Application of Modified DRASTIC Method for the Assessment and Validation of Confined Aquifer Vulnerability in Areas with Diverse Quaternary Deposits
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Groundwater Vulnerability Assessment in Estonia
2.3. The DRASTIC Method
2.4. The Modified DRASTIC Method
2.5. Data Sources
2.6. Defining Vulnerability Classes
2.7. Validation
2.8. Sensitivity Analysis
3. Results and Discussion
3.1. Vulnerability Maps
3.2. Validation by Using Nitrate Values
3.3. Sensitivity of the DRASTIC Method
3.3.1. Single-Parameter Sensitivity Analysis
3.3.2. Map Removal Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gogu, R.C.; Dassargues, A. Current Trends and Future Challenges in Groundwater Vulnerability Assessment Using Overlay and Index Methods. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; EPA 600/2-87-035; Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 1987; p. 622. [Google Scholar]
- Kong, M.; Zhong, H.; Wu, Y.; Liu, G.; Xu, Y.; Wang, G. Developing and Validating Intrinsic Groundwater Vulnerability Maps in Regions with Limited Data: A Case Study from Datong City in China Using DRASTIC and Nemerow Pollution Indices. Environ. Earth Sci. 2019, 78, 262. [Google Scholar] [CrossRef]
- Ahmed, S.I.; Cheng, C.L.; Gonzalez, J.; Kang, J.J.; Ho, J.; Soto-Sanchez, L. Groundwater Vulnerability Assessment of Shallow Aquifer in the South Texas Sand Sheet Using a GIS-Based DRASTIC Model. Model Earth Syst. Environ. 2022, 8, 4075–4091. [Google Scholar] [CrossRef]
- Gonçalves, V.; Albuquerque, A.; Carvalho, P.; Almeida, P.; Cavaleiro, V. Groundwater Vulnerability Assessment to Cemeteries Pollution through GIS-Based DRASTIC Index. Water 2023, 15, 812. [Google Scholar] [CrossRef]
- Mallik, S.; Bhowmik, T.; Mishra, U.; Paul, N. Local Scale Groundwater Vulnerability Assessment with an Improved DRASTIC Model. Nat. Resour. Res. 2021, 30, 2145–2160. [Google Scholar] [CrossRef]
- Gupta, T.; Kumari, R. Assessment of Groundwater Nitrate Vulnerability Using DRASTIC and Modified DRASTIC in Upper Catchment of Sabarmati Basin. Environ. Earth Sci. 2023, 82, 216. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, P.; Lyu, Q.; Ren, X.; He, S. Groundwater Contamination Risk Assessment Using a Modified DRATICL Model and Pollution Loading: A Case Study in the Guanzhong Basin of China. Chemosphere 2022, 291, 132695. [Google Scholar] [CrossRef] [PubMed]
- Hamza, S.M.; Ahsan, A.; Imteaz, M.A.; Ghazali, A.H.; Mohammed, T.A. GIS-Based FRASTIC Model for Pollution Vulnerability Assessment of Fractured-Rock Aquifer Systems. Environ. Earth Sci. 2017, 76, 197. [Google Scholar] [CrossRef]
- Albuquerque, T.; Roque, N.; Rodrigues, J.; Antunes, M.; Silva, C. DRASTICAI, a New Index for Groundwater Vulnerability Assessment—A Portuguese Case Study. Geosciences 2021, 11, 228. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, C.; Liang, X. Assessment of Groundwater Vulnerability Based on the Modified DRASTIC Model: A Case Study in Baicheng City, China. Environ. Earth Sci. 2022, 81, 230. [Google Scholar] [CrossRef]
