Reducing Phosphorus Input into the Baltic Sea—An Assessment of the Updated Baltic Sea Action Plan and Its Implementation through the Common Agricultural Policy in Germany
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The EU Framework of the CAP 2023–2027
3.2. The Helsinki Convention and P
3.3. The Updated Baltic Sea Action Plan and CAP Implementation
- Follow-up of the implementation of nutrient input targets;
- Agriculture;
- Atmospheric nitrogen emissions;
- Wastewater sector;
- Nutrient recycling.
4. Discussion
- Unclear adoption: Two policy instruments of the ‘green architecture’ of the CAP, i.e., eco-schemes and agri-environment-climate commitments, are voluntary instruments (Section 3.1). As voluntary instruments, their uptake is unknown and hence effects on P discharges uncertain. Voluntariness not only impacts the general uptake but also the geographical implementation [21,73]. Geographical implementation is an important aspect as the catchment area of the Baltic Sea does not cover the entire area of Mecklenburg-Western Pomerania (Figure 1). To achieve P discharge reduction into the Baltic Sea and to avoid shifting effects, catchment-scale implementation appears useful [85,86,87] but is missing in the proposed measures of Mecklenburg-Western Pomerania.
- Limited funding: The issue of limited funding impacts strongly the second pillar including agri-environment-climate commitments which can benefit climate and biodiversity (Section 3.1) [88,89,90]. However, more funds could have also been allocated to the eco-schemes. In Germany, funding for eco-schemes is at the lowest end of the permitted funding range. In fact, the Commission finds that eco-scheme funding is too low and required funding amendments [91]. In addition, inadequate payment levels for farmers will likely impede adoption [92,93]. Against the backdrop of current high production costs, farmers urge that the fixed payment rates for eco-schemes have to be increased to ensure uptake (Section 3.1) [94,95,96]. In response, Germany revised the payment rate for one eco-scheme and will review payment levels in light of their uptake in 2023 [66]. However, this little amendment will certainly be insufficient to ensure wide application of these measures. To achieve substantial P reductions, funding cuts and underfunding are counterproductive. Instead, effective CAP measures require funding increases.
- Continuation instead of real reform: The CAP subsidy scheme as a whole has not been comprehensively reformed, except for the introduction of the eco-schemes (Section 3.1) [82,97,98,99]. Measures such as establishing buffer strips and protecting wetlands and peatlands have been a mandatory standard of the first pillar of the CAP for multiple years. However, these standards–summarised under ‘cross conditionality’ in the past–have not achieved a turnaround in soil degradation [11,81,100]. In fact, soil erosion and degradation have been an ongoing, frequently worsening issue in the EU (Section 3.1) and are linked to increasing P discharge into the environment including the Baltic Sea [69]. This is also reflected in missing a net nutrient input ceiling of the updated BSAP (Section 3.3). These trends will most likely not be turned around by the new P controlling requirement of Conditionality (SMR 1) because controls such as prior authorisation or registration are far away from fertilisation practices. It is furthermore inappropriate that farmers are paid for pollution reduction measures rather than enforcing the polluter pays principle as established in EU primary law (Art. 191 (2) TFEU). The overall continuation also implies that administrative complexities, insufficient transparency and enforcement issues continue to exist [101,102].
