Phytonanofabrication of Copper Oxide from Albizia saman and Its Potential as an Antimicrobial Agent and Remediation of Congo Red Dye from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metal Precursor Solution Preparation
2.2. Preparation of A. saman Leaf Extract
2.3. Quantitative Analysis of Phytochemical Content and Antioxidant Activity of A. saman
2.3.1. Total Phenolics
2.3.2. Total Flavonoid Content (TFC)
2.3.3. Total Tannin Content
2.3.4. ABTS Free Radical Scavenging (FRS) Assay
2.3.5. Diphenyl-2-Picryl-Hydrazyl (DPPH) FRS Assay
2.3.6. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4. Photosynthesis of CuONPs from CuSO4
2.5. Batch Adsorption Experiments
2.6. Antimicrobial Activity of Phytonanofabricated CuO
3. Characterization of CuONPs
4. Results and Discussion
4.1. Phytochemical Analysis of A. saman Methanolic Leaf Extract
4.2. Mechanism of Formation of CuONPs from A. saman
4.3. PSD of CuONPs Using DLS
4.4. UV-Visible Spectroscopic Analysis
4.5. FTIR Analysis of CuONPs for the Identification of Functional Groups
4.6. Phase Identification and Crystallinity Determination of CuONPs Using XRD
4.7. Morphological Analysis of CuONPs
4.8. Morphological Analysis of CuONPs Using TEM
4.9. Adsorption Results of Congo Red Using CuONPs
4.10. Mechanism of Congo Red Dye Removal by CuONPs
4.11. Regeneration Study of CuONPs
4.12. Antimicrobial Activity of CuONPs
4.13. Mechanism of Antimicrobial Activity of CuONPs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nisha, C.; Bhawana, P.; Fulekar, M.H. Antimicrobial Potential of Green Synthesized Silver Nanoparticles Using Sida Acuta Leaf Extract. Nano Sci. Nano Technol. 2017, 11, 111–119. [Google Scholar]
- Shen, Q.; Lu, Z.; Bi, F.; Zhang, D.; Li, L.; Zhang, X.; Yang, Y.; Wu, M. Regulating Electronic Metal-Support Interaction by Synthetic Methods to Enhance the Toluene Degradation over Pt/Co3O4 Catalysts. Sep. Purif. Technol. 2023, 325, 124707. [Google Scholar] [CrossRef]
- Bi, F.; Ma, S.; Gao, B.; Liu, B.; Huang, Y.; Qiao, R.; Zhang, X. Boosting Toluene Deep Oxidation by Tuning Metal-Support Interaction in MOF-Derived Pd@ZrO2 Catalysts: The Role of Interfacial Interaction between Pd and ZrO2. Fuel 2024, 357, 129833. [Google Scholar] [CrossRef]
- Dadhwal, P.; Dhingra, H.K.; Dwivedi, V.; Alarifi, S.; Kalasariya, H.; Yadav, V.K.; Patel, A. Hippophae Rhamnoides, L. (Sea Buckthorn) Mediated Green Synthesis of Copper Nanoparticles and Their Application in Anticancer Activity. Front. Mol. Biosci. 2023, 10, 1246728. [Google Scholar] [CrossRef]
- Yadav, V.K.; Amari, A.; Gacem, A.; Elboughdiri, N.; Eltayeb, L.B.; Fulekar, M.H. Treatment of Fly-Ash-Contaminated Wastewater Loaded with Heavy Metals by Using Fly-Ash-Synthesized Iron Oxide Nanoparticles. Water 2023, 15, 908. [Google Scholar] [CrossRef]
- Ocheje Ameh, P. Synthesized Iron Oxide Nanoparticles from Acacia Nilotica Leaves for the Sequestration of Some Heavy Metal Ions in Aqueous Solutions. J. Chem. Lett. 2023, 4, 38–51. [Google Scholar] [CrossRef]
- Trinh, T.T.P.N.X.; Trinh, D.N.; Cuong, D.C.; Hai, N.D.; Huong, L.M.; Thinh, D.B.; Hoa, H.N.; Cong, C.Q.; Nam, N.T.H.; An, H.; et al. Optimization of Crystal Violet Photodegradation and Investigation of the Antibacterial Performance by Silver-Doped Titanium Dioxide/Graphene Aerogel Nanocomposite. Ceram. Int. 2023, 49, 20234–20250. [Google Scholar] [CrossRef]
