# Effect of Impounding on Bedrock Temperature of High Arch Dam Site: A Case Study of the Xiluodu Project, China

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Thermo-Hydromechanical Coupling Method

#### 2.1. Constitutive

#### 2.2. Verification

## 3. Evolution of the Dam Foundation Temperature Field

#### 3.1. Finite Element Model

#### 3.2. Temperature Field of Bedrock before Impoundment

#### 3.3. Seepage State of the Bedrock after Impoundment

#### 3.4. Analysis of the Temperature Field after Impoundment

#### 3.5. The Influence of Rock Permeability on Temperature Field

#### 3.6. Mechanism of Temperature Drop

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Jiang, H.; Zhang, C.-H.; Zhou, Y.-D.; Pan, J.-W.; Wang, J.-T.; Wu, M.-X.; Fan, Q.-X. Mechanism for large-scale canyon deformations due to filling of large reservoir of hydropower project. Sci. Rep.
**2020**, 10, 12155. [Google Scholar] [CrossRef] [PubMed] - Yin, T.; Li, Q.; Hu, Y.; Yu, S.; Liang, G. Coupled Thermo-Hydro-Mechanical Analysis of Valley Narrowing Deformation of High Arch Dam: A Case Study of the Xiluodu Project in China. Appl. Sci.
**2020**, 10, 524. [Google Scholar] [CrossRef] - Tamizdoust, M.M.; Ghasemi-Fare, O. A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media. Comput. Geotech.
**2020**, 117, 103250. [Google Scholar] [CrossRef] - Liu, W.; Zeng, Q.; Yao, J. Numerical simulation of elasto-plastic hydraulic fracture propagation in deep reservoir coupled with temperature field. J. Pet. Sci. Eng.
**2018**, 171, 115–126. [Google Scholar] [CrossRef] - Zhou, Z.; Wang, J. Abnormal characteristics analysis of groundwater temperature field in canyon areas. Adv. Water Sci.
**2003**, 14, 62–66. [Google Scholar] - Noorishad, J.; Tsang, C.; Witherspoon, P. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: Numerical approach. J. Geophys. Res. Solid Earth
**1984**, 89, 10365–10373. [Google Scholar] [CrossRef] - Zimmerman, R. Coupling in poroelasticity and thermoelasticity. Int. J. Rock Mech. Min. Sci.
**2000**, 37, 79–87. [Google Scholar] [CrossRef] - Obeid, W.; Mounajed, G.; Alliche, A. Mathematical formulation of thermo-hygro-mechanical coupling problem in non-saturated porous media. Comput. Methods Appl. Mech. Eng.
**2001**, 190, 5105–5122. [Google Scholar] [CrossRef] - Schrefler, B. Multiphase flow in deforming porous material. Int. J. Numer. Methods Eng.
**2004**, 60, 27–50. [Google Scholar] [CrossRef] - Rutqvist, J.; Börgesson, L.; Chijimatsu, M.; Kobayashi, A.; Jing, L.; Nguyen, T.; Noorishad, J.; Tsang, C.-F. Thermohydromechanics of partially saturated geological media: Governing equations and formulation of four finite element models. Int. J. Rock Mech. Min. Sci.
**2001**, 38, 105–127. [Google Scholar] [CrossRef] - Rutqvist, J.; Wu, Y.-S.; Tsang, C.-F.; Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci.
**2002**, 39, 429–442. [Google Scholar] [CrossRef] - Zhang, G.; Cheng, H.; Zhou, Q.; Liu, Y. Analysis of mechanism of valley creep deformation of high arch dam during impoundment. China Sci. Pap.
**2019**, 14, 77–84. [Google Scholar] - Xu, H.; Cui, C.; Zhang, S. Analysis on changes of limestone hydrogeological conditions before and after impoundment of Xiluodu Hydropower Station. Yangtze River
**2021**, 52, 65–70. [Google Scholar] - Sun, Z.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.; Lv, S.; Sun, Z.; Huang, Y.; Cai, M.; Huang, X. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy
**2017**, 120, 20–33. [Google Scholar] [CrossRef] - Guo, T.; Tang, S.; Sun, J.; Gong, F.; Liu, X.; Qu, Z.; Zhang, W. A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation. Appl. Energy
**2020**, 258, 113981. [Google Scholar] [CrossRef] - Zhang, W.; Qu, Z.; Guo, T.; Wang, Z. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress. Renew. Energy
**2019**, 143, 855–871. [Google Scholar] [CrossRef] - Zhao, Z. On the heat transfer coefficient between rock fracture walls and flowing fluid. Comput. Geotech.
**2014**, 59, 105–111. [Google Scholar] [CrossRef] - Xie, Q.; Liu, Z.; Fang, X.; Chen, Y.; Li, C.; MacIntyre, S. Understanding the temperature variations and thermal structure of a subtropical deep river-run reservoir before and after impoundment. Water
**2017**, 9, 603. [Google Scholar] [CrossRef] - Xie, Q.; Liu, Z.; Chen, Y.; Chen, X.; Kenneth, T. Observation and analysis of diurnal water temperature variation in Xiluodu Reservoir. Adv. Water Sci.
**2018**, 29, 523–536. [Google Scholar] - Zhu, B. Thermal Stresses and Temperature Control of Mass Concrete; China Electric Power Press: Beijing, China, 1998. [Google Scholar]

