A Framework for Assessing Nature-Based Urban Stormwater Management Solutions: A Preliminary Spatial Analysis Approach Applied to Southeast Serbia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.1.1. Present and Future Climate Conditions
2.1.2. Stormwater Management
2.2. Methodology
2.2.1. NbS SM Elements Typology
2.2.2. Criteria for Implementation of NbS SM Elements
2.2.3. Identification of Data Sources
2.2.4. The Acquired Data, Spatial Data Processing, and Constraint Mapping
2.2.5. Thematic Maps for Preliminary Location Evaluation for NbS SM Technical Elements
3. Results
3.1. Suitability Assessment Results at the Urban Settlement Level
3.1.1. Source Data (Maps), Derived Maps, and GIS Layers Showing Constraints
3.1.2. Thematic Maps Presenting Suitability for Implementation of NbS SM Elements
3.2. Suitability of All USs per NbS SM Element
4. Discussion
4.1. Source Data
4.2. Land Availability Source Data Update Effects
4.3. Transferability of the Research Results and Further Research and/or Implementation Steps
5. Conclusions
- The proposed methodological framework is able to distinguish areas suitable for nature-based solutions with large variations between multiple urban settlements. This shows that the methodology is applicable for a preliminary suitability analysis and can be used to underpin the strategic decision making, needed in the field of nature-based solution application for further tackling of stormwater (and wastewater) management in developing countries like Serbia, given the current state of legislation and research in this field.
- The preliminary assessment conducted in this investigation pointed out to the shortcomings with the selected publicly available sources, i.e., input data. However, an initial picture about suitability of all elements at an urban scale is useful for the studied urban settlements, while further refinement of the results based on more detailed source data for all constraints regarding included conditions is necessary.
- Among the five studied nature-based solution stormwater management elements: (1) bio-retention cell, (2) rain garden, (3) infiltration trench, (4) porous pavement, and (5) vegetative swale, the least suitable for implementation in the majority of the studied urban settlements are the infiltration trench and porous pavement with runoff detention.
- US3 (Leskovac) and US4 (Vranje), third-tier cities, which both hold functioning wastewater treatment plants, based on the stage 0 analysis, seem to be the most suitable for nature-based solution stormwater management elements implementation according to natural constraints.
- The research findings indicate that among the smaller studied urban settlements, US2 (Pirot) and US7 (Bor), which belong to the fourth-tier city category, have a lot of potential for the implementation of nature-based solution stormwater management elements due to the natural conditions and lower built-up area density.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN United Nations. World Urbanization Prospects: The 2009 Revision; United Nations Department of Economic and Social Affairs, Population Division: San Francisco, CA, USA, 2010. [Google Scholar]
- Whelans, C.; Maunsell, H.G.; Thompson, P. (Eds.) Planning and Management Guidelines for Water Sensitive Urban (Residential) Design; Department of Planning and Urban Development of Western Australia: Perth, Australia, 1994.
- Lloyd, S.D.; Wong, T.H.F.; Chesterfield, C.J. Water Sensitive Urban Design—A Stormwater Management Perspective; Cooperative Research Centre for Catchment Hydrology: Melbourne, Australia, 2002. [Google Scholar]
- Mouritz, M.; Evangelisti, M.; McAlister, T. Water Sensitive Urban Design. In Australian Runoff Quality; Wong, T.H.F., Ed.; Engineers Australia: Sydney, Australia, 2006; p. 5-1–5-22. [Google Scholar]
- Woods-Ballard, B.; Kellagher, R.; Martin, P.; Jefferies, C.; Bray, R.; č Shaffer, P. The SuDS Manual CIRIA C697; CIRIA: London, UK, 2007; Available online: http://observatoriaigua.uib.es/repositori/suds_manual.pdf (accessed on 15 July 2023).
- Digman, C.; Ashley, R.; Balmforth, D.; Balmforth, D.; Stovin, V.; Glerum, J. Retroffiting Urban Areas to Effectively Manage Surface Water; CIRIA C713; CIRIA: London, UK, 2012. [Google Scholar]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual CIRIA C753; CIRIA: London, UK, 2015. [Google Scholar]
- Potter, K.; Vilcan, T. Managing Urban Flood Resilience through the English Planning System: Insights from the ‘SuDS-Face. Phil. Trans. R. Soc. A 2020, 378, 20190206. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (EPA). National Pollutant Discharge Elimination System (NPDES) Definitions; 40 C.F.R.§ 122.2; US Environmental Protection Agency (EPA): Washington, DC, USA, 2011.
