Can International Freshwater Trade Contribute to the SDG 6
Abstract
:1. Global Water Crisis
2. Limitations of Desalination Techniques
3. Existing Pathways for Freshwater Reallocation
3.1. Water Transfer Project
3.2. Bottled Water Market
3.3. Virtual Water Trade
4. International Freshwater Trade Provides an Additional Potential Pathway
4.1. Feasibility
4.2. Challenges
4.3. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiklomanov, I. World fresh water resources. In Water in Crisis: A Guide to the World’s Fresh Water Resources; Gleick, P.H., Ed.; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Pradinaud, C.; Northey, S.; Amor, B.; Bare, J.; Benini, L.; Berger, M.; Boulay, A.M.; Junqua, G.; Lathuillière, M.J.; Margni, M.; et al. Defining freshwater as a natural resource: A framework linking water use to the area of protection natural resources. Int. J. Life Cycle Assess. 2019, 24, 960–974. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 17 October 2023).
- United Nations. The Sustainable Development Goals Report 2022. Available online: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf (accessed on 20 January 2022).
- Srinivasan, V.; Lambin, E.F.; Gorelick, S.M.; Thompson, B.H.; Rozelle, S. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies. Water Resour. Res. 2012, 48, 1. [Google Scholar] [CrossRef]
- UNESCO; UN Water. United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Postel, S.L. WATER RESOURCES: For Our Thirsty World, Efficiency or Else. Science 2006, 313, 1046–1047. [Google Scholar] [CrossRef]
- Witze, A. Water returns to arid Colorado River delta. Nature 2014, 507, 286–287. [Google Scholar] [CrossRef]
- Rushforth, R.R.; Zegre, N.P.; Ruddell, B.L. The Three Colorado Rivers: Hydrologic, Infrastructural, and Economic Flows of Water in a Shared River Basin. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 269–281. [Google Scholar] [CrossRef]
- FAO. AQUASTAT Core Database. 2023. Available online: https://www.fao.org/aquastat/en/databases/maindatabase/ (accessed on 19 October 2023).
- Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Valipour, M.; Choo, K.H.; Ahmed, A.T.; Baba, A.; Kumar, R.; Toor, G.S.; Wang, Z. Desalination: From Ancient to Present and Future. Water 2021, 13, 2222. [Google Scholar] [CrossRef]
- International Desalination Association. Desalination and Water Reuse by the Numbers. 2021. Available online: https://idadesal.org/ (accessed on 9 August 2021).
- Pistocchi, A.; Bleninger, T.; Breyer, C.; Caldera, U.; Dorati, C.; Ganora, D.; Millán, M.M.; Paton, C.; Poullis, D.; Herrero, F.S.; et al. Can seawater desalination be a win-win fix to our water cycle? Water Res. 2020, 182, 115906. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Ismail, R.A.; Ogungbenro, A.; Pankratz, T.; Banat, F.; Arafat, H.A. The sociopolitical factors impacting the adoption and proliferation of desalination: A critical review. Desalination 2021, 498, 114798. [Google Scholar] [CrossRef]
- Albiac, J.; Hanemann, M.; Calatrava, J.; Uche, J.; Tapia, J. The Rise and Fall of the Ebro Water Transfer. Nat. Resour. J. 2006, 46, 727–757. [Google Scholar]
- D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 2019, 14, 53001. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, L.; Wang, Z.; Tang, Q.; Piao, S.; Chen, D.; Xia, J.; Conradt, T.; Liu, J.; Wada, Y.; et al. Quantifying Water Scarcity in Northern China within the Context of Climatic and Societal Changes and South-to-North Water Diversion. Earth’s Future 2020, 8, 56. [Google Scholar] [CrossRef]
- Bouhlel, Z.; Köpke, J.; Mina, M.; Smakhtin, V. Global Bottled Water Industry: A Review of Impacts and Trends. United Nations, University Institute for Water, Environment and Health. Hamilton, Canada. 2023. Available online: http://inweh.unu.edu/publications/ (accessed on 19 October 2023).
