Fluoride Contamination in Groundwater of Community Tube Wells, Source Distribution, Associated Health Risk Exposure, and Suitability Analysis for Drinking from Arid Zone
Abstract
:1. Introduction
2. Research Area
Setting and Weather
3. Materials and Methods
3.1. Sampling and Analysis of Groundwater
3.2. Geology
3.3. Hydrology
3.4. Eminence Declaration and Excellence Regulator
3.5. Hydrochemical and Statistical Analysis
3.5.1. Water Type
3.5.2. Controlling Mechanism of Groundwater Chemistry
3.5.3. Mineral Phases
3.5.4. Statistical Analysis
3.5.5. Assessment of Health Risk
3.5.6. Suitability Analysis of Groundwater
4. Results and Discussion
4.1. Hydrochemistry of Groundwater
4.2. Fluoride Concentration in Groundwater
4.3. Water Type of Groundwater Samples
4.4. Formation Mechanism of Groundwater Chemistry
4.5. Saturation Indices
4.6. Source Identification of Contaminants
4.7. Human Health Risk
4.8. Analysis of Water Quality for Drinking
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, M.; Cheema, K. Arsenic levels in drinking water and associated health risk in district Sheikhupura, Pakistan. J. Anim. Plant Sci. 2015, 25, 719–724. [Google Scholar]
- Ahmad, S.; Imran, M.; Murtaza, B.; Arshad, M.; Nawaz, R.; Waheed, A.; Hammad, H.M.; Naeem, M.A.; Shahid, M.; Niazi, N.K. Hydrogeochemical and health risk investigation of potentially toxic elements in groundwater along River Sutlej floodplain in Punjab, Pakistan. Environ. Geochem. Health 2021, 43, 5195–5209. [Google Scholar] [CrossRef] [PubMed]
- Amiri, V.; Berndtsson, R. Fluoride occurrence and human health risk from groundwater use at the west coast of Urmia Lake, Iran. Arab. J. Geosci. 2020, 13, 921. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environ. Geochem. Health 2018, 40, 2259–2301. [Google Scholar] [CrossRef] [PubMed]
- Ather, D.; Muhammad, S.; Ali, W. Fluoride and nitrate contaminations of groundwater and potential health risks assessment in the Khyber district, North-Western Pakistan. Int. J. Environ. Anal. Chem. 2022, 1–16. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, L.; Shen, Y.; Wang, J.; Li, L.; Ma, R.; Ullah, Z.; Xiang, M.; Yu, Y. Asymmetric Alternative Current Electrochemical Method Coupled with Amidoxime-Functionalized Carbon Felt Electrode for Fast and Efficient Removal of Hexavalent Chromium from Wastewater. Nanomaterials 2023, 13, 952. [Google Scholar] [CrossRef] [PubMed]
- Daud, M.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W. Drinking water quality status and contamination in Pakistan. BioMed. Res. Int. 2017, 2017, 7908183. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.S.; Shah, M. A holistic study on fluoride-contaminated groundwater models and its widespread effects in healthcare and irrigation. Environ. Sci. Pollut. Res. 2021, 28, 60329–60345. [Google Scholar] [CrossRef]
- Farooqi, A.; Masuda, H.; Kusakabe, M.; Naseem, M.; Firdous, N. Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem. J. 2007, 41, 213–234. [Google Scholar] [CrossRef]
- Adimalla, N.; Li, P.; Qian, H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment (HHRA). Hum. Ecol. Risk Assess. Int. J. 2018, 25, 1107–1124. [Google Scholar] [CrossRef]
