Modeling Land Use and Management Practices Impacts on Soil Organic Carbon Loss in an Agricultural Watershed in the Mid-Atlantic Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Eco-Hydrological Model: SWAT-C
2.3. Model Setup, Calibration, Sensitivity, and Uncertainty Analysis
2.4. Modeling Management Practice Impacts on SOC Budget
- (1a)
- Treatment 3 vs. 4 vs. 5 vs. 9 (i.e., 0 N vs. −50% N vs. +50% N vs. shift in application date) under full irrigation and tillage;
- (1b)
- Treatment 7 vs. 8 (i.e., 0 N vs. full N) under NT and full irrigation;
- (1c)
- Treatment 1 vs. 10 (i.e., full N vs. 0 N) under CT with no irrigation.
- (2a)
- Treatment 1 vs. 2 (i.e., no irritation + CT + full N vs. no irrigation + NT + full N);
- (2b)
- Treatment 3 vs. 7 (i.e., full irrigation + CT + 0 N vs. full irrigation + NT + 0 N).
- (3a)
- Treatment 1 vs. 6 (i.e., no irrigation + CT + full N vs. −50% irrigation + CT + full N);
- (3b)
- Treatment 3 vs. 10 (i.e., full irrigation + CT + 0 N vs. no irrigation + CT + 0 N);
- (3c)
- Treatment 2 vs. 8 (i.e., no irrigation + NT + full N vs. full irrigation + NT + full N).
No. | Treatments | Description | References |
---|---|---|---|
1 | Treatment 1 | No irrigation + CT + full N | [65,66] |
2 | Treatment 2 | No irrigation + NT + full N | [67] |
3 | Treatment 3 | Full Irrigation + CT + 0 N | [68] |
4 | Treatment 4 | Full Irrigation + CT + (−50%) N | [69] |
5 | Treatment 5 | Full Irrigation + CT + (+ 50%) N | [70] |
6 | Treatment 6 | (−50%) Irrigation + CT + full N | [71] |
7 | Treatment 7 | Full Irrigation + NT + 0 N | [70] |
8 | Treatment 8 | Full Irrigation + NT+ full N | [68] |
9 | Treatment 9 | Shifting fertilizer application date + Full irrigation + CT | [66] |
10 | Treatment 10 | CT + 0 N + 0 Irrigation | [67] |
11 | Current management | Full irrigation + CT + full N | [72] |
3. Results and Discussion
3.1. Impact of Land Use on POC and DOC Fluxes
3.2. DOC Flow Pathways and Seasonal Variations
3.3. Seasonal Variation in POC Fluxes
3.4. Management Practice Impacts on SOC Budget
3.4.1. Scenario 1 Analysis
Fertilization Effects
Tillage Effects
Irrigation Effects
3.4.2. Scenario 2 Analysis
Fertilization Effects
Tillage Effects
Irrigation Effects
3.5. Limitations and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected Loss of Soil Organic Carbon in Temperate Agricultural Soils in the 21st Century: Effects of Climate Change and Carbon Input Trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef] [PubMed]
- Winowiecki, L.; Vågen, T.G.; Massawe, B.; Jelinski, N.A.; Lyamchai, C.; Sayula, G.; Msoka, E. Landscape-Scale Variability of Soil Health Indicators: Effects of Cultivation on Soil Organic Carbon in the Usambara Mountains of Tanzania. Nutr. Cycl. Agroecosyst. 2016, 105, 263–274. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Magdoff, F.; Van Es, H. Handbook Building Soils for Better Crops Ecological Management for Healthy Soils, 4th ed.; Handbook Series 10; SARE: College Park, MD, USA, 2021. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Villarino, S.H.; Studdert, G.A.; Laterra, P. How Does Soil Organic Carbon Mediate Trade-Offs between Ecosystem Services and Agricultural Production? Ecol. Indic. 2019, 103, 280–288. [Google Scholar] [CrossRef]
