Nutrient Loadings and Exchange between the Curonian Lagoon and the Baltic Sea: Changes over the Past Two Decades (2001–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Methodology for Calculation of the Curonian Lagoon Water Balance Elements
2.3. Analysis of Water Samples
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes of the Water Balance Component of the Curonian Lagoon in the Period of 2001–2020
3.2. Characteristics of the Curonian Lagoon–Baltic Sea Transitional Zone in the Past Decade: Salinity, Water Temperature, and Dissolved Oxygen
3.3. Spatial and Temporal Variations in Nutrient Concentrations
3.4. Seasonal Changes in N and P Concentrations and Distribution over the Course of Three Years (2018–2020)
3.5. Relationship between Nutrient Loadings and Water Characteristics
3.6. Nutrient Transport Flows between the Curonian Lagoon and the Baltic Sea Based on Curonian Lagoon Water Balance Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asmala, E.; Virtasalo, J.J.; Scheinin, M.; Newton, S.; Jilbert, T. Role of particle dynamics in processing of terrestrial nitrogen and phosphorus in the estuarine mixing zone. Limnol. Oceanogr. 2022, 67, 1–12. [Google Scholar] [CrossRef]
- Andersen, J.H.; Halpern, B.S.; Korpinen, S.; Murray, C.; Reker, J. Baltic Sea biodiversity status vs. cumulative human pressures. Estuar. Coast. Shelf Sci. 2015, 161, 88–92. [Google Scholar] [CrossRef]
- Carstensen, J.; Conley, D.J.; Almroth-Rosell, E.; Asmala, E.; Bonsdorff, E.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Gustafsson, C.; Heiskanen, A.-S.; Janas, U.; et al. Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio 2020, 49, 1194–1210. [Google Scholar] [CrossRef] [PubMed]
- Preisner, M.; Smol, M.; Szołdrowska, D. Trends, insights and effects of the Urban Wastewater Treatment Directive (91/271/EEC) implementation in the light of the Polish coastal zone eutrophication. Environ. Manag. 2021, 67, 342–354. [Google Scholar] [CrossRef]
- Lønborg, C.; Markager, S. Nitrogen in the Baltic Sea: Long-term trends, a budget and decadal time lags in responses to declining inputs. Estuar. Coast. Shelf Sci. 2021, 261, 107529. [Google Scholar] [CrossRef]
- Gustafsson, B.G.; Schenk, F.; Blenckner, T.; Eilola, K.; Meier, H.E.M.; Müller-Karulis, B.; Neumann, T.; Ruoho-Airola, T.; Savchuk, O.P.; Zorita, E. Reconstructing the Development of Baltic Sea Eutrophication 1850–2006. AMBIO 2012, 41, 534–548. [Google Scholar] [CrossRef]
- Räike, A.; Pietiläinen, O.P.; Rekolainen, S.; Kauppila, P.; Pitkänen, H.; Niemi, J.; Raateland, A.; Vuorenmaa, J. Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975–2000. Sci. Total Environ. 2003, 310, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, E.; Nawrot, N.; Matej-Łukowicz, K.; Gajewska, M.; Obarska-Pempkowiak, H. Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Supply 2018, 19, 986–994. [Google Scholar] [CrossRef]
- Barquet, K.; Järnberg, L.; Rosemarin, A.; Macura, B. Identifying barriers and opportunities for a circular phosphorus economy in the Baltic Sea region. Water Res. 2020, 171, 115433. [Google Scholar] [CrossRef]
- Vuorenmaa, J.; Rekolainen, S.; Lepistö, A.; Kenttämies, K.; Kauppila, P. Losses of Nitrogen and Phosphorus from Agricultural and Forest Areas in Finland during the 1980s and 1990s. Environ. Monit. Assess. 2002, 76, 213–248. [Google Scholar] [CrossRef]
- Šileika, A.; Wallin, M.; Gaigalis, K. Assessment of nitrogen pollution reduction options in the river Nemunas (Lithuania) using FyrisNP model. J. Environ. Eng. Landsc. Manag. 2013, 21, 141–151. [Google Scholar] [CrossRef]
- Česonienė, L.; Šileikienė, D.; Marozas, V.; Čiteikė, L. Influence of Anthropogenic Loads on Surface Water Status: A Case Study in Lithuania. Sustainability 2021, 13, 4341. [Google Scholar] [CrossRef]
- Räike, A.; Taskinen, A.; Knuuttila, S. Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water protection measures. Ambio 2020, 49, 460–474. [Google Scholar] [CrossRef] [PubMed]
- HELCOM. Baltic Sea Action Plan 2021 Update. 2021. Available online: https://helcom.fi/wp-content/uploads/2021/10/Baltic-Sea-Action-Plan-2021-update.pdf (accessed on 23 November 2023).
