Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photocatalysts Synthesis
2.3. Characterization of CuFe2O4, MgFe2O4 and ZnFe2O4 Nanosphere Photocatalyst
2.4. Photocatalytic Experiment of Magnetic Ferrite Nanosphere Photocatalysts
2.5. Photocatalysts Recovery and Stability Tests
3. Results and Discussion
3.1. Characterization of MFNPs
3.1.1. XRD of MFNPs
3.1.2. SEM Analysis of CF400, MF400, and ZF400
3.1.3. XPS Analysis of CF400, MF400, and ZF400
3.1.4. DRS Analysis of CF400, MF400, and ZF400
3.1.5. Photocatalytic Decomposition of Ammonia Nitrogen by CF400, MF400, and ZF400 at Different pHs
3.1.6. Stability and Recyclability Analysis of CF400, MF400, and ZF400
3.1.7. Treatment of Ammonia Nitrogen Wastewater with Different Concentrations by ZF400
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luo, X.; Yan, Q.; Wang, C.; Luo, C.; Zhou, N.; Jian, C. Treatment of ammonia nitrogen wastewater in low concentration by two-stage ozonization. Int. J. Environ. Res. Public Health 2015, 12, 11975–11987. [Google Scholar] [CrossRef]
- Ma, H.; Chen, G.; Huang, F.; Li, Y.; Zhang, L.; Jin, Y. Catalytic ozonation of ammonia nitrogen removal in wastewater: A review. J. Water Process Eng. 2023, 52, 103542. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, Z.; Luo, W.; Wu, H.; Zhang, L.; Zhang, X.; Zhao, T. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment. Bioresour. Technol. 2020, 315, 123813. [Google Scholar] [CrossRef]
- Qin, L.; Feng, P.; Zhu, S.; Xu, Z.; Wang, Z. A novel partial complete nitrification coupled microalgae assimilation system for resource utilization of high ammonia nitrogen wastewater. J. Environ. Chem. Eng. 2022, 10, 108584. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Drogui, P.; Brar, S.K.; Buelna, G.; Dubé, R. Unwanted metals and hydrophobic contaminants in bioreactor effluents are associated with the presence of humic substances. Environ. Chem. Lett. 2017, 15, 489–494. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Chung, Y.-C.; Shin, H.-S.; Son, D.-H. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Res. 2004, 38, 347–354. [Google Scholar] [CrossRef]
- Chen, L.; Luo, L.; Qin, W.; Zhu, X.; Tomberlin, J.K.; Zhang, J.; Hou, D.; Chen, H.; Yu, Z.; Zhang, Z.; et al. Recycling nitrogen in livestock wastewater for alternative protein by black soldier fly larvae bioreactor. Environ. Technol. Innov. 2023, 29, 102971. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Y.; Li, D.; Feng, C.; Zhang, Z. Treatment of ammonium-rich swine waste in modified porphyritic andesite fixed-bed anaerobic bioreactor. Bioresour. Technol. 2012, 111, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Rongwong, W.; Sairiam, S. A modeling study on the effects of pH and partial wetting on the removal of ammonia nitrogen from wastewater by membrane contactors. J. Environ. Chem. Eng. 2020, 8, 104240. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Zhou, J.; Liu, Q.; Qian, G.; Xu, Z.P. Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions. Bioresour. Technol. 2012, 113, 239–243. [Google Scholar] [CrossRef]
- Hu, X.; Su, J.; Ali, A.; Wang, Z.; Wu, Z. Heterotrophic nitrification and biomineralization potential of Pseudomonas sp. HXF1 for the simultaneous removal of ammonia nitrogen and fluoride from groundwater. Bioresour. Technol. 2021, 323, 124608. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Sun, Z.; Zhang, H.; Klausen, L.H.; Moonhee, R.; Kang, S. Emerging high-ammonia-nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Sci. Total Environ. 2023, 875, 162603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, E.G.; Li, Y.; Liu, H.; Vidal-Dorsch, D.E.; Giesy, J.P. Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China. Chemosphere 2018, 202, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wu, L.; Wang, Y.; Shehzad, M.; Xu, T. Ammonia capture by water splitting and hollow fiber extraction. Chem. Eng. Sci. 2018, 192, 211–217. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef]