- Wei, X.; Shao, M.; Gale, W.; Li, L. Global Pattern of Soil Carbon Losses Due to the Conversion of Forests to Agricultural Land. Sci. Rep. 2014, 4, 4062. [Google Scholar] [CrossRef]
- Ashagrie, Y.; Zech, W.; Guggenberger, G.; Mamo, T. Soil Aggregation, and Total and Particulate Organic Matter Following Conversion of Native Forests to Continuous Cultivation in Ethiopia. Soil Tillage Res. 2007, 94, 101–108. [Google Scholar] [CrossRef]
- Kemanian, A.R.; Stöckle, C.O.; Huggins, D.R.; Viega, L.M. A Simple Method to Estimate Harvest Index in Grain Crops. Field Crops Res. 2007, 103, 208–216. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; Mcbratney, A.B.; De Remy De Courcelles, V.; Singh, K.; et al. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Ecosys. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Polyakov, V.O.; Lal, R. Soil Erosion and Carbon Dynamics under Simulated Rainfall. Soil Sci. 2004, 169, 590–599. [Google Scholar] [CrossRef]
- Schreiber, J.D. Nutrient Leaching from Corn Residues under Simulated Rainfall. J. Environ. Qual. 1999, 28, 1864–1870. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes That Influence Dissolved Organic Matter in the Soil: A Review. Sci. Agric. 2020, 77, e20180164. [Google Scholar] [CrossRef]
- Manninen, N.; Soinne, H.; Lemola, R.; Hoikkala, L.; Turtola, E. Effects of Agricultural Land Use on Dissolved Organic Carbon and Nitrogen in Surface Runoff and Subsurface Drainage. Sci. Total Environ. 2018, 618, 1519–1627. [Google Scholar] [CrossRef]
- Alvarez-Cobelas, M.; Angeler, D.G.; Sánchez-Carrillo, S.; Almendros, G. A Worldwide View of Organic Carbon Export from Catchments. Biogeochemistry 2012, 107, 275–293. [Google Scholar] [CrossRef]
- Zhang, X.; Izaurralde, R.C.; Arnold, J.G.; Williams, J.R.; Srinivasan, R. Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation. Sci. Total Environ. 2013, 463–464, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; Ul-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M.A.; Sarwar, G.; ul Haque, E.; et al. The Fingerprints of Climate Warming on Cereal Crops Phenology and Adaptation Options. Sci. Rep. 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Caverly, E.K. Ephemeral Organic Carbon Fluxes to the Chesapeake Bay from Ephemeral Organic Carbon Fluxes to the Chesapeake Bay from Agricultural Runoff on the Virginia Coastal Plain Agricultural Runoff on the Virginia Coastal Plain. Bachelor’s Thesis, College of William and Mary, Williamsburg, VA, USA, 2012. [Google Scholar]
- Regnier, P.; Friedlingstein, P.; Ciais, P.; Mackenzie, F.T.; Gruber, N.; Janssens, I.A.; Laruelle, G.G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; et al. Anthropogenic Perturbation of the Carbon Fluxes from Land to Ocean. Nat. Geosci. 2013, 6, 597–607. [Google Scholar] [CrossRef]
- Ciais, P.; Borges, A.V.; Abril, G.; Meybeck, M.; Folberth, G.; Hauglustaine, D.; Janssens, I.A. The Impact of Lateral Carbon Fluxes on the European Carbon Balance. Biogeosciences 2008, 5, 1259–1271. [Google Scholar] [CrossRef]
- Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Gerten, D.; Lotze-campen, H.; Müller, C.; Reichstein, M.; et al. Modelling the Role of Agriculture for the 20th Century Global Terrestrial Carbon Balance. Glob. Chang. Biol. 2007, 13, 679–706. [Google Scholar] [CrossRef]