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Österblom, H.; Hansson, S.; Larsson, U.; Hjerne, O.; Wulff, F.; Elmgren, R.; Folke, C. Human-Induced Trophic Cascades and Ecological Regime Shifts in the Baltic Sea. Ecosystems 2007, 10, 877–889. [Google Scholar] [CrossRef]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-Term Temporal and Spatial Trends in Eutrophication Status of the Baltic Sea: Eutrophication in the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthold, M.; Nausch, G.; Weber, M.; Koch, S.; Kahle, P.; Lennartz, B.; Tränckner, J.; Buczko, U.; Tonn, C.; Ekardt, F.; et al. Phosphorus and the Baltic Sea: Sustainable Management. In Encyclopedia of Water; Maurice, P., Ed.; Wiley: New York, NY, USA, 2019; pp. 1–20. ISBN 978-1-119-30075-5. [Google Scholar]
- Bartosova, A.; Capell, R.; Olesen, J.E.; Jabloun, M.; Refsgaard, J.C.; Donnelly, C.; Hyytiäinen, K.; Pihlainen, S.; Zandersen, M.; Arheimer, B. Future Socioeconomic Conditions May Have a Larger Impact than Climate Change on Nutrient Loads to the Baltic Sea. Ambio 2019, 48, 1325–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HELCOM. Baltic Sea Action Plan. 2021 Update; Baltic Marine Environment Protection Commission (HELCOM): Helsinki, Finland, 2021. [Google Scholar]
- Mayer, N.; Kaltschmitt, M. Closing the Phosphorus Cycle: Current P Balance and Future Prospects in Germany. J. Clean. Prod. 2022, 347, 131272. [Google Scholar] [CrossRef]
- Panagos, P.; Köningner, J.; Ballabio, C.; Liakos, L.; Muntwyler, A.; Borrelli, P.; Lugato, E. Improving the Phosphorus Budget of European Agricultural Soils. Sci. Total Environ. 2022, 853, 158706. [Google Scholar] [CrossRef]
- Bouma, J. Soil Functions and Land Use. In Soils: Basic Concepts and Future Challenges; Certini, G., Scalenghe, R., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 211–222. [Google Scholar]
- Hillel, D. Soil in the Environment. Crucible of Terrestrial Life; Academic Press: London, UK, 2008. [Google Scholar]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Scheffer/Schachtschabel Soil Science, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Garske, B.; Ekardt, E. Sustainable Phosphorus Management in European Agricultural and Environmental Law. Rev. Eur. Comp. Int. Environ. Law 2020, 29, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ciais, P.; Liu, X.; Yang, H.; Hoekstra, A.Y.; Tang, Q.; Wang, X.; Li, X.; Cheng, L. Global Phosphorus Losses from Croplands under Future Precipitation Scenarios. Environ. Sci. Technol. 2020, 54, 14761–14771. [Google Scholar] [CrossRef]
- Zimmer, D.; Kahle, P.; Baum, C. Loss of Soil Phosphorus by Tile Drains during Storm Events. Agric. Water Manag. 2016, 167, 21–28. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Concerning the European Union Strategy for the Baltic Sea Region {SEC(2009) 702} {SEC(2009) 703} {SEC(2009) 712} [COM/2009/0248 Final]. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52009DC0248 (accessed on 8 January 2023).
- Gustafsson, B.G.; Schenk, F.; Blenckner, T.; Eilola, K.; Meier, H.E.M.; Müller-Karulis, B.; Neumann, T.; Ruoho-Airola, T.; Savchuk, O.P.; Zorita, E. Reconstructing the Development of Baltic Sea Eutrophication 1850–2006. Ambio 2012, 41, 534–548. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. State of the Baltic Sea. Second HELCOM Holistic Assessment 2011–2016; HELCOM: Helsinki, Finland, 2018. [Google Scholar]
- Federal Environment Ministry (BMU). Zustand der deutschen Ostseegewässer 2018. Aktualisierung der Anfangsbewertung nach § 45c, der Beschreibung des guten Zustands der Meeresgewässer nach § 45d und der Festlegung von Zielen nach § 45e des Wasserhaushaltsgesetzes zur Umsetzung der Meeresstrategie-Rahmenrichtlinie; Federal Environment Ministry (BMU): Bonn, Germany, 2018. [Google Scholar]
- United Nations Environment Programme (UNEP). Kunming-Montreal Global Biodiversity Framework Draft Decision Submitted by the President [CBD/COP/15/L.25]; UNEP: Montreal, QC, Canada, 2022. [Google Scholar]