- Zhang, H.; Choi, H.J.; Huang, C.-P. Optimization of Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 2005, 125, 166–174. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Pan, Z.; Li, D. Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture. Comput. Electron. Agric. 2018, 150, 364–373. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, N.; Wu, Y.; Yang, W.; Lu, Y.; Wang, Y.; Wang, S. An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen. J. Energy Chem. 2021, 60, 384–402. [Google Scholar] [CrossRef]
- Sotres, A.; Cerrillo, M.; Viñas, M.; Bonmatí, A. Nitrogen removal in a two-chambered microbial fuel cell: Establishment of a nitrifying-denitrifying microbial community on an intermittent aerated cathode. Chem. Eng. J. 2016, 284, 905–916. [Google Scholar] [CrossRef]
- Yao, F.; Fu, W.; Ge, X.; Wang, L.; Wang, J.; Zhong, W. Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen. Sci. Total Environ. 2020, 727, 138425. [Google Scholar] [CrossRef]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for advanced oxidation processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Zhao, Z.; Liu, Q.; Dong, X.; Zhao, Q. Theoretical calculations for localized surface plasmon resonance effects of Cu/TiO2 nanosphere: Generation, modulation, and application in photocatalysis. Sol. Energy Mater. Sol. Cells 2020, 208, 110385. [Google Scholar] [CrossRef]
- Peng, X.; Wang, M.; Hu, F.; Qiu, F.; Dai, H.; Cao, Z. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. J. Alloys Compd. 2019, 770, 1055–1063. [Google Scholar] [CrossRef]
- Luo, X.; Chen, C.; Yang, J.; Wang, J.; Yan, Q.; Shi, H.; Wang, C. Characterization of La/Fe/TiO2 and its photocatalytic performance in ammonia nitrogen wastewater. Int. J. Environ. Res. Public Health 2015, 12, 14626–14639. [Google Scholar] [CrossRef]
- Sun, D.; Sun, W.; Yang, W.; Li, Q.; Shang, J.K. Efficient photocatalytic removal of aqueous NH4+–NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions. Chem. Eng. J. 2015, 264, 728–734. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, Q.; Yin, H.; Wang, A.; Meng, F. Synthesis of hollow B-SiO2@CaTiO3 nanocomposites and their photocatalytic performance in ammonia nitrogen degradation. Water Air Soil Pollut. 2020, 231, 1–13. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, H.; Wang, A.; Si, Y. Preparation of hollow B-SiO2@TiO2 composites and their photocatalytic performances for degradation of ammonia-nitrogen and green algae in aqueous solution. Chin. J. Chem. Eng. 2019, 27, 2535–2543. [Google Scholar] [CrossRef]
- Qin, H.; He, Y.; Xu, P.; Huang, D.; Wang, Z.; Wang, H.; Wang, Z.; Zhao, Y.; Tian, Q.; Wang, C. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Adv. Colloid Interface Sci. 2021, 294, 102486. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Xu, X.; Ding, C.; Chen, N.; Ding, H.; Lu, A. Structural disorder controlled oxygen vacancy and photocatalytic activity of spinel-type minerals: A case study of ZnFe2O. Chem. Geol. 2019, 504, 276–287. [Google Scholar] [CrossRef]
- Hasan, I.; Bassi, A.; Alharbi, K.H.; BinSharfan, I.I.; Khan, R.A.; Alslame, A. Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@NiFe2O4 Spinel Ferrite. Coatings 2020, 10, 1200. [Google Scholar] [CrossRef]