- Dalzell, B.J.; Filley, T.R.; Harbor, J.M. The Role of Hydrology in Annual Organic Carbon Loads and Terrestrial Organic Matter Export from a Midwestern Agricultural Watershed. GeCoA 2007, 71, 1448–1462. [Google Scholar] [CrossRef]
- Liu, J.; Sleeter, B.; Selmants, P.C.; Diao, J.; Zhou, Q.; Worstell, B.; Moritsch, M. Modeling Watershed Carbon Dynamics as Affected by Land Cover Change and Soil Erosion. Ecol. Model. 2021, 459, 109724. [Google Scholar] [CrossRef]
- Lu, N.; Akujärvi, A.; Wu, X.; Liski, J.; Wen, Z.; Holmberg, M.; Feng, X.; Zeng, Y.; Fu, B. Changes in Soil Carbon Stock Predicted by a Process-Based Soil Carbon Model (Yasso07) in the Yanhe Watershed of the Loess Plateau. Landsc. Ecol. 2015, 30, 399–413. [Google Scholar] [CrossRef]
- Xu, N.; Saiers, J.E.; Wilson, H.F.; Raymond, P.A. Simulating Streamflow and Dissolved Organic Matter Export from a Forested Watershed. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Yadav, V.; Malanson, G.P.; Bekele, E.; Lant, C. Modeling Watershed-Scale Sequestration of Soil Organic Carbon for Carbon Credit Programs. Appl. Geogr. 2009, 29, 488–500. [Google Scholar] [CrossRef]
- Rouhani, S.; Schaaf, C.L.; Huntington, T.G.; Choate, J. Simulation of Dissolved Organic Carbon Flux in the Penobscot Watershed, Maine. Ecohydrol. Hydrobiol. 2021, 21, 256–270. [Google Scholar] [CrossRef]
- Futter, M.N.; Löfgren, S.; Köhler, S.J.; Lundin, L.; Moldan, F.; Bringmark, L. Simulating Dissolved Organic Carbon Dynamics at the Swedish Integrated Monitoring Sites with the Integrated Catchments Model for Carbon, INCA-C. Ambio 2011, 40, 906–919. [Google Scholar] [CrossRef]
- Mayorga, E.; Seitzinger, S.P.; Harrison, J.A.; Dumont, E.; Beusen, A.H.W.; Bouwman, A.F.; Fekete, B.M.; Kroeze, C.; Van Drecht, G. Global Nutrient Export from WaterSheds 2 (NEWS 2): Model Development and Implementation. Environ. Model. Softw. 2010, 25, 837–853. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Tijjani, S.B.; Giri, S.; Woznicki, S.A. Quantifying the Potential Impacts of Climate Change on Irrigation Demand, Crop Yields, and Green Water Scarcity in the New Jersey Coastal Plain. Sci. Total Environ. 2022, 838, 156538. [Google Scholar] [CrossRef] [PubMed]
- EPA. What Climate Change Means for New Jersey. Available online: https://19january2017snap-shot.epa.gov/sites/production/files/2016-09/documents/climate-change-nj.pdf (accessed on 2 January 2022).
- Cauller, S.J.; Carleton, G.B. Hydrogeology and Simulated Effects of Ground-Water Withdrawals, Kirkwood-Cohansey Aquifer System, Upper Maurice River Basin Area, New Jersey. Sci. Investig. Rep. 2006. [Google Scholar] [CrossRef]
- Barringer, J.L.; Kish, G.R.; Velch, A.J. Corrosiveness of Ground Water in the Kirkwood-Cohansey Aquifer System of the New Jersey Coastal Plain; Water-Resources Investigations Report 90-4180; New Jersey Department of Environmental Protection and Energy: West Trenton, NJ, USA, 1993.
- Weather-Atlas New Jersey, USA—Climate Data and Average Monthly Weather|Weather Atlas. Available online: https://www.weather-us.com/en/new-jersey-usa-climate (accessed on 7 December 2021).
