Generation of High-Resolution Gridded Runoff Product for the Republic of Korea Sub-Basins from Seasonal Merging of Global Reanalysis Datasets
Abstract
:1. Introduction
2. Study Area, Datasets, and Methods
2.1. Study Area and Datasets
2.2. Methods
2.2.1. Data Preprocessing
- Temporal Resampling: To resample the original hourly runoff dataset to the targeted daily runoff dataset by summing 24-h runoff data in one day. Its application for each single product is mentioned in Table 1.
- Spatial Resampling: To resample the original runoff dataset with a coarser grid to the targeted runoff dataset with a finer grid (0.10° × 0.10°) by using nearest-neighbor interpolation. Since this simple method can ensure the nature of original datasets without generating any artifacts, it is assumed that the uncertainties associated with this resampling method are small and can be also negligible in this study. Its application for each single product is mentioned in Table 1.
- Unit Conversion: To step-by-step convert the original runoff unit to the pixel runoff depth unit (in m·s−1) and then to the targeted runoff unit (in m3·s−1) by multiplying with the targeted pixel area (supposing that a 0.10° pixel grid ~108 m2 pixel area). Its application for each single product is mentioned in Table 1.
- Seasonal Separation: This study employed the seasonal merging of runoff products, so separating the seasonal runoff variation periods is required. Despite the four clear seasons in the Republic of Korea, the runoff behavior can vary following the seasonal rainfall variation under the East-Asia monsoon effects rather than these four seasons, where intensified rainfall occurring in the rainy season (mostly summer and fall) [31] can lead to a rapid increase in total runoff. Therefore, we decided to separate the runoff data period in the Republic of Korea into two seasons based on the rainfall seasons. Specifically, the period belonging to the summer and fall seasons (April–September) can be regarded as the wet season, whereas the remaining period can be considered the dry season.
- Data Rescaling: Single datasets need to be rescaled to a similar range before applying the TC merging method. It was suggested that one dataset can be selected as the reference dataset and the two remaining ones will be rescaled to that reference one [43]. In this study, the ERA5L runoff product, which has the highest original spatial resolution, will be assigned as the reference. To ensure that the two remaining datasets can vary within the dynamic range of the reference without generating any invalid values (e.g., negative runoff values), a max-min normalization method will be conducted by matching the normalized values of the remaining datasets to that of the reference. Specifically, we applied this normalization to the GLDAS and MERRA runoff datasets to rescale their data to the ERA5L dynamic range with respect to separated wet and dry seasons as follows:
2.2.2. Seasonal Triple Collocation (TC) Merging
2.2.3. Evaluation and Comparison
- Pearson’s Correlation Coefficient (R):
- Unbiased Root-Mean-Square Error (ubRMSE):
- Mean Bias Error (MBE):
- Comparison of the all-time merged runoff product and the single runoff products: To investigate whether the output of the TC merging can improve the single parent products at the sub-basin level of the Republic of Korea.
- Comparison of the all-time merged runoff product and the seasonal merged runoff product: To investigate whether the seasonal TC merging improves traditional all-time TC merging at the sub-basin level of the Republic of Korea.