- Qureshi, S.S.; Channa, A.; Memon, S.A.; Khan, Q.; Jamali, G.A.; Panhwar, A.; Saleh, T.A. Assessment of physicochemical characteristics in groundwater quality parameters. Environ. Technol. Innov. 2021, 24, 101877. [Google Scholar] [CrossRef]
- Shahab, A.; Qi, S.; Zaheer, M.; Rashid, A.; Talib, M.A.; Ashraf, U. Hydrochemical characteristic and water quality assessment for drinking and agricultural purposes in District Jacobabad, Lower Indus Plain, Pakistan. Int. J. Agric. Biol. Eng. 2018, 11, 115–121. [Google Scholar] [CrossRef]
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Mishra, V.K.; Sharma, D.K.; Damodaran, T. Fluoride in the environment and its metabolism in humans. Rev Environ. Contam. Toxicol. 2011, 211, 121–142. [Google Scholar]
- Ali, W.; Aslam, M.W.; Junaid, M.; Ali, K.; Guo, Y.; Rasool, A.; Zhang, H. Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan. Environ. Pollut. 2019, 249, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Deitch, M.J.; Tunio, I.A.; Kumar, A.; Memon, S.A.; Williams, L.; Tagar, U.; Kumari, R.; Basheer, S. Assessment of physicochemical parameters in groundwater quality of desert area (Tharparkar) of Pakistan. Case Stud. Chem. Environ. Eng. 2022, 6, 100232. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Khuhawar, M.Y.; Jahangir Khuhawar, T.M.; Lanjwani, A.H.; Soomro, W.A. Evaluation of hydrochemistry of the Dokri groundwater, including historical site Mohenjo-Daro, Sindh, Pakistan. Int. J. Environ. Anal. Chem. 2023, 103, 1892–1916. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Khuhawar, M.Y.; Jahangir Khuhawar, T.M. Groundwater quality assessment of Shahdadkot, Qubo Saeed Khan and Sijawal Junejo Talukas of District Qambar Shahdadkot, Sindh. Appl. Water Sci. 2020, 10, 26. [Google Scholar] [CrossRef]
- Shahab, A.; Shihua, Q.; Rashid, A.; Hasan, F.U.; Sohail, M.T. Evaluation of Water Quality for Drinking and Agricultural Suitability in the Lower Indus Plain in Sindh Province, Pakistan. Pol. J. Environ. Stud. 2016, 25, 2563–2574. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Khuhawar, M.Y.; Jahangir Khuhawar, T.M. Assessment of groundwater quality for drinking and irrigation uses in taluka Ratodero, district Larkana, Sindh, Pakistan. Int. J. Environ. Anal. Chem. 2022, 102, 4134–4157. [Google Scholar] [CrossRef]
- Solangi, G.S.; Siyal, A.A.; Babar, M.M.; Siyal, P. Evaluation of drinking water quality using the water quality index (WQI), the synthetic pollution index (SPI) and geospatial tools in Thatta district, Pakistan. Desalination Water Treat. 2019, 160, 202–213. [Google Scholar] [CrossRef]
- Tokatli, C.; Mutlu, E.; Arslan, N. Assessment of the potentially toxic element contamination in water of Şehriban Stream (Black Sea Region, Turkey) by using statistical and ecological indicators. Water Environ. Res. 2021, 93, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.P. A revised analytical method for HCO3-and CO32-determinations in geothermal waters: An assessment of IAGC and IAEA interlaboratory comparisons. Geostand. Geoanalytical Res. 2004, 28, 391–409. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.; Li, Y.; Xiao, D.; Zhang, Y. Occurrence, Controlling Factors and Health Hazards of Fluoride-Enriched Groundwater in the Lower Flood Plain of Yellow River, Northern China. Expo. Health 2022, 14, 345–358. [Google Scholar] [CrossRef]