- Choudhary, N.; Yadav, V.K.; Ali, H.; Ali, D.; Almutairi, B.O.; Cavalu, S.; Patel, A. Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles Loaded on Nanoclay. Water 2023, 15, 1427. [Google Scholar] [CrossRef]
- Fouda, A.; Saied, E.; Eid, A.M.; Kouadri, F.; Alemam, A.M.; Hamza, M.F.; Alharbi, M.; Elkelish, A.; Hassan, S.E.D. Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica Granatum for Antimicrobial and Catalytic Activity. J. Funct. Biomater. 2023, 14, 205. [Google Scholar] [CrossRef]
- Tijani, J.O.; Odeh, E.I.; Mustapha, S.; Egbosiuba, T.C.; Daniel, A.I.; Abdulkareem, A.S.; Muya, F.N. Photocatalytic, Electrochemical, Antibacterial and Antioxidant Behaviour of Carbon-Sulphur Co-Doped Zirconium (IV) Oxide Nanocomposite. Clean. Chem. Eng. 2022, 3, 100034. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Xu, J.; Xin, F.; Jiang, L. Applications of Synthetic Microbial Consortia in Biological Control of Mycotoxins and Fungi. Curr. Opin. Food Sci. 2023, 53, 101074. [Google Scholar] [CrossRef]
- Yadav, V.K.; Amari, A.; Wanale, S.G.; Osman, H.; Fulekar, M.H. Synthesis of Floral-Shaped Nanosilica from Coal Fly Ash and Its Application for the Remediation of Heavy Metals from Fly Ash Aqueous Solutions. Sustainability 2023, 15, 2612. [Google Scholar] [CrossRef]
- Modi, S.; Yadav, V.K.; Amari, A.; Alyami, A.Y.; Gacem, A.; Harharah, H.N.; Fulekar, M.H. Photocatalytic Degradation of Methylene Blue Dye from Wastewater by Using Doped Zinc Oxide Nanoparticles. Water 2023, 15, 2275. [Google Scholar] [CrossRef]
- Chahar, M.; Khaturia, S.; Singh, H.L.; Solanki, V.S.; Agarwal, N.; Sahoo, D.K.; Yadav, V.K.; Patel, A. Recent Advances in the Effective Removal of Hazardous Pollutants from Wastewater by Using Nanomaterials—A Review. Front. Environ. Sci. 2023, 11, 1226101. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Kotrange, H.; Najda, A.; Bains, A.; Gruszecki, R.; Chawla, P.; Tosif, M.M.; Thakur, K. Molecular Sciences Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics. J. Mol. Sci. 2021, 22, 9596. [Google Scholar] [CrossRef] [PubMed]
- Gobane, S.; Dama, T.; Hasan, N.; Yanmaz, E. Characterization of Copper Oxide-Jatropha Oil Nanofluid as a Secondary Refrigerant. J. Nanomater. 2023, 2023, 7612959. [Google Scholar] [CrossRef]
- Baig, U.; Ansari, M.A.; Gondal, M.A.; Akhtar, S.; Khan, F.A.; Falath, W.S. Single Step Production of High-Purity Copper Oxide-Titanium Dioxide Nanocomposites and Their Effective Antibacterial and Anti-Biofilm Activity against Drug-Resistant Bacteria. Mater. Sci. Eng. C 2020, 113, 110992. [Google Scholar] [CrossRef] [PubMed]
- Emima Jeronsia, J.; Allwin Joseph, L.; Annie Vinosha, P.; Jerline Mary, A.; Jerome Das, S. Camellia Sinensis Leaf Extract Mediated Synthesis of Copper Oxide Nanostructures for Potential Biomedical Applications. Mater. Today Proc. 2019, 8, 214–222. [Google Scholar] [CrossRef]
- Halbus, A.F.; Horozov, T.S.; Paunov, V.N. Strongly Enhanced Antibacterial Action of Copper Oxide Nanoparticles with Boronic Acid Surface Functionality. ACS Appl. Mater. Interfaces 2019, 11, 12232–12243. [Google Scholar] [CrossRef]
