An Analysis of Factors Influencing Household Water, Sanitation, and Hygiene (WASH) Experiences during Flood Hazards in Tsholotsho District Using a Seemingly Unrelated Regression (SUR) Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
Household Experiences of Flood Incidences Using Principal Component Analysis (PCA)
4. Enhancing Coping Capacities to WASH Related Problems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cottam, B.J.; Specking, E.A.; Small, C.A.; Pohl, E.A.; Parnell, G.S.; Buchanan, R.K. Defining Resilience for Engineered Systems. Eng. Manag. Res. 2019, 8, p11. [Google Scholar] [CrossRef]
- Burton, J.; Tidwell, J.B.; Chipungu, J.; Aunger, R. The Role of the SaTo Pan Toilet Technologies in Advancing Progress in the Water, Sanitation and Hygiene (WASH) Sector. J. Sci. Policy Gov. 2020, 16. [Google Scholar] [CrossRef]
- UNDRR. Structural and Non-Structural Measures; UNDRR: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Water, Sanitation & Hygiene for Accelerating and Sustaining Progress on Neglected Tropical Diseases; WHO: Geneva, Switzerland, 2020; p. 34. [Google Scholar]
- World Health Organization. Water, Sanitation and Hygiene to Combat Neglected Tropical Diseases Initial Lessons from Project Implementation; World Health Organization: Geneva, Switzerland, 2017; p. 6. [Google Scholar]
- ZimStat. Zimbabwe Population census 2012. World Popul. Rev. 2013, 1, 110–215. [Google Scholar]
- Clarke, N.E.; Clements, A.C.A.; Amaral, S.; Richardson, A.; McCarthy, J.; McGown, J.; Bryan, S.; Gray, D.J.; Nery, S.V. (S)WASH-D for Worms: A pilot study investigating the differential impact of school- versus community-based integrated control programs for soil-transmitted helminths. PLoS Negl. Trop. Dis. 2018, 12, e0006389. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Emergency Information and Risk Assessment, Weekly Bulletin on Outbreaks and Other Emergencies; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Alto, A.A.; Godana, W.; Gedamu, G. Impact of Community-Led Total Sanitation and Hygiene on Prevalence of Diarrheal Disease and Associated Factors among Under-Five Children: A Comparative Cross-Sectional Study in Selected Woredas of Gamo Gofa Zone, Southern Ethiopia. Adv. Public Health 2020, 2020, 8237101. [Google Scholar] [CrossRef] [Green Version]
- Howard, G.; Calow, R.; Macdonald, A.; Bartram, J.; Beauchaine, T.P.; Sjulson, L.; Cassataro, D.; DasGupta, S.; Miesenböck, G.; Bai, J.; et al. Climate Change and Water and Sanitation: Likely Impacts and Emerging Trends for Action. Annu. Rev. Environ. Resour. 2016, 41, 253–276. [Google Scholar] [CrossRef] [Green Version]
- Thebe, P.; Maviza, G. The effects of feminization of migration on family functions in tsholotsho district, Zimbabwe. Adv. Soc. Sci. Res. J. 2019, 6, 297–306. [Google Scholar] [CrossRef]
- Masangkay, V.R.; Milanez, G.D.; Ormita, L.A.G.; Alvarez, A.V., Jr.; Quinto, M.P.; Lanestosa, F.F.; Diaz, L.C.V.; Johnson, P.; Karanis, P. Water Quality as a Priority Area of Community Needs Assessment: Community Extension Service with the Indigenous Tribe of Hanunuo Mangyan in the Philippines. Asian J. Biol. Life Sci. 2020, 9, 220–226. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Kotepui, M.; Masangkay, F.R.; Milanez, G.D.; Karanis, P. Gastrointestinal Parasites in Africa: A Review; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Mackinnon, E.; Ayah, R.; Taylor, R.; Owor, M.; Ssempebwa, J.; Olago, L.D.; Kubalako, R.; Dia, A.T.; Gaye, C.; Campos, L.C.; et al. 21st century research in urban WASH and health in sub-Saharan Africa: Methods and outcomes in transition. Int. J. Environ. Health Res. 2018, 29, 457–478. [Google Scholar] [CrossRef] [Green Version]
- Mavhura, E.; Manyena, B.; Collins, A.E. An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum 2017, 86, 103–117. [Google Scholar] [CrossRef]