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and More—The Evolution and Application of Terminology Surrounding Urban Drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- US EPA. Low Impact Development (LID), a Literature Review; EPA-841-B-00-005; United States Environmental Protection Agency: Washington, DC, USA, 2000.
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Cooper, A. Stormwater Management Opportunities with Urban Re-Development 2011. Available online: https://www.waternz.org.nz/Attachment?Action=Download&Attachment_id=139 (accessed on 15 July 2023).
- Petrucci, G.; Deroubaix, J.-F.; De Gouvello, B.; Deutsch, J.-C.; Bompard, P.; Tassin, B. Rainwater Harvesting to Control Stormwater Runoff in Suburban Areas. An Experimental Case-Study. Urban Water J. 2012, 9, 45–55. [Google Scholar] [CrossRef]
- Handley, J.; Pauleit, S.; Gill, S. Landscape, Sustainability and the City. In Landscape and Sustainability; Benson, J.F., Roe, M., Eds.; Routledge: London, UK, 2007; pp. 167–195. [Google Scholar]
- Balian, E.; Eggermont, H.; Roux, X.L. Nature-Based Solutions in a BiodivERsA Context. In L-Outcomes of the Strategic Foresight Workshop; BiodivERsA Report: Brussels, Belgium, 2014. [Google Scholar]
- Doswald, N.; Osti, M. Ecosystem-Based Approaches to Adaptation and Mitigation—Good Practice Examples and Lessons Learned in Europe; BfN-Skripten, Bundesamt für Naturschutz: Bonn, Germany, 2011; Volume 306.
- Munang, R.; Thiaw, I.; Alverson, K.; Mumba, M.; Liu, J.; Rivington, M. Climate Change and Ecosystem-Based Adaptation: A New Pragmatic Approach to Buffering Climate Change Impacts. Curr. Opin. Environ. Sustain. 2013, 5, 67–71. [Google Scholar] [CrossRef]
- Brink, E. Cascades of Green: A Review of Ecosystem-Based Adaptation in Urban Areas. Glob. Environ. Chang. 2016, 36, 111–123. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- M.E.A. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Bosch, C.K. Nature-Based Solutions and Climate Change—Four Shades of Green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas—Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer Open: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. AMBIO 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Mosatafavi, M.; Doherty, G. Ecological Urbanism; Harvard University, Graduate School of Design: Cambridge, MA, USA, 2010. [Google Scholar]
- Brown, P.; Keath, H.; Wong, T. Urban Water Management in Cities: Historical, Current and Future Regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Vasilevska, L.; Vasilevska, M. Bringing Nature into Urban Areas through Implementation of Modern Stormwater Management Approaches: Examples from Vienna’s Neighbourhoods. In Proceedings of the International Conference on Urban Planning ICUP 2018, Nis, Serbia, 14–17 November 2018. [Google Scholar]
- Gordon-Walker, S.; Harle, T.; Naismith, I. Using Science to Create a Better Place. In Cost-Benefit of SUDS Retrofit in Urban Areas; Science Report—SC060024; Environmental Agency: Bristol, UK, 2007. [Google Scholar]
- Sui, X. č van de Ven, F.H. The Influence of Low Impact Development (LID) on Basin Runoff in a Half-Urbanized Catchment: A Case Study in San Antonio, Texas. J. Hydrol. 2023, 616, 128793. [Google Scholar] [CrossRef]
- Blagojević, B.; Vasilevska, L. Evaluating Options for Water Sensitive Urban Design in the Medijana Municipality. In Proceedings of the International Conference Contemporary Achievements in Civil Engineering, Subotica, Serbia, 24–25 April 2014; Volume 25, pp. 611–617. [Google Scholar] [CrossRef]
- Bai, Y.; Li, Y.; Zhang, R.; Zhao, N.; Zeng, X. Comprehensive Performance Evaluation System Based on Environmental and Economic Benefits for Optimal Allocation of LID Facilities. Water 2019, 11, 341. [Google Scholar] [CrossRef]
- ACO. StormBrixx Range: Stormwater Attenuation and Infiltration/Soakaway Crates. Available online: https://www.aco.co.uk/products/stormbrixx (accessed on 15 July 2023).