- Luo, J.; Wu, Y.; Chen, X.; He, T.; Zeng, Y.; Wang, G.; Wang, Y.; Zhao, Y.; Chen, Z. Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal. J. Alloys Compd. 2020, 910, 164954. [Google Scholar] [CrossRef]
- Liang, P.-L.; Yuan, L.-Y.; Deng, H.; Wang, X.-C.; Wang, L.; Li, Z.-J.; Luo, S.-Z.; Shi, W.-Q. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B Environ. 2020, 267, 118688. [Google Scholar] [CrossRef]
- Ye, J.; Liu, S.-Q.; Liu, W.-X.; Meng, Z.-D.; Luo, L.; Chen, F.; Zhou, J. Photocatalytic simultaneous removal of nitrite and ammonia via a zinc ferrite/activated carbon hybrid catalyst under UV–visible irradiation. ACS Omega 2019, 4, 6411–6420. [Google Scholar] [CrossRef]
- Ajeesha, T.; Ashwini, A.; George, M.; Manikandan, A.; Mary, J.A.; Slimani, Y.; Almessiere, M.A.; Baykal, A. Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Physica B Condens. Matter 2020, 606, 412660. [Google Scholar] [CrossRef]
- Shetty, K.; Renuka, L.; Nagaswarupa, H.P.; Nagabhushana, H.; Anantharaju, K.S.; Rangappa, S.C.; Ashwini, K. A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4: Morphology, Impedance and Photocatalytic studies. Mater. Today Proc. 2017, 4, 11806–11815. [Google Scholar] [CrossRef]
- Gao, F.; Guo, X.; Cui, H.; Wang, J.; Liu, J.; Wu, Y.; Wan, L.; Zhang, C.; Xu, G. Preparation of magnetic ZnFe2O4 nanosphere photocatalyst for high concentration ammonia nitrogen wastewater treatment. J. Environ. Chem. Eng. 2023, 11, 110894. [Google Scholar] [CrossRef]
- You, Y.; Shi, Z.; Li, Y.; Zhao, Z.; He, B.; Cheng, X. Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride. Sep. Purif. Technol. 2021, 272, 118889. [Google Scholar] [CrossRef]
- Gu, W.; Xie, Q.; Qi, C.; Zhao, L.; Wu, D. Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique. Powder Technol. 2016, 301, 723–729. [Google Scholar] [CrossRef]
- Eaton, A. Standard Methods for the Examination of Water and Wastewater; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Song, Z.; Huang, Z.; Liu, B.; Liu, H.; Zhu, X.; Xia, F.; Kang, H.; Mao, Y.; Liu, X.; Zhao, B.; et al. Catalytic hydrolysis of HCN over Fe–Ti-Ox catalysts prepared by different calcination temperatures: Effect of Fe chemical valence and Ti phase. Microporous Mesoporous Mater. 2020, 292, 109753. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, Z.; Wang, Y.; Zhang, H.; Qiu, Y.; Yin, D. Efficient organics heterogeneous degradation by spinel CuFe2O4 supported porous carbon nitride catalyst: Multiple electron transfer pathways for reactive oxygen species generation. Chemosphere 2022, 300, 134511. [Google Scholar] [CrossRef] [PubMed]
- Surya, R.M.; Yulizar, Y.; Cahyana, A.H.; Apriandanu, D.O.B. One-pot Cajanus cajan (L.) Millsp. leaf extract-mediated preparation of MgFe2O4 nanoparticles: Optical, structural, morphological and particle size analyses. Solid State Commun. 2021, 326, 114170. [Google Scholar] [CrossRef]
- Jiang, B.; Han, C.; Li, B.; He, Y.; Lin, Z. In-Situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 2016, 10, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- Kanagesan, S.; Hashim, M.; Aziz, S.A.B.; Ismail, I.; Tamilselvan, S.; Alitheen, N.B.; Swamy, M.K.; Rao, B.P.C. Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Appl. Sci. 2016, 6, 184. [Google Scholar] [CrossRef]
- Araújo, J.C.R.; Araujo-Barbosa, S.; Souza, A.L.R.; Iglesias, C.A.M.; Xavier, J.; Souza, P.B.; PláCid, C.C.; Azevedo, S.; Silva, R.B.D.; Correa, M.N.; et al. Tuning structural, magnetic, electrical, and dielectric properties of MgFe2O4 synthesized by sol-gel followed by heat treatment. J. Phys. Chem. Solids 2021, 154, 110051. [Google Scholar] [CrossRef]