- Vybernaite-Lubiene, I.; Zilius, M.; Giordani, G.; Petkuviene, J.; Vaiciute, D.; Bukaveckas, P.A.; Bartoli, M. Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuar. Coast. Shelf Sci. 2017, 194, 217–228. [Google Scholar] [CrossRef]
- Vybernaite-Lubiene, I.; Zilius, M.; Bartoli, M.; Petkuviene, J.; Zemlys, P.; Magri, M.; Giordani, G. Biogeochemical Budgets of Nutrients and Metabolism in the Curonian Lagoon (South East Baltic Sea): Spatial and Temporal Variations. Water 2022, 14, 164. [Google Scholar] [CrossRef]
- Čerkasova, N.; Umgiesser, G.; Ertürk, A. Modelling framework for flow, sediments and nutrient loads in a large transboundary river watershed: A climate change impact assessment of the Nemunas River watershed. J. Hydrol. 2021, 598, 126422. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Bierkens, M.F.P.; Griffioen, J.; Hefting, M.M.; Middelburg, J.J.; Middelkoop, H.; Slomp, C.P. Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: Towards integration of ecological and biogeochemical models. Biogeosciences 2013, 10, 4785–4800. [Google Scholar] [CrossRef]
- Asmala, E.; Carstensen, J.; Conley, D.J.; Slomp, C.P.; Stadmark, J.; Voss, M. Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea. Limnol. Oceanogr. 2017, 62, S222–S238. [Google Scholar] [CrossRef]
- Nelson, J.L.; Zavaleta, E.S. Salt marsh as a coastal filter for the oceans: Changes in function with experimental increases in nitrogen loading and sea-level rise. PLoS ONE 2012, 7, e38558. [Google Scholar] [CrossRef]
- Stakeniene, R.; Galkus, A.; Jokšas, K. Pollution of Klaipėda Port Waters. Pol. J. Environ. Stud. 2011, 20, 445–459. [Google Scholar]
- Kriauciuniene, J.; Gailiusis, B. Changes of Sediment Transport Induced by Reconstruction of Klaipeda Seaport Entrance Channel. Environ. Res. Eng. Manag. 2004, 2, 3–9. [Google Scholar]
- Červinskas, E. Issue of average annual water balance of Curonian Lagoon. Work. Acad. Sci. B 1956, 5, 67–76. [Google Scholar]
- Jakimavičius, D.; Jakimavičius, M. Long-term water balance of the Curonian Lagoon in the context of antropogenic factors and climate change. Baltica 2010, 23, 33–46. [Google Scholar]
- Remeikaitė-Nikienė, N.; Lujaniene, G.; Garnaga-Budrė, G.; Jokšas, K.; Garbaras, A.; Skipitytė, R.; Bariseviciute, R.; Silobritiene, B.; Stankevičius, A. Distribution of Trace Elements and Radionuclides in the Curonian Lagoon and the Baltic Sea; IEEE: Vilnius, Lithuania, 2012. [Google Scholar]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon. In Ecology of Baltic Coastal Waters; Schiewer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 197–215. [Google Scholar]
- Žaromskis, R. Oceans, Seas, Estuaries; Debesija: Vilnius, Lithuania, 1996. (In Lithuania) [Google Scholar]
- Jakimavičius, D.; Kriaučiūnienė, J.; Šarauskienė, D. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 2018, 60, 378–389. [Google Scholar] [CrossRef]
- Jokšas, K.; Galkus, A.; Stakėnienė, R. The Only Lithuanian Seaport and Its Environment; Institute of Geology and Geography: Vilnius, Lithuania, 2003.