- Moustafa, M. Assessing Perched Aquifer Vulnerability Using Modified DRASTIC: A Case Study of Colliery Waste in North-East England (UK). Hydrogeol. J. 2019, 27, 1837–1850. [Google Scholar] [CrossRef]
- Yan, X.; Dong, W.; Li, R.; Cui, L.; Zhu, G. Assessment and Validation of Confined Aquifer Vulnerability Based on the VEBHAT Method: A Case Study in Heilongjiang Province, Northeastern China. Hydrogeol. J. 2019, 27, 2551–2561. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Sedghi, Z.; Khatibi, R.; Sadeghfam, S. Mapping Specific Vulnerability of Multiple Confined and Unconfined Aquifers by Using Artificial Intelligence to Learn from Multiple DRASTIC Frameworks. J. Environ. Manag. 2018, 227, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Männik, M.; Karro, E.; Marandi, A.; Polikarpus, M.; Ani, T.; Rosentau, A. Modified DRASTIC Method for Groundwater Vulnerability Assessment in Areas with Diverse Quaternary Deposits. Hydrol. Res. 2023, 54, 840–854. [Google Scholar] [CrossRef]
- Koit, O.; Retiķe, I.; Bikše, J.; Terasmaa, J.; Tarros, S.; Abreldaal, P.; Babre, A.; Hunt, M.; Pärn, J.; Vainu, M.; et al. Hydrochemical Signatures of Springs for Conceptual Model Development to Support Monitoring of Transboundary Aquifers. Groundw. Sustain. Dev. 2023, 21, 100927. [Google Scholar] [CrossRef]
- Raukas, A.; Kajak, K. Quaternary Cover. In Geology and Mineral Resources of Estonia; Raukas, A., Teedumäe, A., Eds.; Estonian Academy Publishers: Tallinn, Estonia, 1997. [Google Scholar]
- Kalm, V. Pleistocene Chronostratigraphy in Estonia, Southeastern Sector of the Scandinavian Glaciation. Quat. Sci. Rev. 2006, 25, 960–975. [Google Scholar] [CrossRef]
- Raukas, A. When and How Did the Continental Ice Retreat from Estonia? Quat. Int. 2009, 207, 50–57. [Google Scholar] [CrossRef]
- Geological Survey of Estonia Spatial Data of the Geological Survey of Estonia. Available online: https://www.egt.ee/maapouealane-teave/geoloogilised-andmed/ruumiandmed-ja-kaardid#ruumiandmed (accessed on 27 March 2023).
- Estonian Land Board Guide for Digital Geological Mapping. 2015. Available online: https://geoportaal.maaamet.ee/docs/geoloogia/Geoloogilise_kaardistamise_juhend_2_5_2019.pdf (accessed on 13 July 2023).
- Vallner, L.; Porman, A. Groundwater Flow and Transport Model of the Estonian Artesian Basin and Its Hydrological Developments. Hydrol. Res. 2016, 47, 814–834. [Google Scholar] [CrossRef]
- Perens, R.; Vallner, L. Water-Bearing Formation. In Geology and Mineral Resources of Estonia; Raukas, A., Teedumäe, A., Eds.; Estonian Academy Publishers: Tallinn, Estonia, 1997. [Google Scholar]
- Suuroja, K.; Kaljuläte, K.; Mardim, T.; Morgen, E.; Ploom, K.; Karimova, M.; Vahtra, T.; Veski, A. Estonian Geological Base Map Rapla Map Sheet; Geological Survey of Estonia: Tallinn, Estonia, 2017. [Google Scholar]
- Põldvere, A.; Põldvere, A.; Grünberg, R.; Rohtla, R.; Ariva, K.; All, T. Estonian Geological Base Map Võru Map Sheet; Geological Survey of Estonia: Tartu, Estonia, 2016. [Google Scholar]
- Water Act. Available online: https://www.riigiteataja.ee/en/eli/ee/509122020007/consolide/current (accessed on 13 July 2023).
