Seepage Characteristics of Shale Fracture and the Effect of Filling Sand under Normal Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Equipment
2.2. Sample Preparation
2.3. Test Scheme Design
3. Fracture Surface Topographic Characteristics
4. Results and Discussion
4.1. Unfilled Shale Fracture Seepage
4.1.1. Seepage State Analysis
4.1.2. Relationship between Seepage Discharge and Water Head Difference
4.1.3. Relationship between K and σF
4.1.4. Relationships between K and eL
4.2. Sand-Filled Shale Fracture Seepage
4.2.1. Relationship between Seepage Discharge and Normal Stress
4.2.2. Relationship between Seepage Discharge and Thickness and Particle Size of Filling Sands
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansi, M.; Almobarak, M.; Lagat, C.; Xie, Q. Statistical analysis of controlling factors on enhanced gas recovery by CO2 injection in shale gas reservoirs. Energy Fuels 2023, 37, 965–976. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of the People’s Republic of China. China Natural Resources Statistical Bulletin. 2022. Available online: https://www.mnr.gov.cn/sj/tjgb/202304/P020230412557301980490.pdf (accessed on 9 September 2023).
- National Energy Administration. Shale Gas Development Plan (2016–2020). 2016. Available online: http://zfxxgk.nea.gov.cn/auto86/201609/t20160930_2306.htm (accessed on 9 September 2023).
- Cheng-Haw, L. Flow in Fractured Rock. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, August 1990. Available online: https://hdl.handle.net/10150/184962 (accessed on 9 September 2023).
- Louis, C. Rock Hydraulics. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974, 12, 59–61. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Z.; Ye, Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel 2015, 139, 383–392. [Google Scholar] [CrossRef]
- Cardona, A.; Finkbeiner, T.; Santamarina, J.C. Natural Rock Fractures: From Aperture to Fluid Flow. Rock Mech. Rock Eng. 2021, 54, 5827–5844. [Google Scholar] [CrossRef]
- Kranz, R.L.; Frankel, A.D.; Engelder, T.; Scholz, C.H. The permeability of whole and jointed barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 225–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J. Experimental Study of the Seepage Flow-stress Coupling in Fractured Rock Masses. Rock Soil Mech. 1997, 18, 59–62. (In Chinese) [Google Scholar] [CrossRef]
- Li, B.; Cui, X.; Zou, L.; Cvetkovic, V. On the relationship between normal stiffness and permeability of rock fractures. Geophys. Res. Lett. 2021, 48, e2021GL095593. [Google Scholar] [CrossRef]
- Jones, F. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. J. Pet. Technol. 1975, 27, 21–27. [Google Scholar] [CrossRef]
- Yang, J.; Ye, Z.; Huang, S.; Cheng, A. Research on coupling model of single fracture seepage and normal stress of rock mass considering the soft and hard aperture. Chin. J. Rock Mech. Eng. 2023, 42, 3473–3480. (In Chinese) [Google Scholar] [CrossRef]
- Zou, L.; Li, B.; Mo, Y.; Cvetkovic, V. A High-Resolution Contact Analysis of Rough-Walled Crystalline Rock Fractures Subject to Normal Stress. Rock Mech. Rock Eng. 2020, 53, 2141–2155. [Google Scholar] [CrossRef]
- Kulatilake, P.; Park, J.; Su, X. Fluid Flow through Natural Single-Rock Fractures: Experimental and Numerical Investigations. Int. J. Geomech. 2020, 20, 04020168.1–04020168.11. [Google Scholar] [CrossRef]
- Tsang, Y.W. The Effect of Tortuosity on Fluid Flow Through a Single Fracture. Water Resour. Res. 1984, 20, 1209–1215. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Ha, Q. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study. Shuili Xuebao 2003, 14, 74–79. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Cardenas, M.B.; Slottke, D.T.; Ketcham, R.A.; Sharp, J.M., Jr. Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour. Res. 2015, 51, 2064–2080. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Zhang, J.; Gao, F. Review on hydraulic characteristics of filling fissure. Yellow River 2011, 33, 134–136. [Google Scholar]