- Raudonytė-Svirbutavičienė, E.; Jokšas, K.; Stakėnienė, R. On the effectiveness of tributyltin ban part II: Temporal and spatial trends of organotin pollution in intense sediment accumulation areas and dumping sites of the Baltic Sea. J. Hazard. Mater. Adv. 2023, 10, 100294. [Google Scholar] [CrossRef]
- Jokšas, K.; Stakėnienė, R.; Raudonytė-Svirbutavičienė, E. On the effectiveness of tributyltin ban: Distribution and changes in butyltin concentrations over a 9-year period in Klaipėda Port, Lithuania. Ecotoxicol. Environ. Saf. 2019, 183, 109515. [Google Scholar] [CrossRef] [PubMed]
- Gailiušis, B.; Kovalenkovienė, M.; Jurgelėnaitė, A. Water balance of the Curonian Lagoon. Energetika 1992, 2, 67–73. [Google Scholar]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- ISO 5667-3:2006; Water Quality—Sampling—Part 3: Guidance on the Preservation and Handling of Water Samples. International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 5667-1:2007; Water Quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 6878:2004; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method (ISO 6878:2004). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 14911:2000; Water Quality—Determination of Dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using Ion Chromatography—Method for Water and Waste Water (ISO 14911:1998). International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 7890-3:1988; Water quality—Determination of Nitrate—Part 3: Spectrometric Method using Sulfosalicylic Acid. International Organization for Standardization: Geneva, Switzerland, 1988.
- ISO 11905-1:1997; Water quality—Determination of nitrogen—Part 1: Method using Oxidative Digestion with Peroxodisulfate. International Organization for Standardization: Geneva, Switzerland, 1997.
- Gailiušis, B.; Kovalenkovienė, M.; Kriaučiūnienė, J. Hydrological aspects of development of Klaipėda harbour. Energetika 1996, 3, 73–78. [Google Scholar]
- Dailidienė, I.; Davulienė, L. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984–2005. J. Mar. Syst. 2008, 74, S20–S29. [Google Scholar] [CrossRef]
- Jakimavičius, D.; Kriaučiūnienė, J. The climate change impact on the water balance of the Curonian Lagoon. Water Resour. 2013, 40, 120–132. [Google Scholar] [CrossRef]
- Zemlys, P.; Ferrarin, C.; Umgiesser, G.; Gulbinskas, S.; Bellafiore, D. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci. 2013, 9, 573–584. [Google Scholar] [CrossRef]
- Gailiušis, B.; Jablonskis, J.; Kovalenkovienė, M. The Lithuanian Rivers. Hydrography and Runoff; LEI: Kaunas, Lithuania, 2001; p. 792. [Google Scholar]
- Liénart, C.; Garbaras, A.; Qvarfordt, S.; Walve, J.; Karlson, A.M.L. Spatio-temporal variation in stable isotope and elemental composition of key-species reflect environmental changes in the Baltic Sea. Biogeochemistry 2022, 157, 149–170. [Google Scholar] [CrossRef]
- Baxa, M.; Musil, M.; Kummel, M.; Hanzlík, P.; Tesařová, B.; Pechar, L. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond)—Sediment oxygen demand and water column respiration alternately drive the oxygen regime. Sci. Total Environ. 2021, 766, 142647. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Grygoruk, M. Long-Term Downstream Effects of a Dam on a Lowland River Flow Regime: Case Study of the Upper Narew. Water 2017, 9, 783. [Google Scholar] [CrossRef]