- Maqsoom, A.; Aslam, B.; Alwetaishi, M.; Awais, M.; Hassan, U.; Maqsoom, S.; Alaloul, W.S.; Musarat, M.A.; Zerouali, B.; Hussein, E.E. A GIS-Based Groundwater Contamination Assessment Using Modified DRASTIC Geospatial Technique. Water 2021, 13, 2868. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Niknam, A.R.R.; Jamali, V.; Pourghasemi, H.R. Aquifer Vulnerability Identification Using DRASTIC-LU Model Modification by Fuzzy Analytic Hierarchy Process. Model. Earth Syst. Environ. 2022, 8, 5365–5380. [Google Scholar] [CrossRef]
- Laerd Statistics Spearman’s Rank-Order Correlation. Available online: https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php (accessed on 13 July 2023).
- Estonian Environment Agency. Estonian Nature Information System Web Feature Service. Available online: https://metadata.geoportaal.ee/geonetwork/srv/eng/catalog.search#/metadata/%7BA3FD7235-1187-49A4-BBDA-CA51D016B03D%7D (accessed on 29 May 2023).
- R Core Team. R Studio; R Core Team: Vienna, Austria, 2011. [Google Scholar]
- Napolitano, P.; Fabbri, A.G. G. Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. IAHS Publ. Ser. Proc. Rep. Intern. Assoc. Hydrol. Sci. 1996, 235, 559–566. [Google Scholar]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute Error and Sensitivity Analysis of Map Operations in Geographical Informations Systems: Suitability Analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Kalvāns, A.; Popovs, K.; Priede, A.; Koit, O.; Retiķe, I.; Bikše, J.; Dēliņa, A.; Babre, A. Nitrate Vulnerability of Karst Aquifers and Associated Groundwater-Dependent Ecosystems in the Baltic Region. Environ. Earth Sci. 2021, 80, 628. [Google Scholar] [CrossRef]
- Kitterød, N.O.; Kværner, J.; Aagaard, P.; Arustiene, J.; Bikše, J.; Dagestad, A.; Gundersen, P.; Hansen, B.; Hjartarson, Á.; Karro, E.; et al. Hydrogeology and Groundwater Quality in the Nordic and Baltic Countries. Hydrol. Res. 2022, 53, 958–982. [Google Scholar] [CrossRef]
- Højberg, A.L.; Hansen, A.L.; Wachniew, P.; Żurek, A.J.; Virtanen, S.; Arustiene, J.; Strömqvist, J.; Rankinen, K.; Refsgaard, J.C. Review and Assessment of Nitrate Reduction in Groundwater in the Baltic Sea Basin. J. Hydrol. Reg. Stud. 2017, 12, 50–68. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Kim, H.; Blicher-Mathiesen, G. Long-Term Nitrate Response in Shallow Groundwater to Agricultural N Regulations in Denmark. J. Environ. Manag. 2019, 240, 66–74. [Google Scholar] [CrossRef]
- Kumar, A.; Pramod Krishna, A. Groundwater Vulnerability and Contamination Risk Assessment Using GIS-Based Modified DRASTIC-LU Model in Hard Rock Aquifer System in India. Geocarto Int. 2020, 35, 1149–1178. [Google Scholar] [CrossRef]
- Kardan Moghaddam, H.; Rahimzadeh kivi, Z.; Bahreinimotlagh, M.; Moghddam, H.K. Evaluation of the Groundwater Resources Vulnerability Index Using Nitrate Concentration Prediction Approach. Geocarto Int. 2022, 37, 1664–1680. [Google Scholar] [CrossRef]