- Nicholson, M. The impact of the private provision of WASH services on sustainable economic growth in sub-Saharan Africa. Adv. Soc. Sci. Res. J. 2019, 6, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, Z.; Worku, A. Effects of single and combined water, sanitation and hygiene (WASH) interventions on nutritional status of children: A systematic review and meta-analysis. Ital. J. Pediatr. 2019, 45, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Health Emergency and Disaster Risk Management, Water, Sanitation and Hygiene; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Anthonj, C.; Setty, K.E.; Ezbakhe, F.; Manga, M.; Hoeser, C. A systematic review of water, sanitation and hygiene among Roma communities in Europe: Situation analysis, cultural context, and obstacles to improvement. Int. J. Hyg. Environ. Health 2020, 226, 113506. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, Å.; Rosemarin, A.; Thomalla, F.; Swartling, G.; Stenström, T.A.; Vulturius, G. Strategies for building resilience to hazards in water, sanitation and hygiene (WASH) systems: The role of public private partnerships. Int. J. Disaster Risk Reduct. 2014, 10, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Nemes, J. The Water and Sanitation (Wash) Drive in Tanzania: Opportunities and Challenges Head Teachers Face in Rural-Based Schools. Int. J. Educ. Res. 2014, 2, 4–9. [Google Scholar]
- Kairiza, T.; Kembo, G.D. Coping with food and nutrition insecurity in Zimbabwe: Does household head gender matter? Agric. Food Econ. 2019, 7, 1–16. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Osuna, V.R.; Cak, A.D.; Bhaduri, A.; Bunn, S.E.; Corsi, F.; Gastelumendi, J.; Green, P.; Harrison, I.; Lawford, R.; et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 2018, 18, 317–333. [Google Scholar] [CrossRef]
- Rivero, N.P.P.; Morais, D.C.; Pereira, L.D.S. Assessment of actions to tackle the shortages of water in La Paz, Bolivia. Water Policy 2020, 22, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Ivankova, N.; Wingo, N. Applying Mixed Methods in Action Research: Methodological Potentials and Advantages. Am. Behav. Sci. 2018, 62, 978–997. [Google Scholar] [CrossRef]
- Demberere, T.; Muyambo, M.; Mutengu, S.; Ncozana, T.; Manyeruke, N. An analysis of the effectiveness of WASH interventions in relation to diarrhoeal diseases in Chipinge district, Zimbabwe. Phys. Chem. Earth 2014, 76–78, 98–103. [Google Scholar] [CrossRef]
- UNISDR. Terminology of Disaster Risk Reduction; UNDRR: Geneva, Switzerland, 2017. [Google Scholar]
- Ndlovu, E.; Bhala, E. Menstrual hygiene—A salient hazard in rural schools: A case of Masvingo district of Zimbabwe. JAMBA: J. Disaster Risk Stud. 2014, 8, 1–8. [Google Scholar] [CrossRef]
- Prakongsri, P.; Santiboon, T. Effective Water Resources Management for Communities in the Chi River Basin in Thailand. Environ. Claims J. 2020, 32, 323–348. [Google Scholar] [CrossRef]
- Elijah, M.M.W.; Mtafu, M.; James, K.; Orton, M.; Chrispin, M.; Dominic, K.; Jean, K. Using Citizen Science Approach to monitor water, sanitation and hygiene Related Risks in Karonga Town, Malawi. Afr. J. Environ. Sci. Technol. 2017, 11, 304–323. [Google Scholar] [CrossRef] [Green Version]
- Dube, E.; Mtapuri, O.; Matunhu, J. Managing flood disasters on the built environment in the rural communities of Zimbabwe: Lessons learnt. JAMBA J. Disaster Risk Stud. 2018, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthe, D.; Abdullaev, I.; Boldgiv, B.; Borchardt, D.; Chalov, S.; Jarsjö, J.; Li, L.; Nittrouer, J.A. Water in Central Asia: An integrated assessment for science-based management. Environ. Earth Sci. 2017, 76, 690. [Google Scholar] [CrossRef] [Green Version]