- Fida, M.; Li, P.; Wang, Y.; Alam, S.K.; Nsabimana, A. Water contamination and human health risks in Pakistan: A review. Expo. Health 2023, 15, 619–639. [Google Scholar] [CrossRef]
- Talib, M.A.; Tang, Z.; Shahab, A.; Siddique, J.; Faheem, M.; Fatima, M. Hydrogeochemical characterization and suitability assessment of groundwater: A case study in Central Sindh, Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 886. [Google Scholar] [CrossRef] [PubMed]
- Amiri, V.; Bhattacharya, P.; Nakhaei, M. The hydrogeochemical evaluation of groundwater resources and their suitability for agricultural and industrial uses in an arid area of Iran. Groundw. Sustain. Dev. 2021, 12, 100527. [Google Scholar] [CrossRef]
- Ul Hasan Shah, Z.; Ahmad, Z. Hydrogeology and hydrochemistry of the Upper Thal Doab (Pakistan). Environ. Earth Sci. 2016, 75, 527. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Samal, A.C.; Banerjee, S.; Pyne, J.; Santra, S.C. Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India. Environ. Sci. Pollut. Res. 2017, 24, 20300–20314. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; pp. 303–304. [Google Scholar]
- Aleem, M.; Shun, C.J.; Li, C.; Aslam, A.M.; Yang, W.; Nawaz, M.I.; Ahmed, W.S.; Buttar, N.A. Evaluation of groundwater quality in the vicinity of Khurrianwala industrial zone, Pakistan. Water 2018, 10, 1321. [Google Scholar] [CrossRef]
- Ali, A.; Ullah, Z.; Siddique, M.; Ghani, J.; Rashid, A.; Khalid, W.; Khan, M.I.U.; Ashraf, W. Geochemical Investigation of OCPs in the Rivers Along with Drains and Groundwater Sources of Eastern Punjab, Pakistan. Expo. Health 2023, 1–16. [Google Scholar] [CrossRef]
- Ghani, J.; Nawab, J.; Ullah, Z.; Rafiq, N.; Hasan, S.Z.; Khan, S.; Shah, M.; Almutairi, M.H. Multivariate Statistical Methods and GIS-Based Evaluation of Potable Water in Urban Children’s Parks Due to Potentially Toxic Elements Contamination: A Children’s Health Risk Assessment Study in a Developing Country. Sustainability 2023, 15, 13177. [Google Scholar] [CrossRef]
- Rasool, A.; Farooqi, A.; Xiao, T.; Masood, S.; Kamran, M.A. Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. J. Geochem. Explor. 2016, 169, 89–99. [Google Scholar] [CrossRef]
- Solangi, G.S.; Siyal, A.A.; Babar, M.M.; Siyal, P. Groundwater quality evaluation using the water quality index (WQI), the synthetic pollution index (SPI), and geospatial tools: A case study of Sujawal district, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2019, 26, 1529–1549. [Google Scholar] [CrossRef]
- Subba Rao, N.; Ravindra, B.; Wu, J. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2316–2348. [Google Scholar] [CrossRef]
- Tokatlı, C.; Islam, A.R.M.T.; Onur, Ş.G.; Ustaoğlu, F.; Islam, M.S.; Dindar, M.B. A pioneering study on health risk assessment of fluoride in drinking water in Thrace Region of northwest Türkiye. Groundw. Sustain. Dev. 2022, 19, 100836. [Google Scholar] [CrossRef]
- Ullah, R.; Malik, R.N.; Qadir, A. Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. Afr. J. Environ. Sci. Technol. 2009, 3, 429–446. [Google Scholar]
- Varol, M.; Tokatlı, C. Seasonal variations of toxic metal (loid) s in groundwater collected from an intensive agricultural area in northwestern Turkey and associated health risk assessment. Environ. Res. 2022, 204, 111922. [Google Scholar] [CrossRef]