3. Results
3.1. Error Characterization of Single Reanalysis-Based Runoff Products
3.2. Weight Computation for Merging Reanalysis-Based Runoff Products
3.3. Evaluation and Comparison of Merged Gridded Runoff Products
3.3.1. Comparison of Single and All-time Merged Runoff Products
3.3.2. Comparison of All-time and Seasonal Merged Runoff Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-De La Torre, A.; Blyth, E.M.; Weedon, G.P. Using Observed River Flow Data to Improve the Hydrological Functioning of the JULES Land Surface Model (Vn4.3) Used for Regional Coupled Modelling in Great Britain (UKC2). Geosci. Model. Dev. 2019, 12, 765–784. [Google Scholar] [CrossRef]
- Da Fonseca, C.A.B.; Al-Ansari, N.; da Silva, R.M.; Santos, C.A.G.; Zerouali, B.; de Oliveira, D.B.; Elbeltagi, A. Investigating Relationships between Runoff–Erosion Processes and Land Use and Land Cover Using Remote Sensing Multiple Gridded Datasets. ISPRS Int. J. Geo-Inf. 2022, 11, 272. [Google Scholar] [CrossRef]
- Grillakis, M.; Koutroulis, A.; Tsanis, I. Improving Seasonal Forecasts for Basin Scale Hydrological Applications. Water 2018, 10, 1593. [Google Scholar] [CrossRef]
- Chaney, N.W.; Herman, J.D.; Reed, P.M.; Wood, E.F. Flood and Drought Hydrologic Monitoring: The Role of Model Parameter Uncertainty. Hydrol. Earth Syst. Sci. 2015, 19, 3239–3251. [Google Scholar] [CrossRef]
- Kao, S.C.; Sale, M.J.; Ashfaq, M.; Uria Martinez, R.; Kaiser, D.P.; Wei, Y.; Diffenbaugh, N.S. Projecting Changes in Annual Hydropower Generation Using Regional Runoff Data: An Assessment of the United States Federal Hydropower Plants. Energy 2015, 80, 239–250. [Google Scholar] [CrossRef]
- Kim, T.; Yang, T.; Gao, S.; Zhang, L.; Ding, Z.; Wen, X.; Gourley, J.J.; Hong, Y. Can Artificial Intelligence and Data-Driven Machine Learning Models Match or Even Replace Process-Driven Hydrologic Models for Streamflow Simulation?: A Case Study of Four Watersheds with Different Hydro-Climatic Regions across the CONUS. J. Hydrol. 2021, 598, 126423. [Google Scholar] [CrossRef]
- Gou, J.; Miao, C.; Samaniego, L.; Xiao, M.; Wu, J.; Guo, X. CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and Climate Studies in China. Bull. Am. Meteorol. Soc. 2021, 102, E929–E947. [Google Scholar] [CrossRef]
- Ghiggi, G.; Humphrey, V.; Seneviratne, S.I.; Gudmundsson, L. GRUN: An Observation-Based Global Gridded Runoff Dataset from 1902 to 2014. Earth Syst. Sci. Data 2019, 11, 1655–1674. [Google Scholar] [CrossRef]
- Mishra, A.; Coulibaly, P. Developments in Hydrometric Network. Rev. Geophys. 2009, 47, 2007RG000243. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Larsen, J.R.; van Emmerik, T.H.M.; Woods, R.A. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resour. Res. 2017, 53, 8475–8486. [Google Scholar] [CrossRef]
- Carlier, C.; Wirth, S.B.; Cochand, F.; Hunkeler, D.; Brunner, P. Geology Controls Streamflow Dynamics. J. Hydrol. 2018, 566, 756–769. [Google Scholar] [CrossRef]
- Ji, G.; Yue, S.; Zhang, J.; Huang, J.; Guo, Y.; Chen, W. Assessing the Impact of Vegetation Variation, Climate and Human Factors on the Streamflow Variation of Yarlung Zangbo River with the Corrected Budyko Equation. Forests 2023, 14, 1312. [Google Scholar] [CrossRef]
- Waterman, B.R.; Alcantar, G.; Thomas, S.G.; Kirk, M.F. Spatiotemporal Variation in Runoff and Baseflow in Watersheds Located across a Regional Precipitation Gradient. J. Hydrol. Reg. Stud. 2022, 41, 101071. [Google Scholar] [CrossRef]
- Li, Z.; Quiring, S.M. Investigating Spatial Heterogeneity of the Controls of Surface Water Balance in the Contiguous United States by Considering Anthropogenic Factors. J. Hydrol. 2021, 601, 126621. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D.; De Lannoy, G.J.M.; Forman, B.A.; Liu, Q.; Mahanama, S.P.P.; Toure, A. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. J. Clim. 2011, 24, 6322–6338. [Google Scholar] [CrossRef]