**Figure 10.**Pore water pressure and flow velocity of the bedrock with a reservoir water level of 600 m.

**Figure 14.**Temperature fields and temperature drop fields of bedrock with different permeability coefficients after 10 years of reservoir impoundment (unit: °C).

**Figure 15.**Temperature at Point 6 in bedrock with different permeabilities varies with water storage date.

Parameters | Symbol | Unit | Value |
---|---|---|---|

Initial temperature | ${T}_{0}$ | °C | 87 |

Inlet fluid temperature | ${T}_{in}$ | °C | 42 |

Fluid thermal conductivity | ${\lambda}_{w}$ | kW/m/°C | 0.6 |

Thermal conductivity of rock | ${\lambda}_{m}$ | kW/m/°C | 3.5 |

Fluid-specific heat capacity | ${c}_{w}$ | J/kg/°C | 4200 |

Specific heat capacity of rock | ${c}_{m}$ | J/kg/°C | 790 |

Fluid density | ${\rho}_{w}$ | kg/m^{3} | 1000 |

Fracture width | $2b$ | μm | 10 |

Rock width | $2R$ | mm | 51 |

Rock length | $L$ | mm | 102 |

Material | Elastic Modulus (GPa) | Poisson Ratio | Pore Ratio | Density (kg/m ^{3}) | Permeability Coefficient (m/s) | Thermal Expansion (1/°C) | Thermal Conductivity (kW/m/°C) | Specific Heat Capacity (J/kg/°C) |
---|---|---|---|---|---|---|---|---|

Basalt | 22 | 0.18 | 0.05 | 2700 | 5 × 10^{−7} | 8 × 10^{−6} | 2.7 | 860 |

Sedimentary Layer | 10 | 0.3 | 0.05 | 2600 | 1 × 10^{−8} | 8 × 10^{−6} | 1.4 | 860 |

Limestone | 15 | 0.22 | 0.20 | 2500 | 1 × 10^{−6} | 8 × 10^{−6} | 4.0 | 860 |

Grouted Curtain | 28 | 0.18 | 0.05 | 2750 | 1 × 10^{−9} | 8 × 10^{−6} | 1.4 | 860 |

Water | - | - | - | 1000 | - | - | 0.6 | 4200 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, L.; Ren, Q.; Shen, L.; Lu, W.; Tao, M.; Gu, J. Effect of Impounding on Bedrock Temperature of High Arch Dam Site: A Case Study of the Xiluodu Project, China. *Water* **2023**, *15*, 340.
https://doi.org/10.3390/w15020340

**AMA Style**

Zhang L, Ren Q, Shen L, Lu W, Tao M, Gu J. Effect of Impounding on Bedrock Temperature of High Arch Dam Site: A Case Study of the Xiluodu Project, China. *Water*. 2023; 15(2):340.
https://doi.org/10.3390/w15020340

**Chicago/Turabian Style**

Zhang, Linfei, Qingwen Ren, Lei Shen, Wenyan Lu, Mei Tao, and Jiafeng Gu. 2023. "Effect of Impounding on Bedrock Temperature of High Arch Dam Site: A Case Study of the Xiluodu Project, China" *Water* 15, no. 2: 340.
https://doi.org/10.3390/w15020340