- Guo, Z.; Zhan, R.; Shi, Y.; Zhu, D.; Pan, J.; Yang, C.; Wang, Y.; Wang, J. Innovative and Green Utilization of Zinc-Bearing Dust by Hydrogen Reduction: Recovery of Zinc and Lead, and Synergetic Preparation of Fe/C Micro-Electrolysis Materials. Chem. Eng. J. 2023, 456, 141157. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Ullah Khan, A. A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorg. Chem. Commun. 2021, 123, 108369. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Muthuraman, P.; Sreekanth, T.V.M.; Kim, D.H.; Shim, J. Green Synthesis: In-Vitro Anticancer Activity of Copper Oxide Nanoparticles against Human Cervical Carcinoma Cells. Arab. J. Chem. 2017, 10, 215–225. [Google Scholar] [CrossRef]
- Vishnu, S.; Ramaswamy, P.; Narendhran, S.; Sivaraj, R. Potentiating Effect of Ecofriendly Synthesis of Copper Oxide Nanoparticles Using Brown Alga: Antimicrobial and Anticancer Activities. Bull. Mater. Sci. 2016, 39, 361–364. [Google Scholar]
- Ramírez, A.E.; Montero-Muñoz, M.; López, L.L.; Ramos-Ibarra, J.E.; Coaquira, J.A.H.; Heinrichs, B.; Páez, C.A. Significantly Enhancement of Sunlight Photocatalytic Performance of ZnO by Doping with Transition Metal Oxides. Sci. Rep. 2021, 11, 2804. [Google Scholar] [CrossRef] [PubMed]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef]
- Ahmed, F.; Javed, B.; Razzaq, A.; Mashwani, Z.-R. Applications of Copper and Silver Nanoparticles on Wheat Plants to Induce Drought Tolerance and Increase Yield. IET Nanobiotechnol. 2021, 15, 68–78. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, C.; Liu, H.; Hrynshpan, D.; Savitskaya, T.; Chen, J.; Chen, J. Enhanced Denitrification Performance of Alcaligenes Sp. TB by Pd Stimulating to Produce Membrane Adaptation Mechanism Coupled with Nanoscale Zero-Valent Iron. Sci. Total Environ. 2020, 708, 135063. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; Deng, P.; Peng, C.E.; Ji, H.Y.; Mao, L.F.; Peng, L.Z. Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium Officinale. Polymers 2022, 14, 2899. [Google Scholar] [CrossRef]
- Rahman, I.A.; Padavettan, V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocompositesa Review. J. Nanomater. 2012, 2012, 132424. [Google Scholar] [CrossRef]
- Dong, Y.; Yuan, H.; Ge, D.; Zhu, N. A Novel Conditioning Approach for Amelioration of Sludge Dewaterability Using Activated Carbon Strengthening Electrochemical Oxidation and Realized Mechanism. Water Res. 2022, 220, 118704. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, L.; Zhao, M.; Dai, L.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Bamboo Charcoal Fused with Polyurethane Foam for Efficiently Removing Organic Solvents from Wastewater: Experimental and Simulation. Biochar 2022, 4, 28. [Google Scholar] [CrossRef]
- Chukwu Onu, D.; Kamoru Babayemi, A.; Chinedu Egbosiuba, T.; Onyinye Okafor, B.; Jacinta Ani, I.; Mustapha, S.; Oladejo Tijani, J.; Chukwuemeke Ulakpa, W.; Eguono Ovuoraye, P.; Saka Abdulkareem, A. Isotherm, Kinetics, Thermodynamics, Recyclability and Mechanism of Ultrasonic Assisted Adsorption of Methylene Blue and Lead (II) Ions Using Green Synthesized Nickel Oxide Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100818. [Google Scholar] [CrossRef]
