The Lag Effect of Riverine Flow-Discharge and Sediment-Load Response to Antecedent Rainfall with Different Cumulative Durations in Red Hilly Area in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Definition of Extreme Rainfall Events
2.4. Mann–Kendall Test
2.5. Pre-Processing of Hydrological Data
2.6. Multiple Regression Analysis
3. Results
3.1. Change Characteristics of Rainfall, Riverine Flow Discharge, Sediment Load, and Garden Land
3.2. Statistical Characteristics of Rainfall, Riverine Flow, and Riverine Sediment Loads in Different Periods
3.3. Impact of Antecedent Rainfall on Runoff
3.4. Impact of Antecedent Rainfall on Sediment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sriwongsitanon, N.; Taesombat, W. Effects of land cover on runoff coefficient. J. Hydrol. 2011, 410, 226–238. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of Rainfall Intensity, Slope, Land Use and Antecedent Soil Moisture on Soil Erosion in an Arid Environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Liu, Y.X.; Hou, X.L.; Qiao, J.X.; Zhang, W.C.; Fang, M.; Lin, M. Evaluation of soil erosion rates in the hilly-gully region of the Loess Plateau in China in the past 60 years using global fallout plutonium. Catena 2023, 220, 106666. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.D.; Zhang, H.D.; Chen, J. Effect of rainfall variation and landscape change on runoff and sediment yield from a loess hilly catchment in China. Environ. Earth Sci. 2015, 73, 1005–1016. [Google Scholar] [CrossRef]
- Xiao, L.L.; Yang, X.H.; Chen, S.X.; Cai, H.Y. An assessment of erosivity distribution and its influence on the effectiveness of land use conversion for reducing soil erosion in Jiangxi, China. Catena 2015, 125, 50–60. [Google Scholar] [CrossRef]
- Tian, P.; Zhai, J.Q.; Zhao, G.J.; Mu, X.M. Dynamics of Runoff and Suspended Sediment Transport in a Highly Erodible Catchment on the Chinese Loess Plateau. Land Degrad. Dev. 2016, 27, 839–850. [Google Scholar] [CrossRef]
- Guo, W.X.; Sang, Y.; Hu, J.W.; Wang, W.P.; Wang, H.X. Characteristics and attribution analysis of runoff and sediment evolution in the Wei River mainstream, China. J. Water Clim. Chang. 2023, 14, 2432–2447. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441. [Google Scholar] [CrossRef]
- Zhao, L.X.; Guo, Z.L.; Nie, X.F.; Liao, K.T.; Zheng, H.J. Effects of extreme rainfall events on runoff and sediment in the southern red soil area: A long series analysis based on the Upper Lianjiang River of Ganjiang River (1984–2020). J. Lake Sci. 2023, 35, 2133–2143. [Google Scholar] [CrossRef]
- Liang, Y.; Li, D.C.; Lu, X.X.; Yang, X.; Pan, X.Z.; Mu, H.; Shi, D.M.; Zhang, B. Soil Erosion Changes over the Past Five Decades in the Red Soil Region of Southern China. J. Mt. Sci. 2010, 7, 92–99. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.J.; Yang, J.; Tang, C.J.; Shi, Z.H. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol. 2020, 582, 124290. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Xiao, T.; Li, P.; Zhang, L.; Liu, Y.; Deng, W. Runoff velocity controls soil nitrogen leaching in subtropical restored forest in southern China. For. Ecol. Manag. 2023, 548, 121412. [Google Scholar] [CrossRef]
- Bennett, B.; Leonard, M.; Deng, Y.; Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol. 2018, 567, 435–445. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gao, L.; Huang, S.S.; Peng, X.H. Combined effects of rainfall types and antecedent soil moisture on runoff generation at a hillslope of red soil region. Eur. J. Soil Sci. 2022, 73, e13274. [Google Scholar] [CrossRef]