- Hobeichi, S.; Abramowitz, G.; Evans, J.; Beck, H.E. Linear Optimal Runoff Aggregate (LORA): A Global Gridded Synthesis Runoff Product. Hydrol. Earth Syst. Sci. 2019, 23, 851–870. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the True Near-Surface Wind Speed: Error Modeling and Calibration Using Triple Collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended Triple Collocation: Estimating Errors and Correlation Coefficients with Respect to an Unknown Target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, G.; Behrangi, A.; Wang, T.; Tan, X.; Ma, Z.; Xiong, W. Precipitation Merging Based on the Triple Collocation Method across Mainland China. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3161–3176. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.T.; Reichle, R. Improving Rain/No-Rain Detection Skill by Merging Precipitation Estimates from Different Sources. J. Hydrometeorol. 2020, 21, 2419–2429. [Google Scholar] [CrossRef]
- Dong, J.; Lei, F.; Wei, L. Triple Collocation Based Multi-Source Precipitation Merging. Front. Water 2020, 2, 498793. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Xie, Q.; Jia, L.; Menenti, M.; Hu, G. Global Soil Moisture Data Fusion by Triple Collocation Analysis from 2011 to 2018. Sci. Data 2022, 9, 687. [Google Scholar] [CrossRef]
- Zhu, L.; Li, W.; Wang, H.; Deng, X.; Tong, C.; He, S.; Wang, K. Merging Microwave, Optical, and Reanalysis Data for 1 Km Daily Soil Moisture by Triple Collocation. Remote Sens. 2023, 15, 10159. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Vermeulen, A.; Dong, J.; Duan, Z. Triple Collocation-Based Merging of Multi-Source Gridded Evapotranspiration Data in the Nordic Region. Agric. For. Meteorol. 2023, 335, 109451. [Google Scholar] [CrossRef]
- Park, J.; Baik, J.; Choi, M. Triple Collocation-Based Multi-Source Evaporation and Transpiration Merging. Agric. For. Meteorol. 2023, 331, 109353. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Hu, J.; Mao, H.; Duan, Z.; Qu, C.; Li, R.; Wang, M.; Song, X. Discovering Optimal Triplets for Assessing the Uncertainties of Satellite-Derived Evapotranspiration Products. Remote Sens. 2023, 15, 3215. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Choi, S.; Lee, D.; Shin, D. Towards a Novel High-Spatial-Resolution Satellite Rainfall Product from C-Band SAR Sentinel-1 over Central South Korea Based on a Bottom-up Approach. Int. J. Remote Sens. 2022, 43, 4888–4910. [Google Scholar] [CrossRef]
- Lee, D.G.; Ahn, K.H. Assessment of Suitable Gridded Climate Datasets for Large-Scale Hydrological Modelling over South Korea. Remote Sens. 2022, 14, 3535. [Google Scholar] [CrossRef]
- Borne, M.; Lorenz, C.; Portele, T.C.; Martins, E.S.P.R.; das Chagas Vasconcelos, F., Jr.; Kunstmann, H. Seasonal Sub-Basin-Scale Runoff Predictions: A Regional Hydrometeorological Ensemble Kalman Filter Framework Using Global Datasets. J. Hydrol. Reg. Stud. 2022, 42, 101146. [Google Scholar] [CrossRef]
- Qiao, X.; Nelson, E.J.; Ames, D.P.; Li, Z.; David, C.H.; Williams, G.P.; Roberts, W.; Sánchez Lozano, J.L.; Edwards, C.; Souffront, M.; et al. A Systems Approach to Routing Global Gridded Runoff through Local High-Resolution Stream Networks for Flood Early Warning Systems. Environ. Model. Softw. 2019, 120, 104501. [Google Scholar] [CrossRef]
- Sunwoo, W.; Choi, M. Robust Initial Wetness Condition Framework of an Event-Based Rainfall-Runoffmodel Using Remotely Sensed Soil Moisture. Water 2017, 9, 77. [Google Scholar] [CrossRef]
- Sunwoo, W.; Lee, G.; Nguyen, H.H.; Shin, H.; Jun, K.S. Parameter Optimization of a Conceptual Rainfall-Runoff Model in the Coastal Urban Region. J. Coast. Res. 2021, 114, 261–265. [Google Scholar] [CrossRef]
- Tuanmu, M.-N.; Jetz, W. A Global 1-Km Consensus Land-Cover Product for Biodiversity and Ecosystem Modelling. Glob. Ecol. Biogeogr. 2014, 23, 1031–1045. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 16 June 2023).
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef]
- Li, B.; Beaudoing, H.; Rodell, M. NASA/GSFC/HSL. GLDAS Catchment Land Surface Model L4 daily 0.25 × 0.25 Degree GRACE-DA1 V2.2. Greenbelt, Maryland, USA. Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020. Available online: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/summary (accessed on 26 June 2023).
- Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.P.; Koster, R.D.; De Lannoy, G.J.M. Assessment of MERRA-2 Land Surface Hydrology Estimates. J. Clim. 2017, 30, 2937–2960. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_lnd_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4. Greenbelt, MD, USA. Goddard Earth Sciences Data and Information Services Center (GES DISC). 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary (accessed on 17 June 2023).
- Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent Advances in (Soil Moisture) Triple Collocation Analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, J.; Zhang, Y.; Jiang, Y.; Liu, M.; Liu, H.; Zhao, W.; Yan, X. Evaluation of Four Meteorological Reanalysis Datasets for Satellite-Based PM2.5 Retrieval over China. Atmos. Environ. 2023, 305, 119795. [Google Scholar] [CrossRef]
- Winkelbauer, S.; Mayer, M.; Seitner, V.; Zsoter, E.; Zuo, H.; Haimberger, L. Diagnostic Evaluation of River Discharge into the Arctic Ocean and Its Impact on Oceanic Volume Transports. Hydrol. Earth Syst. Sci. 2022, 26, 279–304. [Google Scholar] [CrossRef]
- Lv, M.; Lu, H.; Yang, K.; Xu, Z.; Lv, M.; Huang, X. Assessment of Runoffcomponents Simulated by GLDAS against UNH-GRDC Dataset at Global and Hemispheric Scales. Water 2018, 10, 969. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Yang, H.; Zhu, X.; Tian, Y.; Jiang, X.; Huang, X.; Feng, L. Large Uncertainties in Runoff Estimations of GLDAS Versions 2.0 and 2.1 in China. Earth Sp. Sci. 2020, 7, e2019EA000829. [Google Scholar] [CrossRef]
- Lv, M.; Xu, Z.; Lv, M. Evaluating Hydrological Processes of the Atmosphere–Vegetation Interaction Model and Merra-2 at Global Scale. Atmosphere 2021, 12, 16. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Jung, W.; Lee, D.; Shin, D. A Preliminary Assessment of High-Spatial-Resolution Satellite Rainfall Estimation from SAR Sentinel-1 over the Central Region of South Korea. J. Korea Water Resour. Assoc. 2022, 55, 393–404. [Google Scholar] [CrossRef]
- Shi, P.; Li, P.; Li, Z.; Sun, J.; Wang, D.; Min, Z. Effects of Grass Vegetation Coverage and Position on Runoff and Sediment Yields on the Slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of Vegetation and Rainfall Types on Surface Runoff and Soil Erosion on Steep Slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Berio Fortini, L.; Kaiser, L.R.; Perkins, K.S.; Xue, L.; Wang, Y. Estimating the Impact of Climate and Vegetation Changes on Runoff Risk across the Hawaiian Landscape. Conservation 2023, 3, 291–302. [Google Scholar] [CrossRef]
Reanalysis | Data Type/DOI | Temporal Resolution | Spatial Resolution | Original Unit | Temporal Resampling | Spatial Resampling | Unit Conversion |
---|---|---|---|---|---|---|---|
ERA5-Land (ERA5L) | ERA5-Land 10.24381/cds.e2161bac | hourly | 0.10° × 0.10° | m | sum of 24-h data | none | =(Q/86,400) × targeted area |
GLDAS-2.2 (GLDAS) | GLDAS_CLSM025_DA1_D 10.5067/TXBMLX370XX8 | daily | 0.25° × 0.25° | kgm−2s−1 | none | nearest neighbor | =(Q × 10−3) × targeted area |