- Shah, N.; Nisar, N.; Rehan, T.; Naeem, M.; Ul-Islam, M. Microwave-Assisted Synthesis of a Magnetic Core–Shell Material Composed of Fe3O4@SiO2@poly(Methacrylamide-Co-Acrylic Acid) for an Anticancer Drug Loading. Appl. Nanosci. 2022, 12, 3547–3554. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.P.; Joshi, P.B.; Chavali, M.S. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023, 15, 1650. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, Q.; Li, Y.; Li, Y.; Zhou, H.; Fan, Y. A General Linear Free Energy Relationship for Predicting Partition Coefficients of Neutral Organic Compounds. Chemosphere 2020, 247, 125869. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, D.; Sok, S.P.M.; Ibrahim, S.; Nagoor, N.H.; Arshad, N.M. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules 2021, 11, 564. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and Antioxidant Analysis of Medicinal and Food Plants towards Bioactive Food and Pharmaceutical Resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; El-Shorbagy, M.A.; Alijani, H.Q.; Zakeri, M.; Heydari, A.; Bahonar, E.; Slouf, M.; Khatami, M.; Naderifar, M.; et al. Green Synthesis of Bimetallic ZnO–CuO Nanoparticles and Their Cytotoxicity Properties. Sci. Rep. 2021, 11, 23479. [Google Scholar] [CrossRef]
- Daphedar, A.; Taranath, T.C. Biosynthesis of Silver Nanoparticles by Leaf Extract of Albizia Saman (Jacq.) Merr. and Their Cytotoxic Effect on Mitotic Chromosomes of Drimia Indica (Roxb.) Jessop. Environ. Sci. Pollut. Res. 2017, 24, 25861–25869. [Google Scholar] [CrossRef] [PubMed]
- Daphedar, A.; Taranath, T.C. Green Synthesis of Zinc Nanoparticles Using Leaf Extract of Albizia Saman (Jacq.) Merr. and Their Effect on Root Meristems of Drimia Indica (Roxb.) Jessop. Caryologia 2018, 71, 93–102. [Google Scholar] [CrossRef]
- Bai, B.; Nie, Q.; Zhang, Y.; Wang, X.; Hu, W. Cotransport of Heavy Metals and SiO2 Particles at Different Temperatures by Seepage. J. Hydrol. 2021, 597, 125771. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gnanamoorthy, G.; Ali, D.; Bera, S.P.; Roy, A.; Kumar, G.; Choudhary, N.; Kalasariya, H.; Basnet, A. Cytotoxicity, Removal of Congo Red Dye in Aqueous Solution Using Synthesized Amorphous Iron Oxide Nanoparticles from Incense Sticks Ash Waste. J. Nanomater. 2022, 2022, 5949595. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Allehyani, E.S.; Al-Harbi, S.A.; Hasan, Z.; Abomuti, M.A.; Rajor, H.K.; Oh, S. Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes 2023, 11, 807. [Google Scholar] [CrossRef]
- Bharti, R.; Yadav, M.; Singh, A.; Kumari, P.; Nishad, J.H.; Gautam, V.S.; Kharwar, R.N. Evaluation of Congo Red Dye Decolorization and Degradation Potential of an Endophyte Colletotrichum Gloeosporioides Isolated from Thevetia Peruviana (Pers.) K. Schum. Folia Microbiol. 2023, 68, 381–393. [Google Scholar] [CrossRef]
- Vinodhini, S.; Sengani, M.; Choudhury, A.A.; Ramasubbu, K.; Chakraborty, S.; Banerjee, M.; Balaji, M.P.; Devi Rajeswari, V. Regulation of Glucose Transporter-4 Intervention with S. Saman Leaves Extract in Streptozotocin-Induced Diabetic Rats. J. Diabetes Complicat. 2022, 36, 108340. [Google Scholar] [CrossRef]
- Sajjad, H.; Sajjad, A.; Haya, R.T.; Khan, M.M.; Zia, M. Copper Oxide Nanoparticles: In Vitro and in Vivo Toxicity, Mechanisms of Action and Factors Influencing Their Toxicology. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 271, 109682. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. ISBN 0076-6879. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- Belwal, T.; Giri, L.; Bhatt, I.D.; Rawal, R.S.; Pande, V. An Improved Method for Extraction of Nutraceutically Important Polyphenolics from Berberis Jaeschkeana C.K. Schneid. Fruits. Food Chem. 2017, 230, 657–666. [Google Scholar] [CrossRef]