- US, E.P.A. Storm Water Management Model. Available online: https://www.epa.gov/water-research/storm-water-management-model-swmm (accessed on 15 July 2023).
- Vollaers, V.; Nieuwenhuis, E.; Van De Ven, F.; Langeveld, J. Root Causes of Failures in Sustainable Urban Drainage Systems (SUDS): An Exploratory Study in 11 Municipalities in The Netherlands. Blue-Green Syst. 2021, 3, 31–48. [Google Scholar] [CrossRef]
- Nunes, R.T.S.; Deletic, A.; Wong, T.H.F.; Prodanoff, J.H.A.; Freitas, M.A.V. Procedures for Integrating Water Sensitive Urban Design (WSUD) Technologies into the City Planning Process: Criteria for Street Scale Applied in Melbourne Region—Australia. In Proceedings of the 12nd International Conference on Urban Drainage ICU, Porto Alegre, Brazil, 11 September 2011. [Google Scholar] [CrossRef]
- Republički zavod za statistiku Republike Srbije. Available online: https://www.stat.gov.rs/sr-latn/oblasti/popis/popis-2011/popisni-podaci-eksel-tabele/ (accessed on 15 July 2023).
- Ministry for Environment and Spatial Planning of Republic of Serbia. Spatial Plan of the Republic of Serbia; Official Gazette of the Republic of Serbia No. 88/2010; Ministry for Environment and Spatial Planning of Republic of Serbia: Belgrade Serbia, 2010.
- Republic Hydrometeorological Service of Serbia (RHMSS). Available online: https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_srbije.php (accessed on 17 September 2023).
- Republic Hydrometeorological Service of Serbia (RHMSS). Available online: https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_srednjaci.php (accessed on 17 September 2023).
- Government of Republic of Serbia and Ministry of Agriculture and Environmental Protection (MAEP). Water Resources Management Strategy for the Republic of Serbia Territory until 2034; Official Gazette of the Republic of Serbia No. 3/2017; Government of Republic of Serbia and Ministry of Agriculture and Environmental Protection (MAEP): Belgrade, Serbia, 2017.
- Životić, L.; Vuković-Vimić, A. Soil Degradation and Climate Change in Serbia. Available online: https://www.undp.org/sites-/g/files/zskgke326/files/2022-07/Soil_degradation_and_climate_change_in_Serbia_web.pdf (accessed on 17 September 2023).
- Vuković, A.; Vujadinović, M.; Rendulić, S.; Đurđević, V.; Ruml, M.; Babić, V.; Popović, D. Global warming impact on climate change in Serbia for the period 1961-2100. Therm. Sci. 2018, 22, 2267–2280. [Google Scholar] [CrossRef]
- NALED. Analiza 360°—Stanje u Oblasti Upravljanja Otpadnim Vodama. Available online: https://naled.rs/publikacija.php?id=5100 (accessed on 16 September 2023).
- Milanović, D.; Blagojević, B.; Vasilevska, L. Nature Based Stormwater Management Solutions for Housing Area—Case Study of Roof Garden Implementation. In Proceedings of the International Symposium Water Resources Management: New Perspectives and Innovative Practices, Novi Sad, Serbia, 23–24 September 2021; Petrović, M., Gocić, M., Eds.; Futura: Novi Sad, Serbia, 2021; pp. 101–106. [Google Scholar]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Department of Planning and Local Government. Water Sensitive Urban Design Technical Manual for the Greater Adelaide Region; Government of South Australia: Adelaide, Australia, 2010.
- Copernicus EU DEM. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 15 July 2023).
- Google LLC. Google Earth Pro. Available online: earth.google.com/web/ (accessed on 15 July 2023).
- Republic Geodetic Service of Serbia. GEOSRBIJA. Available online: https://a3.geosrbija.rs/ (accessed on 15 July 2023).