- Li, X.Y.; Contreras, S.; Sole-Benet, A.; Canton, Y.; Domingo, F.; Lazaro, R.; Lin, H.; Van Wesemael, B.; Puigdefabregas, J. Controls of infiltration-runoff processes in Mediterranean karst rangelands in SE Spain. Catena 2011, 86, 98–109. [Google Scholar] [CrossRef]
- Zhang, W.J.; Zhu, X.I.; Xiong, X.; Wu, T.; Zhou, S.Y.D.; Lie, Z.; Jiang, X.J.; Liu, J.X. Changes in soil infiltration and water flow paths: Insights from subtropical forest succession sequence. Catena 2023, 221, 106748. [Google Scholar] [CrossRef]
- Tu, A.G.; Zeng, J.L.; Liu, Z.; Zheng, H.J.; Xie, S.H. Effect of minimum inter-event time for rainfall event separation on rainfall properties and rainfall erosivity in a humid area of southern China. Geoderma 2023, 431, 116332. [Google Scholar] [CrossRef]
- Abrisqueta, J.M.; Plana, V.; Mounzer, O.H.; Mendez, J.; Ruiz-Sanchez, M.C. Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agric. Water Manag. 2007, 93, 11–18. [Google Scholar] [CrossRef]
- Dugan, H.A.; Lamoureux, S.F.; Lafreniere, M.J.; Lewis, T. Hydrological and sediment yield response to summer rainfall in a small high Arctic watershed. Hydrol. Process. 2009, 23, 1514–1526. [Google Scholar] [CrossRef]
- Kim, Y.; Rahardjo, H.; Nistor, M.M.; Satyanaga, A.; Leong, E.C.; Sham, A.W.L. Assessment of critical rainfall scenarios for slope stability analyses based on historical rainfall records in Singapore. Environ. Earth Sci. 2022, 81, 39. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Najibi, N.; Devineni, N. Scaling of Floods With Geomorphologic Characteristics and Precipitation Variability Across the Conterminous United States. Water Resour. Res. 2023, 59, e2022WR032815. [Google Scholar] [CrossRef]
- Defersha, M.B.; Quraishi, S.; Melesse, A. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 2367–2375. [Google Scholar] [CrossRef]
- Rahimi, A.; Rahardjo, H.; Leong, E.C. Effect of Antecedent Rainfall Patterns on Rainfall-Induced Slope Failure. J. Geotech. Geoenviron. Eng. 2011, 137, 483–491. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, F.L.; Hu, W.; Zhang, X.C.J.; Shi, H.Q. Interactive effects of rainfall intensity, kinetic energy and antecedent soil moisture regime on splash erosion in the Ultisol region of South China. Catena 2023, 222, 106863. [Google Scholar] [CrossRef]
- Jin, Z.; Guo, L.; Yu, Y.L.; Luo, D.; Fan, B.H.; Chu, G.C. Storm runoff generation in headwater catchments on the Chinese Loess Plateau after long-term vegetation rehabilitation. Sci. Total Environ. 2020, 748, 141375. [Google Scholar] [CrossRef]
- Ran, Q.H.; Wang, J.; Chen, X.X.; Liu, L.; Li, J.Y.; Ye, S. The relative importance of antecedent soil moisture and precipitation in flood generation in the middle and lower Yangtze River basin. Hydrol. Earth Syst. Sci. 2022, 26, 4919–4931. [Google Scholar] [CrossRef]
- He, J.; Cai, Q.; Li, G.; Wang, Z. Integrated erosion control measures and environmental effects in rocky mountainous areas in northern China. Int. J. Sediment Res. 2010, 25, 294–303. [Google Scholar] [CrossRef]
- Haga, H.; Matsumoto, Y.; Matsutani, J.; Fujita, M.; Nishida, K.; Sakamoto, Y. Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment. Water Resour. Res. 2005, 41, W12410. [Google Scholar] [CrossRef]
- Zou, Z.Q.; Tao, Y.; Gao, Y.H.; Liu, Z.X.; Li, W.K.; Tian, Z.C.; Lin, L.R.; He, Y.B.; Chen, J.Z. Soil moisture dynamics near a gully head in relation to the trigger of collapse in granite red soil slope in southern China. Geomorphology 2023, 420, 108493. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Ganzhou Municipal Bureau of Statistics, National Bureau of Statistics Ganzhou Survey Team. Ganzhou Statistical Yearbook; China Statistics Press: Beijing, China, 1993–1995, 1997–2021; pp. 0–376.