- Johnston, J.W.; Dussert, S.; Gale, S.; Nadarajan, J.; Harding, K.; Benson, E.E. Optimisation of the Azinobis-3-Ethyl-Benzothiazoline-6-Sulphonic Acid Radical Scavenging Assay for Physiological Studies of Total Antioxidant Activity in Woody Plant Germplasm. Plant Physiol. Biochem. 2006, 44, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, J.; Ou, X.; Liu, X.; Song, Y.; Tian, C.; Rong, W.; Shi, Z.; Dang, Z.; Lin, Z. Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species. Environ. Sci. Technol. 2018, 52, 13336–13342. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, A.; Arumugam, S.; Annamalai, S.; Jkkmmrf’s-Annai, N.; Sampoorani, J. In-Vitro Screening of Methanolic Leaf Extracts of Albizia Saman (Jacq.) Merr, for Their Antioxidant Property. Int. J. Pharm. Health Care Res. 2014, 2, 179–183. [Google Scholar]
- Anil, A.; Nair, M.S.; Kumar, T.S. Phytochemical Analysis of Fruit Pulp of Albizia Saman (Jacq.) Merr, Fabaceae. J. Pharmacogn. Phytochem. 2018, 7, 2218–2220. [Google Scholar]
- Alhalili, Z. Green Synthesis of Copper Oxide Nanoparticles CuO NPs from Eucalyptus Globoulus Leaf Extract: Adsorption and Design of Experiments. Arab. J. Chem. 2022, 15, 103739. [Google Scholar] [CrossRef]
- Jacobs, H.; Moalin, M.; Bast, A.; van der Vijgh, W.J.F.; Haenen, G.R.M.M. An Essential Difference between the Flavonoids MonoHER and Quercetin in Their Interplay with the Endogenous Antioxidant Network. PLoS ONE 2010, 5, e13880. [Google Scholar] [CrossRef]
- Nzilu, D.M.; Madivoli, E.S.; Makhanu, D.S.; Wanakai, S.I.; Kiprono, G.K.; Kareru, P.G. Green Synthesis of Copper Oxide Nanoparticles and Its Efficiency in Degradation of Rifampicin Antibiotic. Sci. Rep. 2023, 13, 14030. [Google Scholar] [CrossRef]
- Caunii, A.; Pribac, G.; Grozea, I.; Gaitin, D.; Samfira, I. Design of Optimal Solvent for Extraction of Bio–Active Ingredients from Six Varieties of Medicago Sativa. Chem. Cent. J. 2012, 6, 123. [Google Scholar] [CrossRef]
- Swathilakshmi, A.V.; Abirami, S.; Geethamala, G.V.; Poonkothai, M.; Sudhakar, C.; Albasher, G.; Alamri, O.; Alsultan, N. Phytonanofabrication of Copper Oxide Mediated by Albizia Amara and Its Photocatalytic Efficacy. Mater. Lett. 2022, 314, 131911. [Google Scholar] [CrossRef]
- Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C. Phytofabrication and Characterization of Monodisperse Copper Oxide Nanoparticles Using Albizia Lebbeck Leaf Extract. Appl. Nanosci. 2015, 5, 1017–1021. [Google Scholar] [CrossRef]
- Chauhan, A.; Verma, R.; Batoo, K.M.; Kumari, S.; Kalia, R.; Kumar, R.; Hadi, M.; Raslan, E.H.; Imran, A. Structural and Optical Properties of Copper Oxide Nanoparticles: A Study of Variation in Structure and Antibiotic Activity. J. Mater. Res. 2021, 36, 1496–1509. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater. Sci. Eng. 2019, 5, 1170–1188. [Google Scholar] [CrossRef]
- Amin, F.; Fozia; Khattak, B.; Alotaibi, A.; Qasim, M.; Ahmad, I.; Ullah, R.; Bourhia, M.; Gul, A.; Zahoor, S.; et al. Green Synthesis of Copper Oxide Nanoparticles Using Aerva Javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 5589703. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.; Varshney, N.; Das, T.; Mahto, S.K.; Kumar, M. Copper Oxide Nanoparticle: Multiple Functionalities in Photothermal Therapy and Electrochemical Energy Storage. Appl. Nanosci. 2023, 13, 5537–5558. [Google Scholar] [CrossRef]