- Povilaitis, A.; Šileika, A.; Deelstra, J.; Gaigalis, K.; Baigys, G. Nitrogen losses from small agricultural catchments in Lithuania. Agric. Ecosyst. Environ. 2014, 198, 54–64. [Google Scholar] [CrossRef]
- Plunge, S.; Gudas, M.; Povilaitis, A. Expected climate change impacts on surface water bodies in Lithuania. Ecohydrol. Hydrobiol. 2022, 22, 246–268. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Cai, W.-J.; Carstensen, J.; Conley, D.J.; Fry, B.; Hu, X.; QuiÑOnes-Rivera, Z.; Rosenberg, R.; Slomp, C.P.; Turner, R.E.; et al. Eutrophication-Driven Deoxygenation in the Coastal Ocean. Oceanography 2014, 27, 172–183. [Google Scholar] [CrossRef]
- Hietanen, S.; Jäntti, H.; Buizert, C.; Jürgens, K.; Labrenz, M.; Voss, M.; Kuparinen, J. Hypoxia and nitrogen processing in the Baltic Sea water column. Limnol. Oceanogr. 2012, 57, 325–337. [Google Scholar] [CrossRef]
- Markus Meier, H.E.; Dieterich, C.; Gröger, M. Natural variability is a large source of uncertainty in future projections of hypoxia in the Baltic Sea. Commun. Earth Environ. 2021, 2, 50. [Google Scholar] [CrossRef]
- Rak, D.; Walczowski, W.; Dzierzbicka-Głowacka, L.; Shchuka, S. Dissolved oxygen variability in the southern Baltic Sea in 2013–2018. Oceanologia 2020, 62, 525–537. [Google Scholar] [CrossRef]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas. Water 2019, 11, 1. [Google Scholar] [CrossRef]
- Rönspieß, L.; Dellwig, O.; Lange, X.; Nausch, G.; Schulz-Bull, D. Spatial and seasonal phosphorus dynamics in a eutrophic estuary of the southern Baltic Sea. Estuar. Coast. Shelf Sci. 2020, 233, 106532. [Google Scholar] [CrossRef]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Murawska, A.; Prus, P. The Progress of Sustainable Management of Ammonia Emissions from Agriculture in European Union States Including Poland—Variation, Trends, and Economic Conditions. Sustainability 2021, 13, 1035. [Google Scholar] [CrossRef]
- Hellsten, S.; Dalgaard, T.; Rankinen, K.; Tørseth, K.; Bakken, L.; Bechmann, M.; Kulmala, A.; Moldan, F.; Olofsson, S.; Piil, K.; et al. Abating N in Nordic agriculture—Policy, measures and way forward. J. Environ. Manag. 2019, 236, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Kuss, J.; Nausch, G.; Engelke, C.; von Weber, M.; Lutterbeck, H.; Naumann, M.; Waniek, J.; Schulz-Bull, D. Changes of Nutrient Concentrations in the Western Baltic Sea in the Transition Between Inner Coastal Waters and the Central Basins: Time Series From 1995 to 2016 With Source Analysis. Front. Earth Sci. 2020, 8, 106. [Google Scholar] [CrossRef]
- Pastuszak, M.; Bryhn, A.C.; Håkanson, L.; Stålnacke, P.; Zalewski, M.; Wodzinowski, T. Reduction of nutrient emission from Polish territory into the Baltic Sea (1988–2014) confronted with real environmental needs and international requirements. Oceanol. Hydrobiol. Stud. 2018, 47, 140–166. [Google Scholar] [CrossRef]
- Neal, C.; Davies, H.; Neal, M. Water quality, nutrients and the water framework directive in an agricultural region: The lower Humber Rivers, northern England. J. Hydrol. 2008, 350, 232–245. [Google Scholar] [CrossRef]