- Fang, N.F.; Shi, Z.H.; Yue, B.J.; Wang, L. The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed. PLoS ONE 2013, 8, e76610. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K.U. Identifying the Annual and Seasonal Trends of Hydrological and Climatic Variables in the Indus Basin Pakistan. Asia-Pac. J. Atmos. Sci. 2021, 57, 191–205. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef]
- Zheng, M.G.; Yang, J.S.; Qi, D.L.; Sun, L.Y.; Cai, Q.G. Flow-sediment relationship as functions of spatial and temporal scales in hilly areas of the Chinese Loess Plateau. Catena 2012, 98, 29–40. [Google Scholar] [CrossRef]
- Gao, G.Y.; Fu, B.J.; Zhang, J.J.; Ma, Y.; Sivapalan, M. Multiscale temporal variability of flow-sediment relationships during the 1950s-2014 in the Loess Plateau, China. J. Hydrol. 2018, 563, 609–619. [Google Scholar] [CrossRef]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Zhang, L.; Fang, X.; Deng, W.; Liu, Y. Aggregate-associated soil organic carbon fractions in subtropical soil undergoing vegetative restoration. Land Degrad. Dev. 2023, 34, 4296–4306. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Ruiz, J.A.; Raya, A.M.; Tarifa, D.F. Impact of erosion in the taluses of subtropical orchard terraces. Agric. Ecosyst. Environ. 2005, 107, 199–210. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Novara, A.; Gyasi-Agyei, Y.; Terol, E.; Cerda, A. Effects of parent material on soil erosion within Mediterranean new vineyard plantations. Eng. Geol. 2018, 246, 255–261. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Taguas, E.; Seeger, M.; Ries, J.B. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Cerd, A.; Terol, E.; Daliakopoulos, I.N. Weed cover controls soil and water losses in rainfed olive groves in Sierra de Enguera, eastern Iberian Peninsula. J. Environ. Manag. 2021, 290, 112516. [Google Scholar] [CrossRef] [PubMed]
- Tsanis, I.K.; Seiradakis, K.D.; Sarchani, S.; Panagea, I.S.; Alexakis, D.D.; Koutroulis, A.G. The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land 2021, 10, 964. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.J.; Tang, C.J.; Shi, Z.H.; Yang, J. Efficacy of orchard terrace measures to minimize water erosion caused by extreme rainfall in the hilly region of China: Long-term continuous in situ observations. J. Environ. Manag. 2021, 278, 111537. [Google Scholar] [CrossRef]
- Comino, J.R.; Senciales, J.M.; Ramos, M.C.; Martinez-Casasnovas, J.A.; Lasanta, T.; Brevik, E.C.; Ries, J.B.; Sinoga, J.D.R. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Malaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef]
- Bayat, F.; Monfared, A.B.; Jahansooz, M.R.; Esparza, E.T.; Keshavarzi, A.; Morera, A.G.; Fernandez, M.P.; Cerda, A. Analyzing long-term soil erosion in a ridge-shaped persimmon plantation in eastern Spain by means of ISUM measurements. Catena 2019, 183, 104176. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gomez, J.A.; Zema, D.A. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, F.B.; Wang, S.W.; Yang, M.Y. Combined influences of wheat-seedling cover and antecedent soil moisture on sheet erosion in small-flumes. Soil Tillage Res. 2015, 151, 1–8. [Google Scholar] [CrossRef]
- Deng, L.Z.; Sun, T.Y.; Fei, K.; Zhang, L.P.; Fan, X.J.; Wu, Y.H.; Ni, L. Effects of erosion degree, rainfall intensity and slope gradient on runoff and sediment yield for the bare soils from the weathered granite slopes of SE China. Geomorphology 2020, 352, 106997. [Google Scholar] [CrossRef]
- He, Z.H.; Zhao, C.W.; Zhou, Q.; Liang, H.; Yang, Z.H. Temporal-spatial evolution of lagged response of runoff to rainfall in Karst drainage basin, Central Guizhou of China. Theor. Appl. Climatol. 2022, 147, 437–449. [Google Scholar] [CrossRef]
