207. [Google Scholar] [CrossRef] - Ekambara, K.; Sanders, R.S.; Nandakumar, K.; Masliyah, J.H. Hydrodynamic Simulation of Horizontal Slurry Pipeline Flow Using ANSYS-CFX. Ind. Eng. Chem. Res.
**2009**, 48, 8159–8171. [Google Scholar] [CrossRef] - Kaushal, D.R.; Kaushal, D.R.; Tomita, Y.; Kuchii, S.; Tsukamoto, H. CFD modeling for pipeline flow of fine particles at high concentration. Int. J. Multiph. Flow
**2012**, 43, 85–100. [Google Scholar] [CrossRef] - Yang, Y.; Peng, H.P.; Wen, C. Sand Transport and Deposition Behaviour in Subsea Pipelines for Flow Assurance. Energies
**2019**, 12, 4070. [Google Scholar] [CrossRef] - Li, M.Z.; He, Y.P.; Liu, Y.D.; Huang, C. Analysis of transport properties with varying parameters of slurry in horizontal pipeline using ANSYS fluent. Part. Sci. Technol.
**2020**, 38, 726–739. [Google Scholar] [CrossRef] - Li, M.Z.; He, Y.P.; Liu, Y.D.; Huang, C. Hydrodynamic simulation of multi-sized high concentration slurry transport in pipelines. Ocean. Eng.
**2018**, 163, 691–705. [Google Scholar] [CrossRef] - Zhang, M.D.; Kang, Y.; Wei, W.; Li, D.; Xiong, T. CFD investigation of the flow characteristics of liquid-solid slurry in a large-diameter horizontal pipe. Part. Sci. Technol.
**2021**, 39, 712–725. [Google Scholar] [CrossRef] - Xiong, T.; Chen, Q.Y.; Wu, Q.; Zhang, M.D.; Wang, X. The numerical simulation on pipeline transport of coarse particles based on Eulerian-Lagrangian model. Chin. J. Hydrodyn.
**2018**, 33, 461–469. [Google Scholar] - Capecelatro, J.; Desjardins, O. An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys.
**2013**, 238, 1–31. [Google Scholar] [CrossRef] - Zhang, Y.; Ren, W.L.; Li, P.; Zhang, X.H.; Lu, X.B. Flow regimes and characteristics of dense particulate flows with coarse particles in inclined pipe. Powder Technol.
**2023**, 428, 118859. [Google Scholar] [CrossRef] - Januario, J.R.; Maia, C.B. CFD-DEM Simulation to Predict the Critical Velocity of Slurry Flows. J. Appl. Fluid Mech.
**2020**, 13, 161–168. [Google Scholar] [CrossRef] - Liu, L.; Li, X.; Tian, X.l.; Zhang, X.T.; Xu, X.L.; Zhang, X.Z. Numerical Investigation on Inclined Hydraulic Transport of Large Particles for Deepsea Mining. China Ocean Eng.
**2023**, 37, 420–432. [Google Scholar] [CrossRef] - Kesely, M.; Matoušek, V.; Vlasak, P. Settling slurry flow near deposition velocity in inclined pipe of negative slope. EPJ Web Conf.
**2019**, 213, 02040. [Google Scholar] [CrossRef] - Matousek, V.; Kesely, M.; Vlasak, P. Modelling approaches for pipe inclination effect on deposition limit velocity of settling slurry flow. EPJ Web Conf.
**2018**, 180, 02062. [Google Scholar] [CrossRef] - Matousek, V.; Krupicka, J.; Kesely, M. A layered model for inclined pipe flow of settling slurry. Powder Technol.
**2018**, 333, 317–326. [Google Scholar] [CrossRef] - Matousek, V.; Kesely, M.; Konfrst, J.; Vlasak, P. Effect of pipe inclination on settling slurry flow near deposition velocity. ASME Fluids Eng. Div. Meet.
**2018**, 3, V003T19A008. [Google Scholar] - Vlasak, P.; Chara, Z.; Matousek, V.; Konfrst, J.; Kesely, M. Effect of pipe inclination on flow behaviour of fine-grained settling slurry. EPJ Web Conf.
**2019**, 213, 02094. [Google Scholar] [CrossRef] - Vlasak, P.; Chara, Z.; Matousek, V.; Konfrst, J.; Kesely, M. Experimental investigation of fine-grained settling slurry flow behaviour in inclined pipe sections. J. Hydrol. Hydromech.
**2019**, 67, 113–120. [Google Scholar] [CrossRef] - Archibong-Eso, A.; Aliyu, A.; Yan, W.; Okeke, N.; Baba, Y.; Fajemidupe, O.; Yeung, H. Experimental Study on Sand Transport Characteristics in Horizontal and Inclined Two-Phase Solid-Liquid Pipe Flow. J. Pipeline Syst. Eng. Pract.
**2020**, 11, 04019050. [Google Scholar] [CrossRef] - Yang, D.; Xia, Y.M.; Wu, D.; Chen, P.; Zeng, G.Y.; Zhao, X.Q. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum. Tunn. Undergr. Space Technol.
**2018**, 71, 223–230. [Google Scholar] [CrossRef] - Tebowei, R.; Hossain, M.; Islam, S.Z.; Droubi, M.G.; Oluyemi, G. Investigation of sand transport in an undulated pipe using computational fluid dynamics. J. Pet. Sci. Eng.
**2018**, 162, 747–762. [Google Scholar] [CrossRef] - Yao, R.; Qi, D.Z.; Zeng, H.Y.; Huang, X.X.; Li, B.; Wang, Y.; Bai, W.Q.; Wang, Z.W. Study on Critical Velocity of Sand Transport in V-Inclined Pipe Based on Numerical Simulation. Water
**2022**, 14, 2627. [Google Scholar] [CrossRef] - Alihosseini, M.; Thamsen, P.U. Analysis of sediment transport in sewer pipes using a coupled CFD-DEM model and experimental work. Urban Water J.
**2019**, 16, 259–268. [Google Scholar] [CrossRef] - Stevenson, P.; Thorpe, R.B.; Kennedy, J.E.; McDermott, C. The transport of particles at low loading in near-horizontal pipes by intermittent flow. Chem. Eng. Sci.
**2001**, 56, 2149–2159. [Google Scholar] [CrossRef] - Stevenson, P.; Thorpe, R.B.; Davidson, J.F. Incipient motion of a small particle in the viscous boundary layer at a pipe wall. Chem. Eng. Sci.
**2002**, 57, 4505–4520. [Google Scholar] [CrossRef] - Goharzadeh, A.; Rodgers, P.; Wang, L. Experimental Characterization of Slug Flow on Solid Particle Transport in a 1 Deg Upward Inclined Pipeline. J. Fluids-Eng.-Trans. ASME
**2013**, 135, 081304. [Google Scholar] [CrossRef]