- Vybernaite-Lubiene, I.; Zilius, M.; Saltyte-Vaisiauske, L.; Bartoli, M. Recent Trends (2012–2016) of N, Si, and P Export from the Nemunas River Watershed: Loads, Unbalanced Stoichiometry, and Threats for Downstream Aquatic Ecosystems. Water 2018, 10, 1178. [Google Scholar] [CrossRef]
- Sundbäck, K.; Linares, F.; Larson, F.; Wulff, A.; Engelsen, A. Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: The role of denitrification and microphytobenthos. Limnol. Oceanogr. 2004, 49, 1095–1107. [Google Scholar] [CrossRef]
- Brion, N.; Jans, S.; Chou, L.; Rousseau, V. Nutrient loads to the Belgian Coastal Zone; ULB: Brussels, Belgium, 2006; pp. 17–43. [Google Scholar]
- Eyre, B.D.; Maher, D.T.; Sanders, C. The contribution of denitrification and burial to the nitrogen budgets of three geomorphically distinct Australian estuaries: Importance of seagrass habitats. Limnol. Oceanogr. 2016, 61, 1144–1156. [Google Scholar] [CrossRef]
- Carstensen, J.; Conley, D.J.; Bonsdorff, E.; Gustafsson, B.G.; Hietanen, S.; Janas, U.; Jilbert, T.; Maximov, A.; Norkko, A.; Norkko, J.; et al. Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic Fauna, and Management. AMBIO 2014, 43, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Noffke, A.; Sommer, S.; Dale, A.W.; Hall, P.O.J.; Pfannkuche, O. Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with particular focus on microbial mat ecosystems. J. Mar. Syst. 2016, 158, 1–12. [Google Scholar] [CrossRef]
- Sommer, S.; Clemens, D.; Yücel, M.; Pfannkuche, O.; Hall, P.O.; Almroth-Rosell, E.; Schulz-Vogt, H.N.; Dale, A.W. Major bottom water ventilation events do not significantly reduce basin-wide benthic N and P release in the eastern Gotland basin (Baltic Sea). Front. Mar. Sci. 2017, 4, 18. [Google Scholar] [CrossRef]
- Ehrnsten, E.; Savchuk, O.P.; Gustafsson, B.G. Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea. Biogeosciences 2022, 19, 3337–3367. [Google Scholar] [CrossRef]
- Yang, Q.-Z.; Zhou, B.; Liu, J.-W.; Shen, W.-R.; Jia, X.-D.; He, X.-J.; Zhao, H.-Z. Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chem. Eng. Sci. 2021, 242, 116750. [Google Scholar] [CrossRef]
- Suratman, S.; Jickells, T.; Weston, K.; Fernand, L. Seasonal variability of inorganic and organic nitrogen in the North Sea. Hydrobiologia 2008, 610, 83–98. [Google Scholar] [CrossRef]
- Bowes, M.J.; Smith, J.T.; Neal, C.; Leach, D.V.; Scarlett, P.M.; Wickham, H.D.; Harman, S.A.; Armstrong, L.K.; Davy-Bowker, J.; Haft, M.; et al. Changes in water quality of the River Frome (UK) from 1965 to 2009: Is phosphorus mitigation finally working? Sci. Total Environ. 2011, 409, 3418–3430. [Google Scholar] [CrossRef]
- Aleksandrov, S.; Krek, A.; Bubnova, E.; Danchenkov, A. Eutrophication and effects of algal bloom in the south–western part of the Curonian Lagoon alongside the Curonian Spit. Baltica 2018, 31, 1–12. [Google Scholar] [CrossRef]
- Bradley, P.B.; Sanderson, M.P.; Frischer, M.E.; Brofft, J.; Booth, M.G.; Kerkhof, L.J.; Bronk, D.A. Inorganic and organic nitrogen uptake by phytoplankton and heterotrophic bacteria in the stratified Mid-Atlantic Bight. Estuar. Coast. Shelf Sci. 2010, 88, 429–441. [Google Scholar] [CrossRef]