- Niraj, J.A.I.N.; Chileshe, R.; Muwowo, F.; Mulenga, S. Assessing Sustainability of Wash Projects Using USAT: A Case of Public Schools in Zambezi District of Zambia. Int. J. Soc. Sci. Res. 2019, 8, 29–45. [Google Scholar]
- Oyekale, A.S. Access to safe drinking water, sanitation, and under 5 diarrhea morbidity in South Africa. Ann. Trop. Med. Public Health 2017, 10, 187. [Google Scholar] [CrossRef]
- UN. Implementing Water, Sanitation and Hygiene (WASH). In Information Brief; UN: New York, NY, USA, 2015. [Google Scholar]
- Nzima, D.; Duma, V.; Moyo, P. Theorizing migration-development interactions: Towards an integrated approach. Migr. Dev. 2016, 6, 305–318. [Google Scholar] [CrossRef]
- Abrams, A.L.; Carden, K.; Teta, C.; Wågsæther, K. Water, Sanitation, and Hygiene Vulnerability among Rural Areas and Small Towns in South Africa: Exploring the Role of Climate Change, Marginalization, and Inequality. Water 2021, 13, 2810. [Google Scholar] [CrossRef]
- Van Der Walt, A.J.; Barker, C.H. A spatial-analytical investigation of the rainfall and temperature patterns over Southern Africa. Suid-Afrikaanse Tydskr. vir Natuurwetenskap en Tegnol. 2017, 36, 2. [Google Scholar] [CrossRef] [Green Version]
- Pawaringira, R. Faculty of Engineering הסדנהל הטלוקפה. Development 2018, 2, 52900. [Google Scholar]
- Saba, D.; Ercan, A.; Senkaya, I.; Gebitekin, C.; Ozkan, H. The impact of water, sanitation and hygiene on key health and social outcomes: Review of evidence. Turk. J. Trauma Emerg. Surg. TJTES 2016, 7, 201–203. [Google Scholar]
- Krishnan, S. Water, sanitation and hygiene (WASH) and disaster recovery for community resilience: A mixed methods study from Odisha, India. Int. J. Disaster Risk Reduct. 2019, 35, 101061. [Google Scholar] [CrossRef]
- Rauken, T.; Kelman, I. River flood vulnerability in Norway through the pressure and release model. J. Flood Risk Manag. 2010, 3, 314–322. [Google Scholar] [CrossRef]
- SNV. Water, sanitation & hygiene in Africa. Find. Sustain. Solut. 2017, 5, 1–4. [Google Scholar]
- Niederberger, E.; Glanville-Wallis, T. Community Engagement in WASH Emergencies: Understanding Barriers and Enablers Based on Action Research from Bangladesh and the Democratic Republic of Congo (DRC). Water 2019, 11, 862. [Google Scholar] [CrossRef] [Green Version]
- Dube, E.; Mtapuri, O.; Matunhu, J. Flooding and poverty: Two interrelated social problems impacting rural development in Tsholotsho district of Matabeleland North province in Zimbabwe. JAMBA J. Disaster Risk Stud. 2018, 10, 1–7. [Google Scholar] [CrossRef]
Name of Ward | Flooding and Collapse of Boreholes and Wells | Increased Water Salinity | Contamination of Household Items | Loss of Non-Food Items | Collapse of Latrines | Contamination of Surface Water | Ponding Water That Provides Breeding Ground for Mosquitoes | Outbreak of Water and Hygiene Related Diseases | |
---|---|---|---|---|---|---|---|---|---|
5 | Mean | 0.13 | 0.24 | 0.17 | 0.15 | 0.15 | 0.26 | 0.46 | 0.52 |
Std. Deviation | 0.341 | 0.431 | 0.383 | 0.363 | 0.363 | 0.444 | 0.504 | 0.505 | |
6 | Mean | 0.18 | 0.29 | 0.72 | 0.90 | 0.51 | 0.87 | 0.97 | 0.93 |
Std. Deviation | 0.384 | 0.459 | 0.454 | 0.306 | 0.503 | 0.341 | 0.170 | 0.263 | |
7 | Mean | 0.07 | 0.11 | 0.58 | 0.62 | 0.53 | 0.53 | 0.58 | 0.58 |
Std. Deviation | 0.252 | 0.318 | 0.499 | 0.490 | 0.505 | 0.505 | 0.499 | 0.499 | |
8 | Mean | 0.07 | 0.08 | 0.10 | 0.25 | 0.44 | 0.15 | 0.54 | 0.12 |
Std. Deviation | 0.254 | 0.281 | 0.305 | 0.439 | 0.501 | 0.363 | 0.502 | 0.326 | |
Total | Mean | 0.11 | 0.19 | 0.41 | 0.51 | 0.42 | 0.48 | 0.67 | 0.55 |
Std. Deviation | 0.319 | 0.392 | 0.492 | 0.501 | 0.495 | 0.501 | 0.473 | 0.499 |
Variable | Outbreak and Contamination of Water | Lack of Access to Clean and Safe Drinking Water | Flooding and Collapse of Boreholes and Increases Water Salinity |
---|---|---|---|
Lack of access to clean and safe drinking water | 0.2156 | 0.3872 | −0.5391 |