- European Union. Copernicus Land Monitoring Service Copernicus Land Data; European Union: Maastricht, The Netherlands, 2018. [Google Scholar]
Parameter | Method | Weight | Description |
---|---|---|---|
Depth to groundwater table (D) | DRASTIC | 5 | The vertical distance from the ground surface to the piezometric head affects the pollution risk: the risk is lower when the water table is deeper. |
Modified DRASTIC | 5 | The relative position of the piezometric head and the bedrock surface is compared: the pollution risk is higher if the piezometric head is below the bedrock surface and vice versa. | |
Net recharge (R) | DRASTIC | 4 | The transportation of the contaminants into the aquifer depends on the amount of the infiltrating water. The higher the recharge through the vadose zone, the higher the contamination potential. |
Aquifer media (A) | DRASTIC | 3 | More fractures and larger grain sizes of the sediments forming the aquifer lead to higher permeability and lower attenuation capacity. |
Soil media/Quaternary sediment type (S) | DRASTIC | 2 | The presence of clays and organic material in the soil lowers the potential for contaminant migration. |
Modified DRASTIC | 5 | The Quaternary sediments above the aquifer regulate the extent of water infiltrating into the ground. | |
Topography (T) | DRASTIC | 1 | The amount of potential pollutant infiltration or runoff depends on the topography of the land surface, especially on its slope gradients. |
Impact of the vadose zone (I)/Thickness of the Quaternary sediments | DRASTIC | 5 | The unsaturated zone above the water table is crucial in determining the degree of contaminant attenuation. |
Modified DRASTIC | 5 | The vertical distance from the ground surface to the bedrock surface influences the vulnerability of the aquifer: higher risk is caused by a thin layer of sediments. | |
Hydraulic conductivity (C) | DRASTIC | 3 | Higher hydraulic conductivity means a higher ability of the aquifer to transmit water and move contaminants, leading to a higher contamination risk. |
(D) Depth to Groundwater Table (Original) | (D) Depth to Groundwater Table (Modified) | (R) Net Recharge (Original) | (A) Aquifer Media (Original) | (S) Soil Media (Original) | |||||
---|---|---|---|---|---|---|---|---|---|
Range (m) | Rating | Depth of the piezometric head compared to the bedrock surface a (m) | Rating | Range (mm/y) | Rating | Type | Rating | Type | Rating |
0–1.5 | 10 | <−10 | 10 | 0–50 | 1 | Massive shale | 1–3 | Thin/absent | 10 |
1.5–5 | 9 | −10…−5 | 9 | 50–100 | 3 | Metamorphic/igneous | 2–5 | Gravel | 10 |
5–10 | 7 | −5…−1 | 7 | 100–175 | 6 | Weathered metamorphic/igneous | 3–5 | Sand | 9 |
10–15 | 5 | −1…0 | 6 | 175–250 | 8 | Glacial till | 4–6 | Peat | 8 |
15–20 | 3 | 0…1 | 5 | >250 | 9 | Bedded sandstone, limestone | 5–9 | Shrinking clay | 7 |