- Morando, M.; Capone, D.G. Direct Utilization of Organic Nitrogen by Phytoplankton and Its Role in Nitrogen Cycling Within the Southern California Bight. Front. Microbiol. 2018, 9, 2118. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.; Ulanowicz, R.E.; Boynton, W.R. Seasonal Nitrogen Dynamics in Chesapeake Bay: A Network Approach. Estuar. Coast. Shelf Sci. 1995, 41, 137–162. [Google Scholar] [CrossRef]
- Petkuviene, J.; Zilius, M.; Lubiene, I.; Ruginis, T.; Giordani, G.; Razinkovas-Baziukas, A.; Bartoli, M. Phosphorus Cycling in a Freshwater Estuary Impacted by Cyanobacterial Blooms. Estuaries Coasts 2016, 39, 1386–1402. [Google Scholar] [CrossRef]
- Ghorbanizadeh, S.; Rostami, B. Surface and Interfacial Tension Behavior of Salt Water Containing Dissolved Amphiphilic Compounds of Crude Oil: The Role of Single-Salt Ionic Composition. Energy Fuels 2017, 31, 9117–9124. [Google Scholar] [CrossRef]
- Atkinson, C.A.; Jolley, D.F.; Simpson, S.L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Dainys, J.; Jakubavičiūtė, E.; Gorfine, H.; Pūtys, Ž.; Virbickas, T.; Jakimavičius, D.; Šarauskienė, D.; Meilutytė-Lukauskienė, D.; Povilaitis, A.; Bukantis, A.; et al. Predicted climate change effects on European perch (Perca fluviatilis L.)—A case study from the Curonian Lagoon, south-eastern Baltic. Estuar. Coast. Shelf Sci. 2019, 221, 83–89. [Google Scholar] [CrossRef]
- Zilius, M.; Vybernaite-Lubiene, I.; Vaiciute, D.; Petkuviene, J.; Zemlys, P.; Liskow, I.; Voss, M.; Bartoli, M.; Bukaveckas, P.A. The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon. Biogeochemistry 2018, 141, 143–165. [Google Scholar] [CrossRef]
- Bartoli, M.; Nizzoli, D.; Zilius, M.; Bresciani, M.; Pusceddu, A.; Bianchelli, S.; Sundbäck, K.; Razinkovas-Baziukas, A.; Viaroli, P. Denitrification, Nitrogen Uptake, and Organic Matter Quality Undergo Different Seasonality in Sandy and Muddy Sediments of a Turbid Estuary. Front. Microbiol. 2020, 11, 612700. [Google Scholar] [CrossRef]
- Reitzel, K.; Ahlgren, J.; DeBrabandere, H.; Waldebäck, M.; Gogoll, A.; Tranvik, L.; Rydin, E. Degradation rates of organic phosphorus in lake sediment. Biogeochemistry 2007, 82, 15–28. [Google Scholar] [CrossRef]
- Cieśliński, R.; Chlost, I.; Szydłowski, M. Impact of new, navigable canal through the Vistula spit on the hydrologic balance of the Vistula lagoon (Baltic Sea). J. Mar. Syst. 2024, 241, 103908. [Google Scholar] [CrossRef]
- Dubra, J. Water balance. In the Curonian Lagoon; Mokslas: Vilnius, Lithuania, 1978; Volume 2. [Google Scholar]
Area | Water Layer | S, psu | T, °C | O2, mg/L | |||
---|---|---|---|---|---|---|---|
2007–2009 (n = 312) | 2018–2020 (n = 388) | 2007–2009 (n = 312) | 2018–2020 (n = 388) | 2007–2009 (n = 312) | 2018–2020 (n = 388) | ||
CL | Surface | - | 1.54 ± 0.78 (n = 38) | - | 11.87 ± 1.44 (n = 38) | - | 8.64 ± 2.05 (n = 38) |
KS | Surface | 1.0 ± 0.40 ** (n = 84) | 3.32 ± 0.52 ** (n = 84) | 9.62 ± 0.86 ** (n = 84) | 11.49 ± 1.59 ** (n = 84) | 9.19 ± 0.69 ** (n = 84) | 8.44 ± 1.63 ** (n = 84) |
BS | Surface | 6.41 ± 0.05 (n = 72) | 6.40 ± 0.50 (n = 72) | 10.65 ± 0.16 (n = 72) | 11.74 ± 2.53 (n = 72) | 9.92 ± 0.22 * (n = 72) | 9.06 ± 2.32 * (n = 72) |
CL | Near-bottom | - | 1.74 ± 1.0 (n = 38) | - | 11.54 ± 1.87 (n = 38) | - | 8.26 ± 2.14 (n = 38) |