- Su, B.; Zhan, M.; Zhang, Z. Experimental Research of Seepage Characteristic for Filled Fracture. Rock Soil Mech. 1994, 15, 46–52. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y. Rock Hydraulics and Engineering, 1st ed.; China Water & Power Press: Beijing, China, 2005; pp. 57–62. ISBN 7-5084-2715-7. [Google Scholar]
- Wen, Q.; Wang, S.; Gao, J.; Duan, X. Research on flow conductivity experiment in complex fracture network. Pet. Geol. Recovery Effic. 2016, 23, 116–121. (In Chinese) [Google Scholar] [CrossRef]
- Ni, X.; Yu, Y.; Cao, Y. Study on changing characteristics about proppant flow conductivity under the influence of HPG fracturing fluid. Coal Sci. Technol. 2016, 44, 86–90. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q. Experimental Research on Seepage Capacity of Complex Fracture in Shale Gas Reservoir after Hydraulic Fracturing. J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2017, 32, 73–77. (In Chinese) [Google Scholar]
- Zou, L.; Cvetkovic, V. Impact of normal stress-induced closure on laboratory-scale solute transport in a natural rock fracture. J. Rock Mech. Geotech. Eng. 2020, 12, 732–741. [Google Scholar] [CrossRef]
- Yan, Y.; Qian, J.; Ma, L.; Zhao, G. Quantification of solute transport in a fracture-matrix system using geoelectrical monitoring. J. Hydrol. 2023, 617, 128885.1–128885.12. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, Q.; Wu, X.; Lei, Y. Investigation on the Water Flow Evolution in a Filled Fracture under Seepage-Induced Erosion. Water 2020, 12, 3188.1–3188.18. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Li, Y.; Hou, Z. The effect of contact areas on seepage behavior in 3D rough fractures under normal stress. Int. J. Geomech. 2021, 22, 1–28. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, P.; Chen, R.; Teng, Y. Effect of water–rock interaction on the morphology of a rock surface. Int. J. Rock Mech. Min. Sci. 2010, 47, 816–822. [Google Scholar] [CrossRef]
- Belem, T.; Homand-Etienne, F.; Souley, M. Quantitative Parameters for Rock Joint Surface Roughness. Rock Mech. Rock Eng. 2000, 33, 217–242. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Z.; Wang, R.; Li, J. Research on seepage law of splitting sandstone with non-fillers under multiple factors. Shuili Xuebao 2016, 47, 54–63. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Z.; He, J. Hydraulics, 2nd ed.; Tsinghua University Press: Beijing, China, 2009; pp. 75–77. ISBN 978-7-302-22041-1. [Google Scholar]
- Yin, L.; Chen, J.; Sun, W. Experimental study on three dimensional coupled stress-seepage law of single fracture. Appl. Mech. Mater. 2013, 353, 524–528. [Google Scholar] [CrossRef]
- Sun, G.; Lin, W. The Compressional Deformation Law of Rockmass Structure Surface and a Constitutive Equation of Rockmass Elastic Deformation. Chin. J. Geol. 1983, 18, 177–180. (In Chinese) [Google Scholar]
- Goodman, R.E. Geological Engineering Methods in Discontinuous Rock Masses, 1st ed.; China Railway Publishing House: Beijing, China, 1980; pp. 97–100. ISBN 150436198. [Google Scholar]
- Bandis, S.C.; Lumsden, A.C.; Barton, N.R. Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 249–268. [Google Scholar] [CrossRef]
- Guo, B.; Su, C. Test Research on Piecewise Seepage Characteristics of Rock Fracture under Multistage Loadings. Chin. J. Rock Mech. Eng. 2012, 31, 3787–3794. (In Chinese) [Google Scholar]
- Yang, T.; Wang, P.; Wang, S.; Liu, H. Experimental Study on Shear-Seepage Coupling Characteristics of Single Fractured Rock Mass under Cyclic Loading and Unloading. Rock Mech. Rock Eng. 2023, 56, 2137–2156. [Google Scholar] [CrossRef]
- Yu, B. Experimental Study on the Coupling Relationship between Seepage Flow and Stress in Fracture. Master’s Thesis, Tsinghua University, Beijing, China, 1993. Available online: https://d.wanfangdata.com.cn/thesis/Y167636 (accessed on 6 November 2023).