20–30 | 2 | 1…3 | 3 | Massive sandstone | 4–9 | Sandy loam | 6 | ||
>30 | 1 | 3…5 | 2 | Massive limestone | 4–9 | Loam | 5 | ||
>5 | 1 | Sand and gravel | 4–9 | Silty loam | 4 | ||||
Basalt | 2–10 | Clay loam | 3 | ||||||
Karst limestone | 9–10 | Muck | 2 | ||||||
No shrinking clay | 1 | ||||||||
(S) Quaternary Sediment Type (Modified) | (T) Topography (Original) | (I) Impact of the Vadose Zone (Original) | (I) Thickness of the Quaternary Sediments (Modified) | (C) Hydraulic Conductivity (Original) | |||||
Type | Rating | Slope (%) | Rating | Type | Rating | Range (m) | Rating | Range (m/d) | Rating |
Clay | 1 | 0–2 | 10 | Confining layer | 1 | 0–2 | 10 | 0.04–4 | 1 |
Gyttja | 2 | 2–6 | 9 | Silt/clay | 3 | 2–5 | 9 | 4–12 | 2 |
Silt | 6 | 6–12 | 5 | Shale | 3 | 5–10 | 7 | 12–28 | 4 |
Peat | 6 | 12–18 | 3 | Limestone | 6 | 10–20 | 5 | 28–40 | 6 |
Till | 7 | >18 | 1 | Sandstone | 6 | 20–40 | 3 | 40–80 | 8 |
Fine/coarse sand, gravel | 8 | Bedded limestone/sandstone | 6 | >40 | 1 | >80 | 10 | ||
Cobbles, boulders | 9 | Sand, gravel with silt, clay | 6 | ||||||
Bedrock outcrop | 10 | Metamorphic/igneous | 4 | ||||||
Karst field | 10 | Sand and gravel | 8 | ||||||
Basalt | 9 | ||||||||
Karst limestone | 10 |
Vulnerability Class | Percentage of the Di Range (51–225) | Di Values |
---|---|---|
Well protected | 0–10 | 51–101 |
Relatively well protected | 10–28 | 102–133 |
Moderately protected | 29–46 | 134–164 |
Weakly protected | 47–64 | 165–195 |
Unprotected | 65–100 | 196–225 |
Rapla Modified DRASTIC | Rapla Original DRASTIC | Rapla Estonian Method | Võru Modified DRASTIC | Võru Original DRASTIC | Võru Estonian Method | |
---|---|---|---|---|---|---|
Well protected | 0.5 | 0.0 | - | 12.6 | 7.4 | 26.1 |
Relatively protected | 8.1 | 0.1 | 0.2 | 53.8 | 46.8 | 37.5 |
Moderately protected | 30.7 | 16.6 | 4.6 | 27.4 | 40.5 | 20.7 |
Weakly protected | 42.1 | 69.5 | 52.6 | 5.9 | 5.2 | 15.0 |
Unprotected | 18.5 | 13.8 | 42.6 | 0.2 | 0.1 | 0.7 |
Original DRASTIC Rapla | Modified DRASTIC Rapla | Original DRASTIC Võru | Modified DRASTIC Võru | |
---|---|---|---|---|
Spearman | 0.272 | 0.424 | −0.023 | 0.225 |
p-value | 0.0372 | 0.000807 | 0.7491 | 0.00167 |
Rapla | D | R | A | S | T | I | C |
---|---|---|---|---|---|---|---|
Min | 1 | 1 | 9 | 1 | 1 | 5 | 8 |
Max | 10 | 3 | 10 | 10 | 10 | 10 | 8 |
Mean | 4.8 | 1.6 | 9.2 | 6.6 | 9.7 | 9.2 | 8 |
SD | 2.5 | 0.9 | 0.4 | 2.6 | 0.8 | 1.1 | 0 |
Coefficient of variation (%) | 52.1 | 56.3 | 4.3 | 39.4 | 8.2 | 12.0 | 0.0 |
Võru | D | R | A | S | T | I | C |
Min | 1 | 1 | 5 | 1 | 1 | 1 | 2 |
Max | 10 | 9 | 10 | 10 | 10 | 10 | 8 |
Mean | 3.6 | 4.8 | 6.2 | 7.3 | 7.8 | 3.6 | 2.2 |
SD | 3.4 | 2.5 | 1.1 | 2.0 | 2.8 | 2.5 | 1.1 |
Coefficient of variation (%) | 94.4 | 52.1 | 17.7 | 27.4 | 35.9 | 69.4 | 50.0 |
Rapla | Theoretical Weight (%) | Effective Weight (%) | |||
---|---|---|---|---|---|
Min | Max | Mean | SD | ||
