Unraveling the Genesis of the Geothermal System at the Northeastern Edge of the Pamir Plateau
Abstract
:1. Introduction
2. Geological Setting
2.1. Geological Background
2.2. Geological Settings of the Study Area
3. Sampling and Methods
3.1. Sample Collection
3.2. Analytical Techniques
4. Results and Discussion
4.1. Regional Geothermal Hydrogeochemical Characteristics and Estimation of Reservoir Temperatures
4.1.1. Geochemical Characteristics of Geothermal Water
4.1.2. Isotopic Characteristics of the Geothermal System
4.1.3. Reservoir Temperature Prediction
4.2. Heat Source Analysis and Conceptual Model of the Local Geothermal Systems
4.2.1. Potential Heat Sources for the Geothermal Systems
4.2.2. Radioactive Heat Production of the Miocene Granites and Its Relationship to the Geothermal Systems
4.2.3. Conceptual Model of Local Geothermal Systems and Implications for the Future Exploration
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Wang, G.; Shen, X.; Wang, J.; Tan, X.; Feng, S.; Hong, J. Is geothermal heating environmentally superior than coal fired heating in China? Renew. Sust. Energ. Rev. 2020, 131, 110014. [Google Scholar] [CrossRef]
- Watson, S.M.; Westaway, R.; Falcone, G. A review of deep geothermal rnergy and future opportunities in the UK. In Proceedings of the European Geothermal Congress, Hague, The Netherlands, 11–14 June 2019. [Google Scholar]
- Wang, G.; Lin, W.; Zhang, W.; Lu, C.; Ma, F.; Gan, H. Research on Formation Mechanisms of Hot Dry Rock Resources in China. Acta Geol. Sin. -Engl. Ed. 2016, 90, 1418–1433. [Google Scholar] [CrossRef]
- Lin, W.; Wang, G.; Gan, H.; Zhang, S.; Zhao, Z.; Yue, G.; Long, X. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China. Gondwana Res. 2023, 122, 243–259. [Google Scholar] [CrossRef]
- Hochstein, M.P.; Regenauer-Lieb, K. Heat generation associated with collision of two plates: The Himalayan geothermal belt. J. Volcanol. Geotherm. Res. 1998, 83, 75–92. [Google Scholar] [CrossRef]
- Duo, J. The basic characteristics of the Yangbajing geothermal gield-A typical high temperature geothermal system. Eng. Sci. 2003, 5, 42–47. [Google Scholar]
- Guo, Q.; Wang, Y.; Liu, W. Major hydrogeochernical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. J. Volcanol. Geotherm. Res. 2007, 166, 255–268. [Google Scholar] [CrossRef]
- Sun, H.; Ma, F.; Lin, W.; Liu, Z.; Wang, G.; Nan, D. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet. Geol. Sci. Techology Inf. 2015, 34, 171–177. [Google Scholar]
- Wang, Y.C.; Li, L.; Wen, H.G.; Hao, Y.L. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet. J. Hydrol. 2021, 604, 127243. [Google Scholar] [CrossRef]
- Yuan, J.F.; Guo, Q.H.; Wang, Y.X. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China. J. Geochem. Explor. 2014, 140, 11–22. [Google Scholar] [CrossRef]
- Guo, Q.H.; Wang, Y.X.; Liu, W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. J. Volcanol. Geotherm. Res. 2009, 180, 9–20. [Google Scholar] [CrossRef]
- Qin, J. Hydrothermal alteration and evalution in Yangyi geothermal field. J. Taiyuan Univ. Technol. 2003, 34, 161–165. [Google Scholar]
- Wang, X.; Wang, G.; Gan, H.; Liu, N.; Nan, D.; Liu, Z. Genetic mechanisms of sinter deposit zones in the Yangyi geothermal field, Tibet: Evidence from the hydrochemistry of geothermal fluid. Geothermics 2022, 103, 102408. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, W.; Xie, E.; He, Y.; Zhang, M.; Wang, G. Characteristics and indicative significance of deuterium excess in thermal water in Nimu-Naqu area of Tibet, China. J. Chengdu Univ. Technol. Sci. Techno. Ed. 2014, 41, 251–256. [Google Scholar]
- Cheng, Y.; Pang, Z.; Kong, Y.; Chen, X.; Wang, G. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey. Geothermics 2022, 102, 102386. [Google Scholar] [CrossRef]
- Guo, Q.; Pang, Z.; Wang, Y.; Tian, J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl. Geochem. 2017, 81, 63–75. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yuan, D.X.; He, S.Y.; Zhang, M.L.; Zhang, J.G. Geochemical features of the geothermal CO2-water-carbonate rock system and analysis on its CO2 sources—Examples from Huanglong Ravine and Kangding, Sichuan, and Xiage, Zhongdian, Yunnan. Sci. China Ser. D-Earth Sci. 2000, 43, 569–576. [Google Scholar] [CrossRef]