- United Nations. The Sustainable Development Goals Report 2022; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Bohman, B. Lessons from the Regulatory Approaches to Combat Eutrophication in the Baltic Sea Region. Mar. Policy 2018, 98, 227–236. [Google Scholar] [CrossRef]
- Ollikainen, M.; Hasler, B.; Elofsson, K.; Iho, A.; Andersen, H.E.; Czajkowski, M.; Peterson, K. Toward the Baltic Sea Socioeconomic Action Plan. Ambio 2019, 48, 1377–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsøe, M.H.; Andersen, M.S.; Brady, M.V.; Graversgaard, M.; Kilis, E.; Pedersen, A.B.; Pitzén, S.; Valve, H. Promise and Performance of Agricultural Nutrient Management Policy: Lessons from the Baltic Sea. Ambio 2022, 51, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Jetoo, S. An Assessment of the Baltic Sea Action Plan (BSAP) Using the OECD Principles on Water Governance. Sustainability 2019, 11, 3405. [Google Scholar] [CrossRef] [Green Version]
- Jetoo, S.; Tynkkynen, N. Institutional Change and the Implementation of the Ecosystem Approach: A Case Study of HELCOM and the Baltic Sea Action Plan (BSAP). Environments 2021, 8, 83. [Google Scholar] [CrossRef]
- Andersson, A.; Brady, M.V.; Pohjola, J. How Unnecessarily High Abatement Costs and Unresolved Distributional Issues Undermine Nutrient Reductions to the Baltic Sea. Ambio 2022, 51, 51–68. [Google Scholar] [CrossRef]
- Brady, M.V.; Andersen, M.S.; Andersson, A.; Kilis, E.; Saarela, S.-R.; Hvarregaard Thorsøe, M. Strengthening the Policy Framework to Resolve Lax Implementation of the Baltic Sea Action Plan for Agriculture. Ambio 2022, 51, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Ekardt, F. Sustainability. Transformation, Governance, Ethics, Law; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Garske, B.; Phosphor-Governance. Rechtliche Steuerungsinstrumente der landwirtschaftlichen Phosphornutzung und ihre Bezüge zu den ökologischen Problemfeldern Böden, Gewässer, Biodiversität und Klima; Metropolis-Verlag: Hessen, Germany, 2019. [Google Scholar]
- Stubenrauch, J.; Ekardt, F.; Heyl, K.; Garske, B.; Schott, V.L.; Ober, S. How to Legally Overcome the Distinction between Organic and Conventional Farming—Governance Approaches for Sustainable Farming on 100% of the Land. Sustain. Prod. Consum. 2021, 28, 716–725. [Google Scholar] [CrossRef]
- Ekardt, F.; Jacobs, B.; Stubenrauch, J.; Garske, B. Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments. Land 2020, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Kollmuss, A.; Agyeman, J. Mind the Gap: Why Do People Act Environmentally and What Are the Barriers to pro-Environmental Behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Bartiaux, F. Does Environmental Information Overcome Practice Compartmentalisation and Change Consumers’ Behaviours? J. Clean. Prod. 2008, 16, 1170–1180. [Google Scholar] [CrossRef]
- Austgulen, M.; Skuland, S.; Schjøll, A.; Alfnes, F. Consumer Readiness to Reduce Meat Consumption for the Purpose of Environmental Sustainability: Insights from Norway. Sustainability 2018, 10, 3058. [Google Scholar] [CrossRef] [Green Version]
- Heyl, K.; Ekardt, F. Barriers and Methodology in Transitioning to Sustainability: Analysing Web News Comments Concerning Animal-Based Diets. J. Clean. Prod. 2021, 330, 129857. [Google Scholar] [CrossRef]
- Webster, M. Incorporating Path Dependency into Decision-Analytic Methods: An Application to Global Climate-Change Policy. Decis. Anal. 2008, 5, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Happer, C.; Wellesley, L. Meat Consumption, Behaviour and the Media Environment: A Focus Group Analysis across Four Countries. Food Secur. 2019, 11, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Whitmarsh, L.; Player, L.; Jiongco, A.; James, M.; Williams, M.; Marks, E.; Kennedy-Williams, P. Climate Anxiety: What Predicts It and How Is It Related to Climate Action? J. Environ. Psychol. 2022, 83, 101866. [Google Scholar] [CrossRef]