- Yan, W.; Liu, D.; Tan, D.; Yuan, P.; Chen, M. FTIR Spectroscopy Study of the Structure Changes of Palygorskite under Heating. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 1052–1057. [Google Scholar] [CrossRef]
- Ramya, V.; Indhumathi, S.; Rajalakshmi, M.A.; Revathi, J.; Veeradharshini, E.; Sathyapriya, N. Facile Green Synthesis and Characterization Copper Oxide Nanoparticles Using Albizia Amara Leaves Extract. Int. Res. J. Eng. Technol. 2022, 9, 3236–3244. [Google Scholar]
- Wang, L.; Du, Y.; Zhu, Q.; Song, J.; Ou, K.; Xie, G.; Yu, Z. Regulating the Alkyl Chain Length of Quaternary Ammonium Salt to Enhance the Inkjet Printing Performance on Cationic Cotton Fabric with Reactive Dye Ink. ACS Appl. Mater. Interfaces 2023, 15, 19750–19760. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, L.; Luo, J.; Gong, H.; Zhu, N. A Sustainable Reuse Strategy of Converting Waste Activated Sludge into Biochar for Contaminants Removal from Water: Modifications, Applications and Perspectives. J. Hazard. Mater. 2022, 438, 129437. [Google Scholar] [CrossRef] [PubMed]
- Batool, M.; Qureshi, M.Z.; Hashmi, F.; Mehboob, N.; Shah, A.S. Congo Red Azo Dye Removal and Study of Its Kinetics by Aloe Vera Mediated Copper Oxide Nanoparticles. Indones. J. Chem. 2019, 19, 626–637. [Google Scholar] [CrossRef]
- Jethave, G.; Fegade, U.; Inamuddin; Altalhi, T.; Khan, M.F.; Barhate, B.; Suryawanshi, K.E.; Isai, K.A. Adsorption of Congo Red Dye on CuO Nanoparticles Synthesized by Green Method Using Nyctanthes Arbor-Tristis Leaf Extract: Experimental and Theoretical Study. Int. J. Chem. Kinet. 2022, 54, 513–522. [Google Scholar] [CrossRef]
- Rasheed, S.; Batool, Z.; Intisar, A.; Riaz, S.; Shaheen, M.; Kousar, R. Enhanced Photodegradation Activity of Cuprous Oxide Nanoparticles towards Congo Red for Water Purification. Desalination Water Treat. 2021, 227, 330–337. [Google Scholar] [CrossRef]
- Harja, M.; Buema, G.; Bucur, D. Recent Advances in Removal of Congo Red Dye by Adsorption Using an Industrial Waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef]
- Said, M.I.; Othman, A.A.; Abd El Hakeem, E.M. Structural, Optical and Photocatalytic Properties of Mesoporous CuO Nanoparticles with Tunable Size and Different Morphologies. RSC Adv. 2021, 11, 37801–37813. [Google Scholar] [CrossRef]
- Debnath, P.; Mondal, N.K. Effective Removal of Congo Red Dye from Aqueous Solution Using Biosynthesized Zinc Oxide Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100320. [Google Scholar] [CrossRef]
- Kaur, S.; Rani, S.; Mahajan, R.K. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. J. Chem. 2013, 2013, 628582. [Google Scholar] [CrossRef]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an Anionic Dye (Congo Red) from Aqueous Solutions by Pine Bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and Mechanisms of Congo-Red Dye Removal from Aqueous Solution Using Activated Moringa Oleifera Seed Coat as Adsorbent. Appl. Water Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
- Amari, A.; Yadav, V.K.; Pathan, S.K.; Singh, B.; Osman, H.; Choudhary, N.; Khedher, K.M.; Basnet, A. Remediation of Methyl Red Dye from Aqueous Solutions by Using Biosorbents Developed from Floral Waste. Adsorpt. Sci. Technol. 2023, 2023, 1532660. [Google Scholar] [CrossRef]