- Wei, S.; Liu, F.; Zhang, W.; Zhang, H.; Zhao, J.; Liao, Y.; Yan, X. Typical geothermal waters in the Ganzi–Litang fault, western Sichuan, China: Hydrochemical processes and the geochemical characteristics of rare-earth elements. Environ. Earth Sci. 2022, 81, 538. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Chen, Z.; Cui, Y.; Du, J. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau. Appl. Geochem. 2017, 79, 17–26. [Google Scholar] [CrossRef]
- Cheng, Y.; Pang, Z.; Di, Q.; Chen, X.; Kong, Y. Three-dimensional resistivity structure in the hydrothermal system beneath Ganzi Basin, eastern margin of Tibetan Plateau. Geothermics 2021, 93, 102062. [Google Scholar] [CrossRef]
- Guo, Q.H.; Liu, M.L.; Li, J.X.; Zhang, X.B.; Wang, Y.X. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): Formed via magmatic fluid absorption or geothermal steam heating? Bull. Volcanol. 2014, 76, 868. [Google Scholar] [CrossRef]
- Zhiguan, S.G. Structure of geothermal reservoirs and the temperature of mantle-derived magma hot source in the Rehai area, Tengchong. Acta Petrol. Sin. 2000, 16, 83–90. [Google Scholar]
- Jones, B.; Peng, X.T. Hot spring deposits on a cliff face: A case study from Jifei, Yunnan Province, China. Sediment. Geol. 2014, 302, 1–28. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, X.; Deng, Z.J.; Fang, B.; Tsutomu, Y.; Zhao, J.B.; Wang, X.C. Hydrochemical characteristics and genesis analysis of the Jifei hot spring in Yunnan, southwestern China. Geothermics 2015, 53, 38–45. [Google Scholar] [CrossRef]
- Li, Y.M.; Pang, Z.H.; Yang, F.T.; Yuan, L.J.; Tang, P.H. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China. J. Asian Earth Sci. 2017, 149, 134–144. [Google Scholar] [CrossRef]
- Burtman, V.S.; Molnar, P. Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir; Geological Society of America: Boulder, CO, USA, 1993; Volume 281, pp. 1–76. [Google Scholar]
- Shi, J.; Lu, C.; Li, Q.; Chang, Z. Progress in research on the geothermal resources in Taxkorgan Valley, Xinjiang. Geol. Surv. China 2018, 5, 8–10. [Google Scholar]
- Robinson, A.C.; Yin, A.; Manning, C.E.; Harrison, T.M.; Zhang, S.-H.; Wang, X.-F. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. Geol. Soc. Am. Bull. 2004, 116, 953–973. [Google Scholar] [CrossRef]
- Schneider, F.M.; Yuan, X.; Schurr, B.; Mechie, J.; Sippl, C.; Haberland, C.; Minaev, V.; Oimahmadov, I.; Gadoev, M.; Radjabov, N.; et al. Seismic imaging of subducting continental lower crust beneath the Pamir. Earth Planet. Sci. Lett. 2013, 375, 101–112. [Google Scholar] [CrossRef]
- Sass, P.; Ritter, O.; Ratschbacher, L.; Tympel, J.; Matiukov, V.E.; Rybin, A.K.; Batalev, V.Y. Resistivity structure underneath the Pamir and Southern Tian Shan. Geophys. J. Int. 2014, 198, 564–579. [Google Scholar] [CrossRef]
- Chelnokov, G.; Lavrushin, V.; Bragin, I.; Abdullaev, A.; Aidarkozhina, A.; Kharitonova, N. Geochemistry of thermal and cold mineral water and gases of the Tien Shan and the Pamir. Water 2022, 14, 838. [Google Scholar] [CrossRef]
- Robinson, A.C.; Yin, A.; Manning, C.E.; Harrison, T.M.; Zhang, S.H.; Wang, X.F. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. Geol. Soc. Am. Bull. 2007, 119, 882–896. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jia, R.Y.; Liu, Z.; Liao, S.Y.; Zhao, P.; Zhou, Q. Origin of middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys. Lithos 2013, 156–159, 13–30. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zhang, C.-L.; Hao, X.-S.; Zou, H.; Zhao, H.-X.; Ye, X.-T. Early Cretaceous granitoids in the Southern Pamir: Implications for the Meso-Tethys evolution of the Pamir Plateau. Lithos 2020, 362–363, 105492. [Google Scholar] [CrossRef]
- Hacker, B.; Luffi, P.; Lutkov, V.; Minaev, V.; Ratschbacher, L.; Plank, T.; Ducea, M.; Patiño-Douce, A.; Mcwilliams, M.; Metcalf, J. Near-ultrahigh pressure orocessing of continental crust: Miocene crustal xenoliths from the Pamir. J. Petrol. 2005, 46, 1661–1687. [Google Scholar] [CrossRef]
- Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, W.; et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 2004, 23, TC4002. [Google Scholar] [CrossRef]