Flooding and collapse of boreholes and wells | 0.2156 | 0.2549 | 0.6973 |
Increased water salinity | 0.2655 | 0.429 | 0.3597 |
Contamination of household items | 0.4113 | 0.1188 | −0.0759 |
Loss of household Non-Food Items (NFI) | 0.4036 | −0.073 | −0.1639 |
Collapse of latrines | 0.197 | −0.646 | 0.2167 |
Contamination of surface water | 0.4317 | −0.0268 | −0.0519 |
Ponding of water that provides breeding ground for disease vectors | 0.3213 | −0.4043 | −0.0287 |
Outbreak of water and hygiene related diseases | 0.4195 | −0.0072 | −0.1031 |
Eigenvalue | 4.000 | 1.333 | 1.034 |
% Variance | 71 | ||
Correlation matrix | 0.024 | ||
KMO Test | 0.81 | ||
Barllet’s test (p-value) | 0.0000 a | ||
Chi-Square | 792.696 |
Diseases Outbreak and Contamination of Water | Lack of Access to Clean and Safe Drinking Water | Flooding and Collapse of Boreholes and Increases Water Salinity | |||||||
---|---|---|---|---|---|---|---|---|---|
Coeff | Std. Err. | p > z | Coeff | Std. Err. | p > z | Coeff | Std. Err. | p > z | |
Marital Status | 0.073 | 0.310 | 0.813 | 0.026 | 0.340 | 0.938 | 0.112 | 0.315 | 0.722 |
Gender | −0.117 | 0.238 | 0.624 | −0.198 | 0.262 | 0.448 | −0.153 | 0.243 | 0.529 |
Treated Water | 0.600 | 0.245 | 0.014 ** | 0.469 | 0.269 | 0.081 * | 0.531 | 0.249 | 0.033 ** |
Source of Water | −0.411 | 0.095 | 0.000 *** | −0.371 | 0.104 | 0.000 *** | −0.413 | 0.096 | 0.000 *** |
Distance to nearest water source | 0.457 | 0.078 | 0.000 *** | 0.458 | 0.085 | 0.000 *** | 0.457 | 0.079 | 0.000 *** |
Level of education | −0.259 | 0.132 | 0.049 ** | −0.192 | 0.145 | 0.185 | −0.274 | 0.134 | 0.041 ** |
Head of household | 0.032 | 0.114 | 0.777 | 0.152 | 0.126 | 0.226 | 0.085 | 0.116 | 0.463 |
RDC | −0.322 | 0.218 | 0.139 | −0.111 | 0.239 | 0.642 | −0.360 | 0.222 | 0.104 |
DDF | −0.234 | 0.137 | 0.088 * | −0.218 | 0.151 | 0.148 | −0.231 | 0.140 | 0.097 * |
NGOs | −0.411 | 0.096 | 0.000 *** | −0.475 | 0.105 | 0.000 *** | −0.392 | 0.098 | 0.000 *** |
Income source | −0.258 | 0.252 | 0.306 | −0.216 | 0.277 | 0.434 | −0.277 | 0.256 | 0.281 |
Remittances | −0.125 | 0.305 | 0.682 | −0.153 | 0.335 | 0.647 | −0.165 | 0.311 | 0.595 |
_cons | 0.934 | 1.028 | 0.364 | 0.185 | 1.130 | 0.870 | 1.208 | 1.047 | 0.248 |
Equation | RMSE | R-squared | chi2 | p > chi2 | |||||
Outbreak and Contamination of water | 1.500 | 0.387 | 134.160 | 0.000 | |||||
Lack of access to clean and safe drinking water | 1.648 | 0.310 | 95.660 | 0.000 | |||||
Flooding and collapse of boreholes and increases water salinity | 1.527 | 0.373 | 126.840 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshuma, M.; Belle, J.A.; Ncube, A. An Analysis of Factors Influencing Household Water, Sanitation, and Hygiene (WASH) Experiences during Flood Hazards in Tsholotsho District Using a Seemingly Unrelated Regression (SUR) Model. Water 2023, 15, 371. https://doi.org/10.3390/w15020371
Tshuma M, Belle JA, Ncube A. An Analysis of Factors Influencing Household Water, Sanitation, and Hygiene (WASH) Experiences during Flood Hazards in Tsholotsho District Using a Seemingly Unrelated Regression (SUR) Model. Water. 2023; 15(2):371. https://doi.org/10.3390/w15020371
Chicago/Turabian StyleTshuma, Mlamuleli, Johannes A. Belle, and Alice Ncube. 2023. "An Analysis of Factors Influencing Household Water, Sanitation, and Hygiene (WASH) Experiences during Flood Hazards in Tsholotsho District Using a Seemingly Unrelated Regression (SUR) Model" Water 15, no. 2: 371. https://doi.org/10.3390/w15020371
APA StyleTshuma, M., Belle, J. A., & Ncube, A. (2023). An Analysis of Factors Influencing Household Water, Sanitation, and Hygiene (WASH) Experiences during Flood Hazards in Tsholotsho District Using a Seemingly Unrelated Regression (SUR) Model. Water, 15(2), 371. https://doi.org/10.3390/w15020371