**Figure 1.**Physical model of V-inclined pipe ($D=2600\phantom{\rule{0.277778em}{0ex}}\mathrm{mm},\theta =\pm 2{}^{\circ}$).

Parameters | V-Inclined Pipe | Horizontal Pipe |
---|---|---|

Pipe inclination | $\pm 2{}^{\circ}$, $\pm 4{}^{\circ}$, $\pm 6{}^{\circ}$ | \ |

Pipe length | 80 m | 80 m |

Pipe diameter | 2600 mm | 2600 mm |

Liquid density | 998.2$\phantom{\rule{0.277778em}{0ex}}\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ | 998.2$\phantom{\rule{0.277778em}{0ex}}\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ |

Solid density | 2300$\phantom{\rule{0.277778em}{0ex}}\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ | 2300$\phantom{\rule{0.277778em}{0ex}}\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ |

Particle size | 0.02 mm | 0.02 mm |

Inlet sand content | 0.42% | 0.42% |

S1 | S2 | S3 | S4 | S5 | |
---|---|---|---|---|---|

$\pm 2{}^{\circ}$ | 8.3% | 11.7% | 34.7% | 23.1% | 13.1% |

$\pm 4{}^{\circ}$ | 3.6% | 5.1% | 21.4% | 13.6% | 10.9% |

$\pm 6{}^{\circ}$ | 3.2% | 4.4% | 19.5% | 10.8% | 8.6% |

Parameters | V-Inclined Pipe |
---|---|

Pipe inclination | $\pm 2{}^{\circ}$ |

Pipe length | 80 m |

Pipe diameter | 1200 mm, 1600 mm, 2600 mm |

Liquid density | 998.2 $\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ |

Solid density | 2300 $\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ |

Particle size | 0.02 mm |

Inlet sand content | 0.42% |

Parameters | V-Inclined Pipe |
---|---|

Pipe inclination | $\pm 2{}^{\circ}$ |

Pipe length | 80 m |

Pipe diameter | 2600 mm |

Liquid density | 998.2$\phantom{\rule{0.277778em}{0ex}}\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ |

Solid density | 2300$\phantom{\rule{0.277778em}{0ex}}\mathrm{kg}\xb7{\mathrm{m}}^{-3}$ |

Particle size | 0.02 mm |

Inlet sand content | 0.42%, 1%, 5% |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yao, R.; Wang, Z.; Huang, X.
Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model. *Water* **2023**, *15*, 4266.
https://doi.org/10.3390/w15244266

**AMA Style**

Yao R, Wang Z, Huang X.
Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model. *Water*. 2023; 15(24):4266.
https://doi.org/10.3390/w15244266

**Chicago/Turabian Style**

Yao, Rao, Zhengwei Wang, and Xingxing Huang.
2023. "Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model" *Water* 15, no. 24: 4266.
https://doi.org/10.3390/w15244266