- Singh, N.K.; Emanuel, R.E.; McGlynn, B.L.; Miniat, C.F. Soil Moisture Responses to Rainfall: Implications for Runoff Generation. Water Resour. Res. 2021, 57, e2020WR028827. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Li, P. Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Li, X.Y.; Zou, L.; Xia, J.; Dou, M.; Li, H.W.; Song, Z.H. Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China. J. Hydrol. 2022, 612, 128189. [Google Scholar] [CrossRef]
- Napolitano, E.; Fusco, F.; Baum, R.L.; Godt, J.W.; De Vita, P. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy). Landslides 2016, 13, 967–983. [Google Scholar] [CrossRef]
- Davis, A.P. Field performance of bioretention: Hydrology impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef]
- Sultan, D.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Tsubo, M.; Meshesha, D.T.; Masunaga, T.; Aklog, D.; Fenta, A.A.; Ebabu, K. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia. Environ. Manag. 2018, 61, 860–874. [Google Scholar] [CrossRef]
Labels | Context |
---|---|
AP1 | Rainfall on the last day before an extreme rainfall event |
AP2 | Cumulative rainfall of the last 2 days before an extreme rainfall event |
AP3 | Cumulative rainfall of the last 3 days before an extreme rainfall event |
AP5 | Cumulative rainfall of the last 5 days before an extreme rainfall event |
AP7 | Cumulative rainfall of the last 7 days before an extreme rainfall event |
RA1 | Flow discharge of the next day after an extreme rainfall event |
RA2 | Cumulative flow discharge of the next 2 days after an extreme rainfall event |
RA3 | Cumulative flow discharge of the next 3 days after an extreme rainfall event |
RA5 | Cumulative flow discharge of the next 5 days after an extreme rainfall event |
RA7 | Cumulative flow discharge of the next 7 days after an extreme rainfall event |
SA1 | Sediment load of the next day after an extreme rainfall event |
SA2 | Cumulative sediment load of the next 2 days after an extreme rainfall event |
SA3 | Cumulative sediment load of the next 3 days after an extreme rainfall event |
SA5 | Cumulative sediment load of the next 5 days after an extreme rainfall event |
SA7 | Cumulative sediment load of the next 7 days after an extreme rainfall event |
Type | Periods | Antecedent Rainfall | Flow Discharge | R2 | n | p-Value |
---|---|---|---|---|---|---|
Extreme rainfall | P1 (1990–1995) | AP5 | RA1 | 0.729 | 31 | *** |
P2 (1996–2020) | AP7 | RA7 | 0.470 | 119 | *** | |
Ordinary rainfall | P1 (1990–1995) | AP7 | RA1 | 0.461 | 146 | *** |
P2 (1996–2020) | AP2 | RA1 | 0.477 | 594 | *** |
Type | Periods | Antecedent Rainfall | Sediment | R2 | n | p-Value |
---|---|---|---|---|---|---|
Extreme rainfall | P1 (1990–1995) | AP3 | SA1 | 0.554 | 31 | *** |
P2 (1996–2020) | AP7 | SA7 | 0.245 | 119 | *** | |
Ordinary rainfall | P1 (1990–1995) | AP7 | SA2 | 0.059 | 146 | 0.077 |
P2 (1996–2020) | AP7 | SA7 | 0.011 | 594 | 0.816 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Nie, X.; Zheng, H.; Liao, K.; Zhang, J. The Lag Effect of Riverine Flow-Discharge and Sediment-Load Response to Antecedent Rainfall with Different Cumulative Durations in Red Hilly Area in China. Water 2023, 15, 4048. https://doi.org/10.3390/w15234048
Zhao L, Nie X, Zheng H, Liao K, Zhang J. The Lag Effect of Riverine Flow-Discharge and Sediment-Load Response to Antecedent Rainfall with Different Cumulative Durations in Red Hilly Area in China. Water. 2023; 15(23):4048. https://doi.org/10.3390/w15234048
Chicago/Turabian StyleZhao, Lixiang, Xiaofei Nie, Haijin Zheng, Kaitao Liao, and Jinjuan Zhang. 2023. "The Lag Effect of Riverine Flow-Discharge and Sediment-Load Response to Antecedent Rainfall with Different Cumulative Durations in Red Hilly Area in China" Water 15, no. 23: 4048. https://doi.org/10.3390/w15234048
APA StyleZhao, L., Nie, X., Zheng, H., Liao, K., & Zhang, J. (2023). The Lag Effect of Riverine Flow-Discharge and Sediment-Load Response to Antecedent Rainfall with Different Cumulative Durations in Red Hilly Area in China. Water, 15(23), 4048. https://doi.org/10.3390/w15234048