- Frape, S.; Fritz, P.; McNutt, R.t. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim. Cosmochim. Acta 1984, 48, 1617–1627. [Google Scholar] [CrossRef]
- Noor, S.; Rashid, A.; Javed, A.; Khattak, J.A.; Farooqi, A. Hydrogeological properties, sources provenance, and health risk exposure of fluoride in the groundwater of Batkhela, Pakistan. Environ. Technol. Innov. 2022, 25, 102239. [Google Scholar] [CrossRef]
- Elemile, O.; Ibitogbe, E.; Folorunso, O.; Ejiboye, P.; Adewumi, J. Principal component analysis of groundwater sources pollution in Omu-Aran Community, Nigeria. Environ. Earth Sci. 2021, 80, 690. [Google Scholar] [CrossRef]
- Hao, Q.; Wu, X.; Mu, W.; Yu, F. Groundwater source identification based on principal component analysis and improved extreme learning machine algorithm using the genetic algorithm: A case study from the Dagushan iron mine, Liaoning Province, China. Arab. J. Geosci. 2022, 15, 536. [Google Scholar] [CrossRef]
- Selmane, T.; Dougha, M.; Hasbaia, M.; Ferhati, A.; Redjem, A. Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher region of Hodna, northern Algeria. Acta Geochim. 2022, 41, 893–909. [Google Scholar] [CrossRef]
- Panghal, V.; Sharma, P.; Mona, S.; Bhateria, R. Determining groundwater quality using indices and multivariate statistical techniques: A study of Tosham block, Haryana, India. Environ. Geochem. Health 2022, 44, 3581–3595. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.; Chavoshbashi, A.A.; Eslami, A.; Hatami, H.; Pourakbar, M.; Hashemi, M. Spatial and temporal variation of groundwater quality around a volcanic mountain in northwest of Iran. Groundw. Sustain. Dev. 2021, 14, 100627. [Google Scholar] [CrossRef]
- Rehman, F.; Cheema, T.; Azeem, T.; Naseem, A.A.; Khan, I.; Iqbal, N.; Shaheen, A. Groundwater quality and potential health risks caused by arsenic (As) in Bhakkar, Pakistan. Environ. Earth Sci. 2020, 79, 529. [Google Scholar] [CrossRef]
- Ali, H.Q.; Yasir, M.U.; Farooq, A.; Khan, M.; Salman, M.; Waqar, M. Tanneries impact on groundwater quality: A case study of Kasur city in Pakistan. Environ. Monit. Assess. 2022, 194, 823. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Raza, S.A.; Fatima, A.; Haider, S.W. Assessment of groundwater quality in coastal region a case study of Qayyumabad, Karachi, Pakistan. Asian Rev. Environ. Earth Sci. 2020, 7, 9–17. [Google Scholar] [CrossRef]
- Rashid, A.; Ayub, M.; Ullah, Z.; Ali, A.; Khattak, S.A.; Ali, L.; Gao, X.; Li, C.; Khan, S.; El-Serehy, H.A. Geochemical Modeling Source Provenance, Public Health Exposure, and Evaluating Potentially Harmful Elements in Groundwater: Statistical and Human Health Risk Assessment (HHRA). Int. J. Environ. Res. Public Health 2022, 19, 6472. [Google Scholar] [CrossRef]
- Akhtar, N.; Ishak, M.I.S.; Ahmad, M.I.; Umar, K.; Md Yusuff, M.S.; Anees, M.T.; Qadir, A.; Ali Almanasir, Y.K. Modification of the water quality index (WQI) process for simple calculation using the multi-criteria decision-making (MCDM) method: A review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef]
Parameters | Min | Max | Mean | SD | WHO |
---|---|---|---|---|---|
Depth (feet) | 66 | 117 | 91.6 | 13.4 | - |