- Ministry of Mining and Energy Republic of Serbia. GEOLISS. Available online: https://geoliss.mre.gov.rs/ (accessed on 15 July 2023).
- UN, F.A.O. Harmonized World Soil Database v 1.2. Available online: https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/ru/ (accessed on 15 July 2023).
- Karaklajić, M. Natural Resources in Function of Prokuplje Municipality Regional Development. Master Thesis, University of Nis, Nis, Serbia, 2016. [Google Scholar]
- Republic Hydrometeorological Service of Serbia (RHMSS). Available online: https://www.hidmet.gov.rs/latin/hidrologija/podzemne/podzemne_godisnjaci.php (accessed on 15 July 2023).
- Srbijavode. Flood Hazard Maps. Available online: https://www.srbijavode.rs/karte-ugrozenosti-i-karte-rizika-od-poplava.html (accessed on 15 July 2023).
- Open Street Map (OSM). Available online: https://www.openstreetmap.org/ (accessed on 15 September 2023).
- Copernicus. Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 15 July 2023).
- QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.org (accessed on 15 July 2023).
- Google Earth Engine Documentation. Available online: https://explorer.earthengine.google.com/#index (accessed on 17 September 2023).
- Minnesota Pollution Control Agency. Design Criteria for Permeable Pavement—Minnesota Stormwater Manual. Available online: https://stormwater.pca.state.mn.us/index.php?title=Design_considerations_for_green_stormwater_infrastructure_best_management_practices (accessed on 15 July 2023).
- GeoSrbija. Available online: https://geosrbija.rs/en/posts/ (accessed on 15 July 2023).
- Li, H.; Herfort, B.; Lautenbach, S.; Chen, J.; Zipf, A. Improving OpenStreetMap Missing Building Detection Using Few-Shot Transfer Learning in Sub-Saharan Africa. Trans. GIS 2022, 26, 3125–3146. [Google Scholar] [CrossRef]
- Dinić Branković, M.; Mitković, P.; Bogdanović Protić, I.; Igić, M.; Đekić, J. Bioswales as Elements of Green Infrastructure—Foreign Practice and Possibilities of Use in the District of the City of Nis, Serbia. In Proceedings of the 2nd International Conference on Urban Planning, Nis, Serbia, 14–17 November 2018; pp. 347–356. [Google Scholar]
- Lousada, S.; Cabezas, J.; Castanho, R.A.; Gómez, J.M.N. Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—Ribeira Brava. Water 2021, 13, 2951. [Google Scholar] [CrossRef]
- Lousada, S.; Alves, R.; Fernandes, M.; Gonçalves, L. Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—São João Stream, Funchal, Portugal. Water 2023, 15, 2075. [Google Scholar] [CrossRef]
- Lousada, S.; Alves, R.; Fernandes, M.; Gonçalves, L. Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—Ribeira Brava, Tabua. Water 2023, 15, 2609. [Google Scholar] [CrossRef]
- Akhter, F.; Hewa, G.A.; Ahammed, F.; Myers, B.; Argue, J.R. Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing. Water 2020, 12, 375. [Google Scholar] [CrossRef]
Label | NbS SM Element | Constraint 2 | |||||
---|---|---|---|---|---|---|---|
C−1 | C−2 | C−3 | C−4 | C−5 | C−6 | ||
E1 | Bioretention Cell/System | 1 | 2 | 0 | 2 | 1 | 1 |
E2 | Rain Garden | 1 | 2 | 0 | 2 | 1 | 1 |
E3 | Infiltration trench | 1 | 1 | 1 | 0 | 1 | 2 |
E4a | Porous Pavement (infiltration) | 1 | 1 | 1 | 0 | 1 | 1 |
E4b | Porous Pavement (detention) | 1 | 2 | 0 | 2 | 1 | 1 |