- Taia, S.; Erraioui, L.; Arjdal, Y.; Chao, J.; El Mansouri, B.; Scozzari, A. The Application of SWAT Model and Remotely Sensed Products to Characterize the Dynamic of Streamflow and Snow in a Mountainous Watershed in the High Atlas. Sensors 2023, 23, 1246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cao, J.; Wang, Z. Spatial-Temporal Pattern Study on Water Conservation Function Using the SWAT Model. Water Supply 2021, 21, 3629–3642. [Google Scholar] [CrossRef]
- Giri, S.; Arbab, N.N.; Lathrop, R.G. Assessing the Potential Impacts of Climate and Land Use Change on Water Fluxes and Sediment Transport in a Loosely Coupled System. J. Hydrol. 2019, 577, 123955. [Google Scholar] [CrossRef]
- Singh, G.; Saraswat, D. Development and Evaluation of Targeted Marginal Land Mapping Approach in SWAT Model for Simulating Water Quality Impacts of Selected Second Generation Biofeedstock. Environ. Model. Softw. 2016, 81, 26–39. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, L.; Li, H.; Li, T.; Liu, D.; Ji, Y.; Li, M.; Zhang, Y. Study on the Optimization of Dry Land Irrigation Schedule in the Downstream Songhua River Basin Based on the SWAT Model. Water 2019, 11, 1147. [Google Scholar] [CrossRef]
- Laurent, F.; Ruelland, D. Assessing Impacts of Alternative Land Use and Agricultural Practices on Nitrate Pollution at the Catchment Scale. J. Hydrol. 2011, 409, 440–450. [Google Scholar] [CrossRef]
- Kemanian, A.R.; Julich, S.; Manoranjan, V.S.; Arnold, J.R. Integrating Soil Carbon Cycling with That of Nitrogen and Phosphorus in the Watershed Model SWAT: Theory and Model Testing. Ecol. Model. 2011, 222, 1913–1921. [Google Scholar] [CrossRef]
- Zhang, X. Simulating Eroded Soil Organic Carbon with the SWAT-C Model. Environ. Model. Softw. 2018, 102, 39–48. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Williams, J.R.; McGill, W.B.; Rosenberg, N.J.; Jakas, M.C.Q. Simulating Soil C Dynamics with EPIC: Model Description and Testing against Long-Term Data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Mukundan, R.; Hoang, L.; Owens, E.M. Integrating Terrestrial and Aquatic Processes toward Watershed Scale Modeling of Dissolved Organic Carbon Fluxes. Environ. Pollut. 2019, 249, 125–135. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, X.; Lee, S.; Wu, Y.; Moglen, G.E.; McCarty, G.W. Modeling Sediment Diagenesis Processes on Riverbed to Better Quantify Aquatic Carbon Fluxes and Stocks in a Small Watershed of the Mid-Atlantic Region. Carbon Balance Manag. 2020, 15. [Google Scholar] [CrossRef]
- Qi, J.; Du, X.; Zhang, X.; Lee, S.; Wu, Y.; Deng, J.; Moglen, G.E.; Sadeghi, A.M.; McCarty, G.W. Modeling Riverine Dissolved and Particulate Organic Carbon Fluxes from Two Small Watersheds in the Northeastern United States. Environ. Model. Softw. 2020, 124, 104601. [Google Scholar] [CrossRef]
- Liang, K.; Qi, J.; Zhang, X.; Deng, J. Replicating Measured Site-Scale Soil Organic Carbon Dynamics in the U.S. Corn Belt Using the SWAT-C Model. Environ. Softw. 2022, 158, 105553. [Google Scholar] [CrossRef]
- NJDEP. Land Use/Land Cover 2015 Update, Edition 20190128 (Land_lu_2015). Available online: https://www.nj.gov/dep/gis (accessed on 29 June 2022).
- NOAA-NCEI Find a Station|Data Tools|Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (accessed on 6 November 2021).
- USDA-NRCS. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online: https://datagateway.nrcs.usda.gov/GDGOrder.aspx (accessed on 6 November 2021).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil, and Water Assessment Tool. User’s Manual Version 2005, 476p. Available online: https://swat.tamu.edu/media/1292/swat2005theory.pdf (accessed on 27 September 2023).
- Abbaspour, K.C.; Vaghefi, S.A.; Yang, H.; Srinivasan, R. Global Soil, Landuse, Evapotranspiration, Historical and Future Weather Databases for SWAT Applications. Sci. Data 2019, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- USDA. U.S. Geological Survey. Available online: https://www.usgs.gov/products/data (accessed on 29 June 2022).