KS | Near-bottom | 2.81 ± 0.67 ** (n = 84) | 4.59 ± 0.75 ** (n = 84) | 9.03 ± 0.69 ** (n = 84) | 10.86 ± 2.19 ** (n = 84) | 9.06 ± 1.14 ** (n = 84) | 8.4 ± 2.07 ** (n = 84) |
BS | Near-bottom | 7.02 ± 0.01 (n = 72) | 7.06 ± 0.29 (n = 72) | 9.07 ± 0.21 * (n = 72) | 10.56 ± 3.48 * (n = 72) | 9.31 ± 0.49 (n = 72) | 8.57 ± 2.12 (n = 72) |
CL | Water column | - | 1.64 ± 0.89 (n = 76) | - | 11.71 ± 1.65 (n = 76) | - | 8.45 ± 2.10 (n = 76) |
KS | Water column | 1.9 ± 0.54 ** (n = 168) | 3.96 ± 0.63 ** (n = 168) | 9.32 ± 0.76 ** (n = 168) | 11.17 ± 1.89 ** (n = 168) | 9.13 ± 0.91 ** (n = 168) | 8.4 ± 1.85 ** (n = 168) |
BS | Water column | 6.71 ± 0.02 (n = 144) | 6.7 ± 0.36 (n = 144) | 9.86 ± 0.11 ** (n = 144) | 11.15 ± 3.00 ** (n = 144) | 9.61 ± 0.35 ** (n = 144) | 8.81 ± 2.22 ** (n = 144) |
Area | N/NH4+, mg/L | N/NO2−, mg/L | N/NO3−, mg/L | TN, mg/L | P/PO43−, mg/L | TP, mg/L |
---|---|---|---|---|---|---|
2007–2009 | ||||||
CL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
KS (n = 168) | 0.11 ± 0.09 ** | 0.013 ± 0.01 ** | 0.718 ± 0.27 ** | 1.60 ± 0.25 ** | 0.020 ± 0.001 ** | 0.061 ± 0.04 ** |
BS (n = 144) | 0.11 ± 0.03 * | 0.004 ± 0.002 * | 0.20 ± 0.08 * | 0.54 ± 0.04 * | 0.013 ± 0.007 | 0.03 ± 0.01 ** |
2018–2020 | ||||||
N/NH4+, mg/L | N/NO2−, mg/L | N/NO3−, mg/L | TN, mg/L | P/PO43−, mg/L | TP, mg/L | |
CL (n = 56) | 0.12 ± 0.06 | 0.008 ± 0.06 | 0.60 ± 0.14 | 1.38 ± 0.22 | 0.009 ± 0.002 | 0.026 ± 0.002 |
KS (n = 168) | 0.17 ± 0.06 ** | 0.008 ± 0.06 ** | 0.55 ± 0.19 ** | 1.2 ± 0.36 ** | 0.01 ± 0.002 ** | 0.025 ± 0.002 ** |
BS (n = 144) | 0.15 ± 0.01 * | 0.010 ± 0.01 * | 0.14 ± 0.06 * | 0.65 ± 0.32 * | 0.011 ± 0.004 | 0.021 ± 0.002 ** |
Winter | Spring | Summer | Autumn | |
---|---|---|---|---|
TN, mg/L | ||||
KS | 2.09 ± 0.83 | 1.39 ± 0.99 | 0.90 ± 0.36 | 0.81 ± 0.29 |
BS | 0.63 ± 0.28 | 0.54 ± 0.18 | 0.53 ± 0.25 | 0.46 ± 0.23 |
TP, mg/L | ||||
KS | 0.051 ± 0.003 | 0.051 ± 0.072 | 0.047 ± 0.041 | 0.064 ± 0.069 |
BS | 0.026 ± 0.010 | 0.027 ± 0.020 | 0.038 ± 0.0170 | 0.028 ± 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stakėnienė, R.; Jokšas, K.; Kriaučiūnienė, J.; Jakimavičius, D.; Raudonytė-Svirbutavičienė, E. Nutrient Loadings and Exchange between the Curonian Lagoon and the Baltic Sea: Changes over the Past Two Decades (2001–2020). Water 2023, 15, 4096. https://doi.org/10.3390/w15234096
Stakėnienė R, Jokšas K, Kriaučiūnienė J, Jakimavičius D, Raudonytė-Svirbutavičienė E. Nutrient Loadings and Exchange between the Curonian Lagoon and the Baltic Sea: Changes over the Past Two Decades (2001–2020). Water. 2023; 15(23):4096. https://doi.org/10.3390/w15234096
Chicago/Turabian StyleStakėnienė, Rimutė, Kęstutis Jokšas, Jūratė Kriaučiūnienė, Darius Jakimavičius, and Eva Raudonytė-Svirbutavičienė. 2023. "Nutrient Loadings and Exchange between the Curonian Lagoon and the Baltic Sea: Changes over the Past Two Decades (2001–2020)" Water 15, no. 23: 4096. https://doi.org/10.3390/w15234096
APA StyleStakėnienė, R., Jokšas, K., Kriaučiūnienė, J., Jakimavičius, D., & Raudonytė-Svirbutavičienė, E. (2023). Nutrient Loadings and Exchange between the Curonian Lagoon and the Baltic Sea: Changes over the Past Two Decades (2001–2020). Water, 15(23), 4096. https://doi.org/10.3390/w15234096