- Yadav, R.S.; Havlica, J.; Masilko, J.; Tkacz, J.; Kuřitka, I.; Vilcakova, J. Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Mater. Sci. Mater. Electron. 2016, 27, 5992–6002. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Zhao, Q.; Hou, Y.; Quan, X.; Chen, G. Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol–gel template method. Acta Mater. 2009, 57, 2684–2690. [Google Scholar] [CrossRef]
- Faungnawakij, K.; Shimoda, N.; Fukunaga, T.; Kikuchi, R.; Eguchi, K. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Appl. Catal. B Environ. 2009, 92, 341–350. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Huang, L.; Feng, H.; Zhou, S.; Zhao, R.; Wang, D.; Li, Z. Microwave-assisted co-precipitation preparation of CuFe2O4 photo-Fenton degradation tetracycline: Characterization, efficacy, stability in complex water quality and mechanism. J. Environ. Chem. Eng. 2023, 11, 109164. [Google Scholar] [CrossRef]
- Lin, X.Y.; Zhang, Y.; Yin, L. Effect of various precipitants on activity and thermal stability of CuFe2O4 water-gas shift catalysts. J. Fuel. Chem. Technol. 2014, 42, 1087–1092. [Google Scholar] [CrossRef]
- NuLi, Y.-N.; Chu, Y.-Q.; Qin, Q.-Z. Nanocrystalline ZnFe2O4 and Ag-Doped ZnFe2O4 Films Used as New Anode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2004, 151, 1077–1083. [Google Scholar] [CrossRef]
- Zhu, M.; Meng, D.; Wang, C.; Diao, G. Facile Fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl. Mater. Interfaces 2013, 5, 6030–6037. [Google Scholar] [CrossRef]
- Zu, Y.; Zhao, Y.; Xu, K.; Tong, Y.; Zhao, F. Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites. Ceram. Int. 2016, 42, 18844–18850. [Google Scholar] [CrossRef]
- Fu, L.; Chen, H.; Wang, K.; Wang, X. Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved photocatalytic activity for CO2 reduction. J. Alloys Compd. 2022, 891, 161925. [Google Scholar] [CrossRef]
- Jia, J.; Du, X.; Zhang, Q.; Liu, E.; Fan, J. Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Appl. Surf. Sci. 2019, 492, 527–539. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, H.; Wu, Y.; Chen, X.; Zeng, G.; Leng, L.; Zhang, C. A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: Solvothermal synthesis, characterization and improved visible-light photocatalytic activity. Catal. Commun. 2015, 61, 62–66. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, M.; Sun, G.; Li, X.; Liu, K. Visible-light photo-Fenton catalytic MgFe2O4 spinel: Reaction sintering synthesis and DFT study. J. Alloys Compd. 2021, 889, 161673. [Google Scholar] [CrossRef]
- Fei, W.; Song, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Hollow In2O3@ZnFe2O4 heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light. Environ. Sci. Nano 2019, 6, 3123–3132. [Google Scholar] [CrossRef]
- Sharma, Y.; Sharma, N.; Rao, G.V.S.; Chowdari, B.V.R. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 2008, 53, 2380–2385. [Google Scholar] [CrossRef]
- Hou, Y.; Li, X.; Zhao, Q.-D.; Quan, X.; Chen, G.-H. Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 2010, 20, 2165–2174. [Google Scholar] [CrossRef]
- Zou, F.; Hu, X.; Li, Z.; Qie, L.; Hu, C.; Zeng, R.; Jiang, Y.; Huang, Y. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628. [Google Scholar] [CrossRef] [PubMed]