- Abbaspour, K.C. SWAT-CUP 2012 SWAT Calibration and Uncertainty Programs; Eawag: Dübendorf, Switzerland, 2012. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Wang, G.; Jin, J.; Liu, C.; Liu, Y.; He, R.; Bao, Z. Uncertainty Analysis of Swat Modeling in the Lancang River Basin Using Four Different Algorithms. Water 2021, 13, 341. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Olson, K.R.; Gennadiyev, A.N.; Kovach, R.G.; Schumacher, T.E.; Olson, K.R.; Gennadiyev, A.N.; Kovach, R.G.; Schumacher, T.E. Comparison of Prairie and Eroded Agricultural Lands on Soil Organic Carbon Retention (South Dakota). Open J. Soil Sci. 2014, 4, 136–150. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J.; Tian, H.; Crumpton, W.G.; Helmers, M.J.; Cai, W.J.; Hopkinson, C.S.; Lohrenz, S.E. Increased Extreme Precipitation Challenges Nitrogen Load Management to the Gulf of Mexico. Commun. Earth Environ. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Culbertson, A.M.; Martin, J.F.; Aloysius, N.; Ludsin, S.A. Anticipated Impacts of Climate Change on 21st Century Maumee River Discharge and Nutrient Loads. J. Great Lakes Res. 2016, 42, 1332–1342. [Google Scholar] [CrossRef]
- Huynh, H.T.; Hufnagel, J.; Wurbs, A.; Bellingrath-Kimura, S.D. Influences of Soil Tillage, Irrigation and Crop Rotation on Maize Biomass Yield in a 9-Year Field Study in Müncheberg, Germany. Field Crops Res. 2019, 241, 107565. [Google Scholar] [CrossRef]
- Dou, F. Long-Term Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on Soil Carbon and Nitrogen Dynamics A Dissertation. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2005. [Google Scholar]
- Rahmawati, R. Effect of Nitrogen Fertilizer on Growth and Yield of Maize Composite Variety Lamuru Creative Commons Attribution 4.0 International License. Agrotech. J. 2017, 2, 36–41. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration. Soil Sci. Soc. Am. J. 2002, 66, 906–912. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Somasundaram, J.; McDermid, S.S.; Patra, A.K.; Singh, M.; Dwivedi, A.K.; Reddy, K.S.; Rao, C.S.; Prabhakar, M.; et al. Soil Carbon Sequestration Potential in a Vertisol in Central India- Results from a 43-Year Long-Term Experiment and APSIM Modeling. Agric. Syst. 2020, 184, 102906. [Google Scholar] [CrossRef]
- Olson, K.R. Soil Organic Carbon Sequestration, Storage, Retention and Loss in U.S. Croplands: Issues Paper for Protocol Development. Geoderma 2013, 195–196, 201–206. [Google Scholar] [CrossRef]
- Lasanta, T.; Mosch, W.; Pérez-Rontomé, M.C.; Navas, A.; Machín, J.; Maestro, M. Effects of Irrigation on Water Salinization in Semi-Arid Environments.: A Case Study in Las Bardenas, Spain. Cuad. Investig. Geográf. 2002, 28, 7–13. [Google Scholar] [CrossRef]
- Li, M.; Peng, C.; Wang, M.; Xue, W.; Zhang, K.; Wang, K.; Shi, G.; Zhu, Q. The Carbon Flux of Global Rivers: A Re-Evaluation of Amount and Spatial Patterns. Ecol. Indic. 2017, 80, 40–51. [Google Scholar] [CrossRef]
- Wallin, M.B.; Weyhenmeyer, G.A.; Bastviken, D.; Chmiel, H.E.; Peter, S.; Sobek, S.; Klemedtsson, L. Temporal Control on Concentration, Character, and Export of Dissolved Organic Carbon in Two Hemiboreal Headwater Streams Draining Contrasting Catchments. J. Geophys. Res. Biogeosci. 2015, 120, 832–846. [Google Scholar] [CrossRef]
- Glossner, K.; Lohse, K.A.; Appling, A.P.; Cram, Z.; Murray, E.; Godsey, S.E.; VanVactor, S.; McCorkle, E.P.; Seyfried, M.; Pierson, F.B. Long-Term Suspended Sediment and Particulate Organic Carbon Yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory. Hydrol. Process 2022, 36, e14484. [Google Scholar] [CrossRef]
- Michalzik, B.; Kalbitz, K.; Park, J.H.; Solinger, S.; Matzner, E. Fluxes and Concentrations of Dissolved Organic Carbon and Nitrogen—a Synthesis for Temperate Forests. Biogeochemistry 2001, 52, 173–205. [Google Scholar] [CrossRef]
- Anguria, P.; Chemining’wa, G.N.; Onwonga, R.N.; Ugen, M.A. Decomposition and Nutrient Release of Selected Cereal and Legume Crop Residues. J. Agric. Sci. 2017, 9, 108. [Google Scholar] [CrossRef]
- Reis, E.M.; Baruffi, D.; Remor, L.; Zanatta, M. Decomposition of Corn and Soybean Residues under Field Conditions and Their Role as Inoculum Source. Summa Phytopathol. 2011, 37, 65–67. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Clayton, G.W.; O’donovan, J.T.; Harker, K.N.; Turkington, T.K.; Soon, Y.K. Nitrogen Release during Decomposition of Crop Residues under Conventional and Zero Tillage. Can. J. Soil Sci. 2006, 86, 11–19. [Google Scholar] [CrossRef]
- Zahedifar, M. Feasibility of Fuzzy Analytical Hierarchy Process (FAHP) and Fuzzy TOPSIS Methods to Assess the Most Sensitive Soil Attributes against Land Use Change. Environ. Earth Sci. 2023, 82, 248. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment Panel. Ecosystems and Human Well-Being—Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; Available online: https://edepot.wur.nl/45159 (accessed on 27 September 2023).