- Brei, V.A. How Is a Bottled Water Market Created? Wiley Interdiscip. Rev. Water 2018, 5, e1220. [Google Scholar] [CrossRef]
- Hawkins, G. The impacts of bottled water: An analysis of bottled water markets and their interactions with tap water provision. Wiley Interdiscip. Rev. Water 2017, 4, e1203. [Google Scholar] [CrossRef]
- Cohen, A.; Ray, I. The global risks of increasing reliance on bottled water. Nat. Sustain. 2018, 1, 327–329. [Google Scholar] [CrossRef]
- Graham, N.T.; Hejazi, M.I.; Kim, S.H.; Davies, E.G.; Edmonds, J.A.; Miralles-Wilhelm, F. Future changes in the trading of virtual water. Nat. Commun. 2020, 11, 3632. [Google Scholar] [CrossRef]
- Antonelli, M.; Sartori, M. Unfolding the potential of the virtual water concept. What is still under debate? Environ. Sci. Policy 2015, 50, 240–251. [Google Scholar] [CrossRef]
- Liu, X.; Du, H.; Zhang, Z.; Crittenden, J.C.; Lahr, M.L.; Moreno-Cruz, J.; Guan, D.; Mi, Z.; Zuo, J. Can virtual water trade save water resources? Water Res. 2019, 163, 114848. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Braunstein, J. Trading the Rain: Should the World’s Fresh Water Resources be an Internationally Traded Commodity? In Integrated Water Resources Management and Security in the Middle East; Lipchin, C., Pallant, E., Saranga, D., Amster, A., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 269–281. [Google Scholar]
- Oberhänsli, H. D6—Water scarcity: How trade can make a difference. In Peace and Prosperity through World Trade; Lehmann, J.-P., Lehmann, F., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 211–215. [Google Scholar]
- Trechow, P. Die Geldhähne Sind Aufgedreht. In Ingenieur.de. 29 July 2002. Available online: https://www.ingenieur.de/technik/fachbereiche/umwelt/die-geldhaehne-aufgedreht/ (accessed on 29 July 2022).
- Provornaya, I.V.; Filimonova, I.V.; Nemov VYu Komarova, A.V.; Dzyuba, Y.A. Features of the petroleum products pricing in Russia, in the USA, and Saudi Arabia. Energy Rep. 2020, 6, 514–522. [Google Scholar] [CrossRef]
- Ziolkowska, J.R. Is Desalination Affordable?—Regional Cost and Price Analysis. Water Resour Manag. 2015, 29, 1385–1397. [Google Scholar] [CrossRef]
- Karandish, F.; Hogeboom, R.J.; Hoekstra, A.Y. Physical versus virtual water transfers to overcome local water shortages: A comparative analysis of impacts. Adv. Water Resour. 2021, 147, 103811. [Google Scholar] [CrossRef]
- Trade Map. Bilateral Trade between Brazil and Saudi Arabia. Product: 2709 Petroleum Oils and Oils Obtained from Bituminous Minerals, Crude. 2022. Available online: https://www.trademap.org/Bilateral_TS.aspx?nvpm=1%7c076%7c%7c682%7c%7c2709%7c%7c%7c4%7c1%7c1%7c1%7c2%7c1%7c1%7c2%7c1%7c1 (accessed on 29 July 2022).
Potential Exporting Country | Import Petroleum from | Potentially Export Freshwater to | Potential Importing Country | ||
---|---|---|---|---|---|
Ton | Thousand Dollar | Ton | Thousand Dollar | ||
Brazil | 4,500,846 | 3,205,478 | 4,500,846 | 3614.18 | Saudi Arabia |
Croatia | 12,000 | 9336 | 12,000 | 9.63 | Turkmenistan |
Papua New Guinea | 134,355 | 42,250 | 134,355 | 107.89 | United States of America |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Marggraf, R. Can International Freshwater Trade Contribute to the SDG 6. Water 2023, 15, 3853. https://doi.org/10.3390/w15213853
Jiang W, Marggraf R. Can International Freshwater Trade Contribute to the SDG 6. Water. 2023; 15(21):3853. https://doi.org/10.3390/w15213853
Chicago/Turabian StyleJiang, Wei, and Rainer Marggraf. 2023. "Can International Freshwater Trade Contribute to the SDG 6" Water 15, no. 21: 3853. https://doi.org/10.3390/w15213853