pH | 7.30 | 8.60 | 7.96 | 0.32 | 6.8–8.5 |
TDS (mg/L) | 237 | 607 | 391 | 84.6 | 1000 |
EC (µs/cm) | 312 | 667 | 484 | 91.1 | 400 |
Turbidity (NTU) | 0.50 | 3.70 | 1.94 | 0.72 | 5 |
HCO3− (mg/L) | 137 | 521 | 270 | 111 | 250 |
Ca2+ (mg/L) | 19 | 68 | 43.5 | 14.9 | 200 |
Mg2+ (mg/L) | 17 | 63 | 32.7 | 12.8 | 150 |
Na+ (mg/L) | 137 | 511 | 258 | 97.2 | 200 |
SO42− (mg/L) | 18 | 82 | 38 | 14.6 | 250 |
NO3− (mg/L) | 0.10 | 3.1 | 1.64 | 0.82 | 10 |
K+ (mg/L) | 0.60 | 4 | 1.93 | 0.79 | 12 |
Cl− (mg/L) | 8.00 | 52 | 24.2 | 10.9 | 250 |
Fe2+ (mg/L) | 0.01 | 0.20 | 0.03 | 0.04 | 0.3 |
F− (mg/L) | 0.20 | 4.20 | 1.63 | 0.96 | 1.5 |
F1 | F2 | F3 | F4 | F5 | F6 | |
---|---|---|---|---|---|---|
Depth | 0.27 | −0.09 | 0.40 | −0.73 | 0.24 | 0.12 |
pH | −0.19 | 0.46 | 0.56 | 0.00 | −0.12 | −0.31 |
TDS | −0.33 | −0.03 | 0.67 | −0.22 | −0.17 | 0.24 |
EC | −0.60 | 0.47 | 0.20 | 0.44 | 0.03 | −0.05 |
Turbidity | −0.48 | 0.53 | −0.07 | 0.09 | 0.12 | 0.51 |
HCO3− | 0.90 | 0.20 | −0.03 | 0.19 | 0.07 | 0.14 |
Ca2+ | −0.58 | −0.13 | −0.14 | 0.40 | 0.03 | −0.16 |
Mg2+ | −0.05 | −0.62 | 0.45 | 0.19 | −0.08 | 0.20 |
Na+ | 0.62 | 0.48 | −0.06 | 0.12 | 0.25 | 0.39 |
SO42− | 0.16 | −0.48 | 0.52 | 0.44 | 0.25 | 0.15 |
NO3− | 0.04 | 0.36 | 0.08 | −0.12 | 0.67 | −0.47 |
K+ | 0.40 | 0.18 | −0.02 | −0.12 | −0.65 | −0.31 |
Cl− | 0.52 | −0.33 | 0.24 | 0.29 | 0.21 | −0.38 |
Fe2+ | 0.00 | −0.43 | −0.67 | 0.00 | 0.10 | 0.06 |
F− | 0.72 | 0.31 | 0.14 | 0.36 | −0.27 | 0.07 |
Eigenvalues | 3.31 | 2.18 | 2.00 | 1.46 | 1.26 | 1.13 |
% of Variance | 22.07 | 14.52 | 13.32 | 9.74 | 8.37 | 7.53 |
Cumulative % | 22.07 | 36.59 | 49.91 | 59.65 | 68.02 | 75.55 |
Children | Adults | ||||
---|---|---|---|---|---|
GW Samples | F− mg/L | ADI | HQ | ADI | HQ |
Min | 0.20 | 1.19 × 10−2 | 1.98 × 10−1 | 5.71 × 10−3 | 9.52 × 10−2 |
Max | 4.20 | 2.49 × 10−1 | 4.15 × 100 | 1.20 × 10−1 | 2.00 × 100 |
Mean | 1.63 | 8.51 × 10−2 | 1.42 × 100 | 4.10 × 10−2 | 6.83 × 10−1 |
Category | WQI | Water Quality | Water Sample |
---|---|---|---|
A | 0–25 | Excellent | 0 |
B | 25–50 | Good | 22 |
C | 51–75 | Poor | 27 |
D | 76–100 | Very poor | 4 |
E | >100 | Not suitable | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, Z.; Rashid, A.; Nawab, J.; Bacha, A.-U.-R.; Ghani, J.; Iqbal, J.; Zhu, Z.; Alrefaei, A.F.; Almutairi, M.H. Fluoride Contamination in Groundwater of Community Tube Wells, Source Distribution, Associated Health Risk Exposure, and Suitability Analysis for Drinking from Arid Zone. Water 2023, 15, 3740. https://doi.org/10.3390/w15213740
Ullah Z, Rashid A, Nawab J, Bacha A-U-R, Ghani J, Iqbal J, Zhu Z, Alrefaei AF, Almutairi MH. Fluoride Contamination in Groundwater of Community Tube Wells, Source Distribution, Associated Health Risk Exposure, and Suitability Analysis for Drinking from Arid Zone. Water. 2023; 15(21):3740. https://doi.org/10.3390/w15213740
Chicago/Turabian StyleUllah, Zahid, Abdur Rashid, Javed Nawab, Aziz-Ur-Rahim Bacha, Junaid Ghani, Javed Iqbal, Zhiling Zhu, Abdulwahed Fahad Alrefaei, and Mikhlid H. Almutairi. 2023. "Fluoride Contamination in Groundwater of Community Tube Wells, Source Distribution, Associated Health Risk Exposure, and Suitability Analysis for Drinking from Arid Zone" Water 15, no. 21: 3740. https://doi.org/10.3390/w15213740