- Venkata, A.L.K.; Anthony, S.P.; Muthuraman, M.S. Synthesis of Solanum Nigrum Mediated Copper Oxide Nanoparticles and Their Photocatalytic Dye Degradation Studies. Mater. Res. Express 2019, 6, 125402. [Google Scholar] [CrossRef]
- Krishna Kumar, A.S.; Warchol, J.; Matusik, J.; Tseng, W.L.; Rajesh, N.; Bajda, T. Heavy Metal and Organic Dye Removal via a Hybrid Porous Hexagonal Boron Nitride-Based Magnetic Aerogel. NPJ Clean Water 2022, 5, 24. [Google Scholar] [CrossRef]
- Singh, P.; Singh, K.R.B.; Singh, J.; Das, S.N.; Singh, R.P. Tunable Electrochemistry and Efficient Antibacterial Activity of Plant-Mediated Copper Oxide Nanoparticles Synthesized by: Annona Squamosa Seed Extract for Agricultural Utility. RSC Adv. 2021, 11, 18050–18060. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mao, S.; Xu, Z.; Ding, W. Various Antibacterial Mechanisms of Biosynthesized Copper Oxide Nanoparticles against Soilborne Ralstonia Solanacearum. RSC Adv. 2019, 9, 3788–3799. [Google Scholar] [CrossRef]
- Nabila, M.I.; Kannabiran, K. Biosynthesis, Characterization and Antibacterial Activity of Copper Oxide Nanoparticles (CuO NPs) from Actinomycetes. Biocatal. Agric. Biotechnol. 2018, 15, 56–62. [Google Scholar] [CrossRef]
- Iqbal, J.; Andleeb, A.; Ashraf, H.; Meer, B.; Mehmood, A.; Jan, H.; Zaman, G.; Nadeem, M.; Drouet, S.; Fazal, H.; et al. Potential Antimicrobial, Antidiabetic, Catalytic, Antioxidant and ROS/RNS Inhibitory Activities of Silybum Marianum Mediated Biosynthesized Copper Oxide Nanoparticles. RSC Adv. 2022, 12, 14069–14083. [Google Scholar] [CrossRef]
- Bezza, F.A.; Tichapondwa, S.M.; Chirwa, E.M.N. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 16680. [Google Scholar] [CrossRef]
- Derakhshani, E.; Asri, M.; Naghizadeh, A. Plant-Based Green Synthesis of Copper Oxide Nanoparticles Using Berberis Vulgaris Leaf Extract: An Update on Their Applications in Antibacterial Activity. Bionanoscience 2023, 13, 212–218. [Google Scholar] [CrossRef]
- Vidovix, T.B.; Januário, E.F.D.; Araújo, M.F.; Bergamasco, R.; Vieira, A.M.S. Efficient Performance of Copper Oxide Nanoparticles Synthesized with Pomegranate Leaf Extract for Neutral Red Dye Adsorption. Environ. Prog. Sustain. Energy 2022, 41, e13864. [Google Scholar] [CrossRef]
- Mohammed Ali, M.J.; Radhy, M.M.; mashkoor, S.J.; Ali, E.M. Synthesis and Characterization of Copper Oxide Nanoparticles and Their Application for Solar Cell. Mater. Today Proc. 2022, 60, 917–921. [Google Scholar] [CrossRef]
S. No. | Secondary Metabolite | Conc. (mg/g) | Study by Anil et al. (Per/Gram) |
---|---|---|---|
1. | Phenols | 32.31 | |
2. | Tannins | 12.27 | |
3. | Flavonoids | 16.72 | 2.12 mg |
Wavenumber (cm−1) | Assigned Functional Groups | References |
---|---|---|
3607, 3165 | O-H stretching of -OH group from phenols | [65] |
2931 | N-H bond stretching | [66] |
1652 | C=C stretching | [67] |
1364 | C-OH stretching vibrations | [68] |
1161, 1079 | C-OH bending vibrations | [69] |
1020 | C-O stretching vibrations in carboxylic acid and flavonoids | [69] |
763 | ||
611 | C-O bending vibrations | [65] |
545 | Cu-O vibrations | [65] |
510 | Cu (II)-O bond vibrations | [65] |
Co (mg/L) | qe (mg/g) | PFO | PSO | ||
---|---|---|---|---|---|
K1 (min−1) | R2 | K2 (min−1) | R2 | ||
50 | 16 | −0.2142 | 0.6927 | 0.0642 | 0.8995 |