- Vona, I.; Palinkas, C.M.; Nardin, W. Sediment Exchange Between the Created Saltmarshes of Living Shorelines and Adjacent Submersed Aquatic Vegetation in Chesapeake Bay. Front. Mar. Sci. 2021, 8, 1348. [Google Scholar] [CrossRef]
- Gittman, R.K.; Peterson, C.H.; Currin, C.A.; Joel Fodrie, F.; Piehler, M.F.; Bruno, J.F. Living Shorelines Can Enhance the Nursery Role of Threatened Estuarine Habitats. Ecol. Appl. 2016, 26, 249–263. [Google Scholar] [CrossRef]
- Glover, J.D.; Culman, S.W.; DuPont, S.T.; Broussard, W.; Young, L.; Mangan, M.E.; Mai, J.G.; Crews, T.E.; DeHaan, L.R.; Buckley, D.H.; et al. Harvested Perennial Grasslands Provide Ecological Benchmarks for Agricultural Sustainability. Agric. Ecosyst. Environ. 2010, 137, 3–12. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. A Global Analysis of Root Distributions for Terrestrial Biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef]
- Department of Primary Industries and Regional Development. Soil Organic Matter—Frequently Asked Questions (FAQs). Agriculture and Food. Available online: https://www.agric.wa.gov.au/soil-carbon/soil-organic-matter-fre-quently-asked-questions-faqs (accessed on 17 October 2022).
- Bowering, K.L.; Edwards, K.A.; Prestegaard, K.; Zhu, X.; Ziegler, S.E. Dissolved Organic Carbon Mobilized from Organic Horizons of Mature and Harvested Black Spruce Plots in a Mesic Boreal Region. Biogeosciences 2020, 17, 581–595. [Google Scholar] [CrossRef]
- Pasricha, N.S. Conservation Agriculture Effects on Dynamics of Soil C and N under Climate Change Scenario. Adv. Agron. 2017, 145, 269–312. [Google Scholar] [CrossRef]
- Sobczak, W.V.; Findlay, S. Variation in Bioavailability of Dissolved Organic Carbon among Stream Hyporheic Flowpaths. Ecology 2002, 83, 3194–3209. [Google Scholar] [CrossRef]
- Siemens, J. Dissolved Organic Matter Induced Denitrification in Subsoils and Aquifers? Cite This Paper Related Papers. Geoderma 2003, 113, 253–271. [Google Scholar] [CrossRef]
- NASA. Temperate Deciduous Forest: Mission: Biomes. Available online: https://earthobservatory.nasa.gov/bi-ome/biotemperate.php (accessed on 31 March 2023).