- Shi, J.; Wang, M.; Ma, X.; Zhang, W.; Zhu, L. Isotope and Hydrogeochemical Characteristics of the Quman High Temperature Geothermal Field in Taxkorgan, Xinjiang. Acta Geosci. Sin. 2022, 43, 645–653. [Google Scholar]
- Bahati, G.; Pang, Z.H.; Armannsson, H.; Isabirye, E.M.; Kato, V. Hydrology and reservoir characteristics of three geothermal systems in western Uganda. Geothermics 2005, 34, 568–591. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Chen, H.; Gong, G.-L. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in eastern Qaidam basin. Environ. Sci. 2015, 36, 2784–2790. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Pang, Z.; Lv, M.; Tian, J.; Kong, Y. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China. Environ. Earth Sci. 2017, 77, 12. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.; Tian, J.; Cheng, Y.; Pang, Z.; Gong, Y. Geochemistry of geothermal fluid with implications on circulation and evolution in Fengshun-Tangkeng geothermal field, South China. Geothermics 2022, 100, 102323. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Fournier, R.O.; Potter, R.W. An equation correlating the solubility of quartz in water from 25° to 900 °C at pressures up to 10,000 bars. Geochim. Cosmochim. Acta 1982, 46, 1969–1973. [Google Scholar] [CrossRef]
- Hu, S.B.; He, L.J.; Wang, J.Y. Compilation of heat flow data in the China continental area. Chin. J. Geophys. 2001, 44, 604–618. [Google Scholar] [CrossRef]
- Owen, L.A.; Chen, J.; Hedrick, K.A.; Caffee, M.W.; Robinson, A.C.; Schoenbohm, L.M.; Yuan, Z.; Li, W.; Imrecke, D.B.; Liu, J. Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quat. Sci. Rev. 2012, 47, 56–72. [Google Scholar] [CrossRef]
- Robinson, A.C.; Owen, L.A.; Chen, J.; Schoenbohm, L.M.; Hedrick, K.A.; Blisniuk, K.; Sharp, W.D.; Imrecke, D.B.; Li, W.; Yuan, Z.; et al. No late Quaternary strike-slip motion along the northern Karakoram fault. Earth Planet. Sci. Lett. 2015, 409, 290–298. [Google Scholar] [CrossRef]
- Rybach, L. Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl. Geophys. 1976, 114, 309–317. [Google Scholar] [CrossRef]
- Kromkhun, K. Petrogenesis of High Heat Producing Granite: Implication for Mt Painter Province, South Australia. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2010. [Google Scholar]
- Mechie, J.; Yuan, X.; Schurr, B.; Schneider, F.; Sippl, C.; Ratschbacher, L.; Minaev, V.; Gadoev, M.; Oimahmadov, I.; Abdybachaev, U.; et al. Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophys. J. Int. 2012, 188, 385–407. [Google Scholar] [CrossRef]
- Sobel, E.R.; Chen, J.; Schoenbohm, L.M.; Thiede, R.; Stockli, D.F.; Sudo, M.; Strecker, M.R. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen. Earth Planet. Sci. Lett. 2013, 363, 204–218. [Google Scholar] [CrossRef]
- Ke, S. Petrogenesis of Taxkorgan Alkaline Complex Belt and Its Tectonic Significance; China University of Geosciences: Beijing, China, 2006. [Google Scholar]
Sample Name | Silica a | Silica b | K–Mg c |
---|---|---|---|
PT1 | 136.11 | 131.80 | 15.63 |
PT2 | 118.26 | 116.67 | 21.81 |
PT3 | 165.98 | 156.69 | 19.10 |
PT4 | 126.02 | 123.28 | 27.81 |
PT5 | 146.81 | 140.78 | 19.10 |
PT6 | 146.04 | 140.13 | 24.44 |
PT7 | 159.85 | 151.62 | 16.91 |
PT9 | 130.22 | 126.83 | 31.66 |
K1 * | 107.34 | 107.32 | 32.11 |
K2 * | 132.65 | 128.88 | 11.57 |
K3 * | 130.73 | 127.26 | 11.37 |
K4 * | - | - | 3.13 |
KH6 ** | - | - | 4.75 |
KH10 ** | - | - | 7.89 |
ZK7 ** | 202.19 | 186.14 | 3.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Qi, S.; Wang, S.; He, G.; Zhao, B. Unraveling the Genesis of the Geothermal System at the Northeastern Edge of the Pamir Plateau. Water 2023, 15, 3583. https://doi.org/10.3390/w15203583
Chen F, Qi S, Wang S, He G, Zhao B. Unraveling the Genesis of the Geothermal System at the Northeastern Edge of the Pamir Plateau. Water. 2023; 15(20):3583. https://doi.org/10.3390/w15203583
Chicago/Turabian StyleChen, Feng, Shihua Qi, Shuai Wang, Genyi He, and Boyuan Zhao. 2023. "Unraveling the Genesis of the Geothermal System at the Northeastern Edge of the Pamir Plateau" Water 15, no. 20: 3583. https://doi.org/10.3390/w15203583