E5 | Vegetative Swale | 1 | 2 | 0 | 0 | 2 | 1 |
Label | Site Constraint | US# 1 | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
C−1 | Steep site | EU DEM [47] | Google Earth Pro [48] | ||||||
C−2 | Shallow bedrock | Geological Map of Serbia [49] | Geoliss [50] | ||||||
C−3 | Low-permeability soils | Harmonized World Soil DB [51] | |||||||
C−4 | High-permeability soils | ||||||||
C−5 | High groundwater table | [52] | x | RHMSS [53] | x | RHMSS [53], FHM [54] | |||
C−6 | Land availability 2 | OSM [55] | OSM [55], CLC [56] | OSM [55] | OSM [55], CLC [56] | ||||
100% | 70% | 60% | 40% | 15% | 40% | 90% | 30% |
Label | NbS SM Element | Constraint Level 1 | US# 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
E1 | Bioretention Cell/System | 0 | 12 | 57 | 81 | 81 | 47 | 0 | 58 | 0 |
1 | 88 | 43 | 19 | 19 | 53 | 57 | 42 | 91 | ||
2 | 1 | 0 | 0 | 0 | 0 | 43 | 0 | 9 | ||
E2 | Rain Garden | 0 | 12 | 57 | 81 | 81 | 47 | 0 | 58 | 0 |
1 | 88 | 43 | 19 | 19 | 53 | 57 | 42 | 91 | ||
2 | 1 | 0 | 0 | 0 | 0 | 43 | 0 | 9 | ||
E3 | Infiltration trench | 0 | 0 | 0 | 81 | 81 | 47 | 31 | 0 | 2 |
1 | 100 | 100 | 19 | 19 | 53 | 62 | 100 | 98 | ||
2 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | ||
E4a | Porous Pavement (infiltration) | 0 | 0 | 0 | 81 | 81 | 47 | 31 | 0 | 2 |
1 | 100 | 100 | 19 | 19 | 53 | 69 | 100 | 98 | ||
E4b | Porous Pavement (detention) | 0 | 12 | 57 | 81 | 81 | 47 | 0 | 58 | 0 |
1 | 88 | 43 | 19 | 19 | 53 | 57 | 42 | 91 | ||
2 | 1 | 0 | 0 | 0 | 0 | 43 | 0 | 9 | ||
E5 | Vegetative Swale | 0 | 12 | 57 | 81 | 81 | 47 | 22 | 58 | 2 |
1 | 77 | 43 | 19 | 19 | 53 | 72 | 20 | 63 | ||
2 | 11 | 0 | 0 | 0 | 0 | 5 | 22 | 36 |
NbS SM Element Label | US8 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Updated | Initial | Updated−Initial | |||||||
0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | |
E1, E2, E4b | 0 | 94 | 6 | 0 | 91 | 9 | 0 | 3 | −3 |
E3 | 1 | 98 | 1 | 2 | 98 | 0 | −1 | 0 | 1 |
E4a | 1 | 99 | 0 | 2 | 98 | 0 | −1 | 1 | 0 |
E5 | 2 | 75 | 23 | 2 | 63 | 35 | 0 | 12 | −12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagojević, B.; Vasilevska, L.; Anđelković, D.; Bogojević, A.; Lousada, S. A Framework for Assessing Nature-Based Urban Stormwater Management Solutions: A Preliminary Spatial Analysis Approach Applied to Southeast Serbia. Water 2023, 15, 3604. https://doi.org/10.3390/w15203604
Blagojević B, Vasilevska L, Anđelković D, Bogojević A, Lousada S. A Framework for Assessing Nature-Based Urban Stormwater Management Solutions: A Preliminary Spatial Analysis Approach Applied to Southeast Serbia. Water. 2023; 15(20):3604. https://doi.org/10.3390/w15203604
Chicago/Turabian StyleBlagojević, Borislava, Ljiljana Vasilevska, Dimitra Anđelković, Aleksandar Bogojević, and Sérgio Lousada. 2023. "A Framework for Assessing Nature-Based Urban Stormwater Management Solutions: A Preliminary Spatial Analysis Approach Applied to Southeast Serbia" Water 15, no. 20: 3604. https://doi.org/10.3390/w15203604
APA StyleBlagojević, B., Vasilevska, L., Anđelković, D., Bogojević, A., & Lousada, S. (2023). A Framework for Assessing Nature-Based Urban Stormwater Management Solutions: A Preliminary Spatial Analysis Approach Applied to Southeast Serbia. Water, 15(20), 3604. https://doi.org/10.3390/w15203604