- Yoriya, S.; Grimes, C.A. Self-assembled anodic TiO2 nanotube arrays: Electrolyte properties and their effect on resulting morphologies. J. Mater. Chem. 2011, 21, 102–108. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, X.-L.; Zhou, Y.; Meng, Z.-D.; Chen, Z.-G.; Liu, C.-B.; Chen, F.; Wu, Z.-Y.; Qian, J.-C. Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catal. Sci. Technol. 2017, 7, 3210–3219. [Google Scholar] [CrossRef]
- Shibuya, S.; Sekine, Y.; Mikami, I. Influence of pH and pH adjustment conditions on photocatalytic oxidation of aqueous ammonia under airflow over Pt-loaded TiO2. Appl. Catal. A Gen. 2015, 496, 73–78. [Google Scholar] [CrossRef]
- Shavisi, Y.; Sharifnia, S.; Hosseini, S.N.; Khadivi, M.A. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J. Ind. Eng. Chem. 2014, 20, 278–283. [Google Scholar] [CrossRef]
- Wang, H.; Su, Y.; Zhao, H.; Yu, H.; Chen, S.; Zhang, Y.; Quan, X. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environ. Sci. Technol. 2014, 48, 11984–11990. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, B.; Yang, Y.; Ming, H.; Liu, G.; Zhang, J.; Hou, Y. Carbon-coated ZnFe2O4 nanoparticles as an efficient, robust and recyclable catalyst for photocatalytic ozonation of organic pollutants. J. Environ. Chem. Eng. 2022, 10, 107419. [Google Scholar] [CrossRef]
- Sonu, Y.; Sharma, S.; Dutta, V.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V.; Nguyen, V.H.; VanLe, Q.; Singh, P. An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J. Environ. Chem. Eng. 2021, 9, 105812. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Zhao, S. Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. J. Taiwan Inst. Chem. Eng. 2015, 55, 90–100. [Google Scholar] [CrossRef]
- Cai, H.; Zhao, T.; Ma, Z. Synthesis of magnetic MFe2O4@PC (M = Fe, Cu, Co, and Mn) composites and application of heterogeneous photo-Fenton efficient removal of metronidazole under visible light. J. Ind. Eng. Chem. 2023, 121, 322–330. [Google Scholar] [CrossRef]
- Tanwar, R.; Mandal, U.K. Photocatalytic activity of Ni0.5Zn0.5Fe2O4@polyaniline decorated BiOCl for azo dye degradation under visible light—Integrated role and degradation kinetics interpretation. RSC Adv. 2019, 9, 8977–8993. [Google Scholar] [CrossRef] [PubMed]
Material | Precursor Metal | Temperature (°C) | Particles Size (nm) | Shape | References |
---|---|---|---|---|---|
CuFe2O4 | Cu(NO3)2·3H2O, Fe(NO3)3·9H2O, C6H8O7·H2O | 150 | 56 | spherical | [44] |
MgFe2O4 | Mg(NO3)2.6H2O, Fe(NO3)3·9H2O, C2H4(OH)2, C6H8O7·H2O | 350 | 12.63 | spherical | [45] |
MgFe2O4 | Mg(NO3)2.6H2O, Fe(NO3)3·9H2O, C2H4(OH)2, C6H8O7·H2O | 600 | 33.32 | spherical | [45] |
ZnFe2O4 | Zn(NO3)2·6H2O, Fe(NO3)3·9H2O, (C6H10O5)n | 400 | 5–30 | spherical | [46] |
ZnFe2O4 | Zn(NO3)2·6H2O, Fe(NO3)3·9H2O, C2H4(OH)2, C6H8O7·H2O | 450 | 10–20 | spherical | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Gao, F.; Cui, H.; Liu, J.; Wang, H.; Liang, L.; Wu, Y.; Wan, L.; Wang, J.; Zhang, C.; et al. Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts. Water 2023, 15, 3638. https://doi.org/10.3390/w15203638
Guo X, Gao F, Cui H, Liu J, Wang H, Liang L, Wu Y, Wan L, Wang J, Zhang C, et al. Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts. Water. 2023; 15(20):3638. https://doi.org/10.3390/w15203638
Chicago/Turabian StyleGuo, Xianyong, Fan Gao, Haoxuan Cui, Jiaxuan Liu, Hairong Wang, Lixin Liang, Yinghai Wu, Li Wan, Jing Wang, Cuiya Zhang, and et al. 2023. "Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts" Water 15, no. 20: 3638. https://doi.org/10.3390/w15203638
APA StyleGuo, X., Gao, F., Cui, H., Liu, J., Wang, H., Liang, L., Wu, Y., Wan, L., Wang, J., Zhang, C., & Xu, G. (2023). Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts. Water, 15(20), 3638. https://doi.org/10.3390/w15203638