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root Exudates Contribute to Belowground Ecosystem Hotspots: A Review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V.; Stets, E.G.; Crawford, C. Long-Term Changes in Nitrate Conditions over the 20th Century in Two Midwestern Corn Belt Streams. J. Hydrol. 2015, 525, 559–571. [Google Scholar] [CrossRef]
- Begum, N.; Guppy, C.; Herridge, D.; Schwenke, G. Influence of Source and Quality of Plant Residues on Emissions of N2O and CO2 from a Fertile, Acidic Black Vertisol. Biol. Fertil. Soils 2014, 50, 499–506. [Google Scholar] [CrossRef]
- Martens, D.A. Plant Residue Biochemistry Regulates Soil Carbon Cycling and Carbon Sequestration. Soil Biol. Biochem. 2000, 32, 361–369. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Rong, L.; Duan, X. Land-Use Driven Changes in Soil Microbial Community Composition and Soil Fertility in the Dry-Hot Valley Region of Southwestern China. Microorganisms 2022, 10, 956. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Erosion and Carbon Dynamics. Soil Tillage Res. 2005, 81, 137–142. [Google Scholar] [CrossRef]
- Page, K.L.; Dalal, R.C.; Reeves, S.H.; Wang, W.J.; Jayaraman, S.; Dang, Y.P. Changes in Soil Organic Carbon and Nitrogen after 47 Years with Different Tillage, Stubble and Fertiliser Management in a Vertisol of North-Eastern Australia. Soil Res. 2020, 58, 346–356. [Google Scholar] [CrossRef]
- Timmons, D.R.; Baker, J.L. Recovery of Point-Injected Labeled Nitrogen by Corn as Affected by Timing, Rate, and Tillage. Agron. J. 1991, 83, 850–857. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Gao, L.; Tian, Y. Irrigation Has More Influence than Fertilization on Leaching Water Quality and the Potential Environmental Risk in Excessively Fertilized Vegetable Soils. PLoS ONE 2018, 13, e0204570. [Google Scholar] [CrossRef] [PubMed]
- Farina, R.; Seddaiu, G.; Orsini, R.; Steglich, E.; Roggero, P.P.; Francaviglia, R. Soil Carbon Dynamics and Crop Productivity as Influenced by Climate Change in a Rainfed Cereal System under Contrasting Tillage Using EPIC. Soil Tillage Res. 2011, 112, 36–46. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Hatano, R. Soil Organic Carbon and Soil Erodibility Response to Various Land-Use Changes in Northern Thailand. Catena 2022, 219, 106595. [Google Scholar] [CrossRef]
- Ellmer, F.; Baumecker, M. 65 Years Long-Term Experiments at Thyrow. Results for Sustainable Crop Production at Sandy Soils. Arch. Agron. Soil 2010, 21, 521–531. [Google Scholar] [CrossRef]
- Preza-Fontes, G.; Miller, H.; Camberato, J.; Roth, R.; Armstrong, S. Corn Yield Response to Starter Nitrogen Rates Following a Cereal Rye Cover Crop. Crop Forage Turfgrass Manag. 2022, 8, e20187. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson: London, UK, 1999. [Google Scholar]
- Olson, K.R. Impacts of Tillage, Slope, and Erosion on Soil Organic Carbon Retention. Soil Sci. 2010, 175, 562–567. [Google Scholar] [CrossRef]
- Begum, K.; Zornoza, R.; Farina, R.; Lemola, R.; Álvaro-Fuentes, J.; Cerasuolo, M. Modeling Soil Carbon Under Diverse Cropping Systems and Farming Management in Contrasting Climatic Regions in Europe. Front. Environ. Sci. 2022, 10, 139. [Google Scholar] [CrossRef]
- Van Vugt, D.; Franke, A.C.; Giller, K.E. Understanding Variability in the Benefits of N2-Fixation in Soybean-Maize Rotations on Smallholder Farmers’ Fields in Malawi. Agric. Ecosyst. Environ. 2018, 261, 241. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tijjani, S.B.; Qi, J.; Giri, S.; Lathrop, R. Modeling Land Use and Management Practices Impacts on Soil Organic Carbon Loss in an Agricultural Watershed in the Mid-Atlantic Region. Water 2023, 15, 3534. https://doi.org/10.3390/w15203534
Tijjani SB, Qi J, Giri S, Lathrop R. Modeling Land Use and Management Practices Impacts on Soil Organic Carbon Loss in an Agricultural Watershed in the Mid-Atlantic Region. Water. 2023; 15(20):3534. https://doi.org/10.3390/w15203534
Chicago/Turabian StyleTijjani, Sadiya Baba, Junyu Qi, Subhasis Giri, and Richard Lathrop. 2023. "Modeling Land Use and Management Practices Impacts on Soil Organic Carbon Loss in an Agricultural Watershed in the Mid-Atlantic Region" Water 15, no. 20: 3534. https://doi.org/10.3390/w15203534