D | 19.2 | 2.9 | 27.8 | 13.4 | 5.7 |
R | 15.4 | 1.9 | 10.6 | 3.8 | 2.2 |
A | 11.5 | 12.1 | 28.4 | 16.5 | 2.8 |
S | 19.2 | 3.0 | 33.3 | 18.8 | 6.3 |
T | 3.8 | 0.5 | 10.0 | 5.8 | 1.1 |
I | 19.2 | 16.5 | 41.7 | 27.3 | 3.1 |
C | 11.5 | 10.6 | 25.3 | 14.4 | 2.4 |
Võru | Theoretical Weight (%) | Effective Weight (%) | |||
Min | Max | Mean | SD | ||
D | 19.2 | 3.0 | 48.4 | 13.1 | 11.0 |
R | 15.4 | 3.1 | 48.0 | 15.7 | 8.2 |
A | 11.5 | 7.8 | 35.6 | 15.3 | 3.4 |
S | 19.2 | 3.3 | 50.6 | 29.6 | 8.5 |
T | 3.8 | 0.5 | 15.9 | 6.5 | 2.7 |
I | 19.2 | 2.5 | 46.9 | 14.5 | 9.1 |
C | 11.5 | 3.0 | 21.5 | 5.4 | 2.1 |
Rapla—Parameter Removed | Variation Index (%) | |||
---|---|---|---|---|
Min | Max | Mean | SD | |
D | 0.00 | 2.25 | 0.83 | 0.48 |
R | 0.61 | 2.07 | 1.75 | 0.36 |
A | 0.00 | 2.36 | 0.43 | 0.40 |
S | 0.00 | 3.17 | 1.19 | 0.49 |
T | 0.07 | 3.06 | 1.41 | 0.23 |
I | 0.36 | 4.56 | 2.16 | 0.52 |
C | 0.00 | 1.83 | 0.31 | 0.26 |
Võru—Parameter Removed | Variation Index (%) | |||
Min | Max | Mean | SD | |
D | 0.00 | 5.68 | 1.66 | 0.79 |
R | 0.00 | 5.62 | 1.10 | 0.85 |
A | 0.00 | 3.55 | 0.46 | 0.38 |
S | 0.00 | 6.05 | 2.74 | 0.99 |
T | 0.00 | 2.29 | 1.31 | 0.45 |
I | 0.00 | 5.42 | 1.27 | 0.84 |
C | 5.79 | 1.88 | 1.50 | 0.28 |
Rapla—Parameters Used | Variation Index (%) | |||
---|---|---|---|---|
Min | Max | Mean | SD | |
D, R, A, S, T, I | 0.00 | 1.83 | 0.31 | 0.26 |
D, R, S, T, I | 2.14 | 5.02 | 0.81 | 0.79 |
R, S, T, I | 0.00 | 4.03 | 0.82 | 0.66 |
R, T, I | 0.00 | 5.89 | 2.18 | 1.13 |
R, I | 0.00 | 8.57 | 1.65 | 1.47 |
I | 2.18 | 27.28 | 12.97 | 3.14 |
Võru—Parameters Used | Variation Index (%) | |||
Min | Max | Mean | SD | |
D, R, A, S, T, I | 0.00 | 3.55 | 0.46 | 0.38 |
D, R, S, T, I | 0.00 | 8.72 | 1.38 | 1.19 |
R, S, T, I | 0.00 | 9.33 | 1.64 | 1.28 |
R, T, I | 0.00 | 10.52 | 2.61 | 2.24 |
R, I | 0.00 | 20.60 | 7.46 | 4.05 |
I | 0.00 | 36.28 | 16.44 | 5.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Männik, M.; Karro, E. Application of Modified DRASTIC Method for the Assessment and Validation of Confined Aquifer Vulnerability in Areas with Diverse Quaternary Deposits. Water 2023, 15, 3585. https://doi.org/10.3390/w15203585
Männik M, Karro E. Application of Modified DRASTIC Method for the Assessment and Validation of Confined Aquifer Vulnerability in Areas with Diverse Quaternary Deposits. Water. 2023; 15(20):3585. https://doi.org/10.3390/w15203585
Chicago/Turabian StyleMännik, Magdaleena, and Enn Karro. 2023. "Application of Modified DRASTIC Method for the Assessment and Validation of Confined Aquifer Vulnerability in Areas with Diverse Quaternary Deposits" Water 15, no. 20: 3585. https://doi.org/10.3390/w15203585
APA StyleMännik, M., & Karro, E. (2023). Application of Modified DRASTIC Method for the Assessment and Validation of Confined Aquifer Vulnerability in Areas with Diverse Quaternary Deposits. Water, 15(20), 3585. https://doi.org/10.3390/w15203585