MERRA-2 (MERRA) | M2T1NXLND | hourly | 0.50° × 0.625° | kgm−2s−1 | sum of 24-h data | nearest neighbor | =(Q × 10−3) × targeted area |
10.5067/RKPHT8KC1Y1T |
Evaluation | Metric | Reanalysis | Han River | Nakdong River | Geum River | Seomjin River | Yeongsan River |
---|---|---|---|---|---|---|---|
Watershed Averaging | R | ERA5L | 0.57 | 0.55 | 0.54 | 0.59 | 0.51 |
GLDAS | 0.50 | 0.49 | 0.49 | 0.50 | 0.46 | ||
MERRA | 0.58 | 0.52 | 0.60 | 0.59 | 0.56 | ||
MERGE | 0.61 | 0.56 | 0.61 | 0.60 | 0.57 | ||
ubRMSE (m3·s−1) | ERA5L | 98.39 | 64.52 | 50.44 | 52.95 | 45.34 | |
GLDAS | 107.00 | 71.71 | 56.42 | 65.28 | 59.14 | ||
MERRA | 97.49 | 72.15 | 47.99 | 53.53 | 50.83 | ||
MERGE | 95.75 | 64.36 | 45.46 | 55.45 | 41.92 | ||
MBE (m3·s−1) | ERA5L | −14.86 | −5.98 | −2.44 | 2.42 | 3.58 | |
GLDAS | −13.54 | −4.15 | −2.83 | 2.88 | 4.15 | ||
MERRA | −17.02 | −2.19 | −5.58 | −3.83 | 1.17 | ||
MERGE | −15.23 | −3.33 | −4.18 | 2.20 | 2.26 |
Evaluation | Metric | Reanalysis | Han River (ID 1018) | Nakdong River (ID 2018) | Geum River (ID 3002) | Seomjin River (ID 4009) | Yeongsan River (ID 5006) |
---|---|---|---|---|---|---|---|
A Representative Sub−Basin in Watershed | R | ERA5L | 0.58 | 0.60 | 0.56 | 0.63 | 0.53 |
GLDAS | 0.60 | 0.56 | 0.59 | 0.58 | 0.56 | ||
MERRA | 0.72 | 0.58 | 0.68 | 0.60 | 0.53 | ||
MERGE | 0.72 | 0.67 | 0.72 | 0.70 | 0.63 | ||
ubRMSE (m3·s−1) | ERA5L | 56.78 | 55.19 | 64.11 | 51.19 | 39.29 | |
GLDAS | 82.33 | 69.04 | 64.88 | 70.65 | 56.51 | ||
MERRA | 56.58 | 63.41 | 61.86 | 45.00 | 36.76 | ||
MERGE | 55.39 | 58.68 | 60.11 | 61.97 | 30.88 | ||
MBE (m3·s−1) | ERA5L | −24.48 | −51.61 | 16.15 | −9.65 | 5.12 | |
GLDAS | −9.58 | −47.48 | 7.64 | −6.52 | 8.66 | ||
MERRA | −27.67 | −52.46 | 7.35 | −16.40 | 2.60 | ||
MERGE | −22.25 | −52.54 | 9.54 | −13.43 | 3.14 |
Evaluation | Metric | Merged Reanalysis-Based Runoff | Han River | Nakdong River | Geum River | Seomjin River | Yeongsan River |
---|---|---|---|---|---|---|---|
Watershed Averaging | R | All-time Merging | 0.61 | 0.56 | 0.61 | 0.60 | 0.57 |
Seasonal Merging | 0.63 | 0.57 | 0.61 | 0.61 | 0.58 | ||
ubRMSE (m3·s−1) | All-time Merging | 95.75 | 64.36 | 45.46 | 55.45 | 41.92 | |
Seasonal Merging | 94.75 | 65.77 | 45.59 | 53.60 | 41.02 | ||
MBE (m3·s−1) | All-time Merging | −15.23 | −3.33 | −4.18 | 2.20 | 2.26 | |
Seasonal Merging | −15.83 | −2.78 | −3.70 | 2.40 | 1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunwoo, W.-Y.; Nguyen, H.H.; Jun, K.-S. Generation of High-Resolution Gridded Runoff Product for the Republic of Korea Sub-Basins from Seasonal Merging of Global Reanalysis Datasets. Water 2023, 15, 3741. https://doi.org/10.3390/w15213741
Sunwoo W-Y, Nguyen HH, Jun K-S. Generation of High-Resolution Gridded Runoff Product for the Republic of Korea Sub-Basins from Seasonal Merging of Global Reanalysis Datasets. Water. 2023; 15(21):3741. https://doi.org/10.3390/w15213741
Chicago/Turabian StyleSunwoo, Woo-Yeon, Hoang Hai Nguyen, and Kyung-Soo Jun. 2023. "Generation of High-Resolution Gridded Runoff Product for the Republic of Korea Sub-Basins from Seasonal Merging of Global Reanalysis Datasets" Water 15, no. 21: 3741. https://doi.org/10.3390/w15213741