Sample Number | Loading of Normal Stress /MPa | Loading of Water Head Difference /m | Filled Fracture Conditions | |
---|---|---|---|---|
Particle Size of Filling Sand/mm | Mass of Filling Sand/g | |||
S1–S5 | 0.5, 1.0, 1.5, 2.0, 2.5 | 1, 3, 5 | Unfilled | |
S6 | 1.0–1.6 | 72.2 | ||
S7 | 144.4 | |||
S8 | 216.6 | |||
S9 | 2.5–3.2 | 109.3 | ||
S10 | 3.2–4.0 | 153.5 |
Sample Number | Z2S | JRC | Sdr | K a |
---|---|---|---|---|
S1 | 0.170 | 7.203 | 1.377 | 0.195 |
S2 | 0.128 | 3.078 | 0.785 | 0.156 |
S3 | 0.114 | 1.584 | 0.632 | 0.059 |
S4 | 0.151 | 5.543 | 1.101 | 0.188 |
S5 | 0.118 | 2.002 | 0.674 | 0.017 |
S6 | 0.109 | 0.992 | 0.590 | 0.132 |
S7 | 0.118 | 2.085 | 0.686 | 0.285 |
S8 | 0.139 | 4.346 | 0.947 | 0.003 |
S9 | 0.130 | 3.465 | 0.820 | 0.076 |
S10 | 0.158 | 6.182 | 1.156 | 0.382 |
Sample Number | Normal Stress/MPa | Water Head Difference/m | Re |
---|---|---|---|
S1 | 0.5 | 5 | 12.869 |
S2 | 8.141 | ||
S3 | 5.542 | ||
S4 | 10.989 | ||
S5 | 6.470 |
Sample Number | α | β | R2 |
---|---|---|---|
S1 | −0.476 | 3.099 | 0.995 |
S2 | −0.504 | 2.870 | 0.999 |
S3 | −0.484 | 2.581 | 0.992 |
S4 | −0.489 | 2.958 | 0.996 |
S5 | −0.491 | 2.638 | 0.999 |
Sample Number | λ3 | λ4 | R2 |
---|---|---|---|
S1 | 0.412 | 2.871 | 0.984 |
S2 | 0.312 | 2.965 | 0.969 |
S3 | 0.349 | 2.914 | 0.859 |
S4 | 0.325 | 3.176 | 0.970 |
S5 | 0.334 | 3.063 | 0.993 |
Sample Number | R2 | |
---|---|---|
S1 | 0.381 | 0.980 |
S2 | 0.306 | 0.967 |
S3 | 0.338 | 0.850 |
S4 | 0.359 | 0.966 |
S5 | 0.344 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Xie, X.; Liu, J. Seepage Characteristics of Shale Fracture and the Effect of Filling Sand under Normal Stress. Water 2023, 15, 4136. https://doi.org/10.3390/w15234136
Gong Y, Xie X, Liu J. Seepage Characteristics of Shale Fracture and the Effect of Filling Sand under Normal Stress. Water. 2023; 15(23):4136. https://doi.org/10.3390/w15234136
Chicago/Turabian StyleGong, Yan, Xinghua Xie, and Jingkai Liu. 2023. "Seepage Characteristics of Shale Fracture and the Effect of Filling Sand under Normal Stress" Water 15, no. 23: 4136. https://doi.org/10.3390/w15234136
APA StyleGong, Y., Xie, X., & Liu, J. (2023). Seepage Characteristics of Shale Fracture and the Effect of Filling Sand under Normal Stress. Water, 15(23), 4136. https://doi.org/10.3390/w15234136