Adsorbent | Dose of Adsorbent (g/L) | Removal Efficiency | Adsorption Capacity (mg/g) | Temp | Contact Time (Minutes) | References |
---|---|---|---|---|---|---|
Coal fly ash | 1 | 13.5 | [76] | |||
2.5 | 9 | |||||
4 | 6 | |||||
CuONPs | 5 mg/g | 1.1 | 10 | [73] | ||
CuONPs | 10 mg/L | 100% | 35 | [77] | ||
60 mg/L | 100% | 2 | ||||
ZnONPs | 0.05 g | 95.5% | 20 | [78] | ||
IONPs from incense stick ash | 10 mg/L | 72% | 30 ℃ | 60 | [44] | |
Groundnut shell charcoal | 100 mg in 100 mL | 80% | 117.6 | 318 K | [79] | |
Eichhornia charcoal (EC) | 100 mg in 100 mL | 60% | 56.8 | 318 K | ||
Pine bark | 1–10 g L−1 | 23.4 to 100% | 0.3 to 1.6 mg·g−1 | 25–60 °C | 0–7 days | [80] |
Moringa oleifera seed coat | >90% | 321 K | 90 min | [81] | ||
CuONPs | 33.3% | 17.53 mg/g | Current investigation |
Plant Used | Tested Microorganism | ZOI (mm) | Method Used | References |
---|---|---|---|---|
Annona squamosa | Microbacterium testaceum | 17 | Agar-well diffusion | [85] |
E. coli | 21 | |||
Silybum marianum (leaf extract) | Enterobacter aerogenes | 18 ± 1.3 | [88] | |
Salmonella typhi | 17 ± 1.2 | |||
Bacillus cereus | 225.3 | [87] | ||
Aerva javanica (at 100 μg/mL): leaf extract | E. coli | 6 ± 1 | Agar-well diffusion | [89] |
Acinetobacter baumannii | 12 ± 1 | |||
S. aureus | 12 ± 1 | |||
Pseudomonas aeruginosa | 10 ± 1 | |||
C. albicans | 9 + 0.5 | |||
C. albicans | 7 + 1 | |||
C. krusei | 5 + 1 | |||
C. tropicalis | 4 + 0 | |||
A. javanica (at 200 μg/mL): leaf extract | E. coli | 7 ± 0.57 | ||
A. baumannii | 12 ± 1 | |||
S. aureus | 12 ± 1 | |||
P. aeruginosa | 13 ± 1 | |||
Berberis vulgaris (leaf extract) | S. aureus ATCC 29213 | MIC (μg/mL): 0.3 MBC (μg/mL): 2.4 | Tube dilution method | [90] |
K. pneumoniae ATCC 700603 | MIC (μg/mL): 1.2 MBC (μg/mL): 4.8 | |||
E. coli ATCC 25922 | MIC (μg/mL): 0.6 MBC (μg/mL): 2.4 | |||
Silybum marianum (Leaf extract) 4 mg mL−1 | Micrococcus luteus | 5 ± 0.8 | Agar-disc diffusion | [88] |
Salmonella typhi | 9 ± 1.1 | |||
Salmonella setubal | 8 ± 0.9 | |||
S. aureus | 4 ± 0.6 | |||
E. aerogenes | 9 ± 0.9 | |||
S. marianum (Leaf extract) 20 mg mL−1 | M. luteus | 8 ± 0.7 | ||
S. typhi | 17 ± 1.2 | |||
S. setubal | 16 ± 1.2 | |||
S. aureus | 7 ± 0.7 | |||
E. aerogenes | 18 ± 1.3 | |||
Albizia saman (leaf extract) | E. coli | 15 | Agar-well diffusion | Current investigation |
S. aureus | 14 | |||
C. albicans | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, N.; Chaudhari, J.; Mochi, V.; Patel, P.; Ali, D.; Alarifi, S.; Sahoo, D.K.; Patel, A.; Yadav, V.K. Phytonanofabrication of Copper Oxide from Albizia saman and Its Potential as an Antimicrobial Agent and Remediation of Congo Red Dye from Wastewater. Water 2023, 15, 3787. https://doi.org/10.3390/w15213787
Choudhary N, Chaudhari J, Mochi V, Patel P, Ali D, Alarifi S, Sahoo DK, Patel A, Yadav VK. Phytonanofabrication of Copper Oxide from Albizia saman and Its Potential as an Antimicrobial Agent and Remediation of Congo Red Dye from Wastewater. Water. 2023; 15(21):3787. https://doi.org/10.3390/w15213787
Chicago/Turabian StyleChoudhary, Nisha, Jaimina Chaudhari, Vidhi Mochi, Pritee Patel, Daoud Ali, Saud Alarifi, Dipak Kumar Sahoo, Ashish Patel, and Virendra Kumar Yadav. 2023. "Phytonanofabrication of Copper Oxide from Albizia saman and Its Potential as an Antimicrobial Agent and Remediation of Congo Red Dye from Wastewater" Water 15, no. 21: 3787. https://doi.org/10.3390/w15213787