- Williamson, K.A.; Thulin, E. Leveraging Emotion-Behavior Pathways to Support Environmental Behavior Change. E&S 2022, 27, art27. [Google Scholar] [CrossRef]
- Jansson, T.; Nordin, I.; Wilhelmsson, F.; Witzke, P.; Manevska-Tasevska, G.; Weiss, F.; Gocht, A. Coupled Agricultural Subsidies in the EU Undermine Climate Efforts. Appl. Econ. Perspect. Policy 2021, 43, 1503–1519. [Google Scholar] [CrossRef]
- Searchinger, T.; James, O.; Dumas, P.; Kastner, T.; Wirsenius, S. EU Climate Plan Sacrifices Carbon Storage and Biodiversity for Bioenergy. Nature 2022, 612, 27–30. [Google Scholar] [CrossRef]
- Smidt, G.A.; Landes, F.C.; Machado de Carvalho, L.; Koschinsky, A.; Schnug, E. Cadmium and Uranium in German and Brazilian Phosphorous Fertilizers. In The New Uranium Mining Boom: Challenge and Lessons learned; Merkel, B., Schipek, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 167–175. ISBN 978-3-642-22122-4. [Google Scholar]
- Leinweber, P.; Bathmann, U.; Buczko, U.; Douhaire, C.; Eichler-Löbermann, B.; Frossard, E.; Ekardt, F.; Jarvie, H.; Krämer, I.; Kabbe, C.; et al. Handling the Phosphorus Paradox in Agriculture and Natural Ecosystems: Scarcity, Necessity, and Burden of P. Ambio 2018, 47, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, S.A.; Doody, D.G.; Johnston, C.; Forber, K.J.; Cencic, O.; Rechberger, H.; Withers, P.J.A. Phosphorus Stocks and Flows in an Intensive Livestock Dominated Food System. Resour. Conserv. Recycl. 2020, 163, 105065. [Google Scholar] [CrossRef]
- Buczko, U.; Steinfurth, K.; Van Laak, M. Meta-Analysis of the yield response to phosphorus fertilization based on long-term field experiments. AgricultForest 2019, 65, 7–14. [Google Scholar] [CrossRef]
- Withers, P.; Doody, D.; Sylvester-Bradley, R. Achieving Sustainable Phosphorus Use in Food Systems through Circularisation. Sustainability 2018, 10, 1804. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, J. Phosphor-Governance in ländervergleichender Perspektive—Deutschland, Costa Rica, Nicaragua; Metropolis-Verlag: Hessen, Germany, 2019. [Google Scholar]
- Vitow, N.; Zicker, T.; Chiba, A.; Zacher, A.; Eichler-Löbermann, B.; Schulz, S.; Schloter, M.; Baum, C.; Leinweber, P. Impact of the Legume Catch Crop Serradella on Subsequent Growth and P Mobilization under Barley in Different Fertilization Treatments. Agronomy 2021, 11, 2437. [Google Scholar] [CrossRef]
- Zacher, A.; Leinweber, P.; Panten, K. Sulfur-Enriched Bone Char Enhances P Uptake by Maize in a Perennial Pot Experiment. J. Cultiv. Plants 2022, 74, 124–133. [Google Scholar] [CrossRef]
- Robinson, J.S.; Baumann, K.; Hu, Y.; Hagemann, P.; Kebelmann, L.; Leinweber, P. Phosphorus Transformations in Plant-Based and Bio-Waste Materials Induced by Pyrolysis. Ambio 2018, 47, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prüter, J.; Strauch, S.M.; Wenzel, L.C.; Klysubun, W.; Palm, H.W.; Leinweber, P. Organic Matter Composition and Phosphorus Speciation of Solid Waste from an African Catfish Recirculating Aquaculture System. Agriculture 2020, 10, 466. [Google Scholar] [CrossRef]
- Zicker, T.; Kavka, M.; Bachmann-Pfabe, S.; Eichler-Löbermann, B. Long-Term Phosphorus Supply with Undigested and Digested Slurries and Their Agronomic Effects under Field Conditions. Biomass Bioenergy 2020, 139, 105665. [Google Scholar] [CrossRef]
- Oster, M.; Reyer, H.; Keiler, J.; Ball, E.; Mulvenna, C.; Ponsuksili, S.; Wimmers, K. Comfrey (Symphytum Spp.) as a Feed Supplement in Pig Nutrition Contributes to Regional Resource Cycles. Sci. Total Environ. 2021, 796, 148988. [Google Scholar] [CrossRef]
- Garske, B.; Ekardt, F. Economic Policy Instruments for Sustainable Phosphorus Management: Taking into Account Climate and Biodiversity Targets. Environ. Sci. Eur. 2021, 33, 56. [Google Scholar] [CrossRef]
- Tong, B.; Zhang, L.; Hou, Y.; Oenema, O.; Long, W.; Velthof, G.; Ma, W.; Zhang, F. Lower Pork Consumption and Technological Change in Feed Production Can Reduce the Pork Supply Chain Environmental Footprint in China. Nat. Food 2022, 1–10. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Forber, K.G.; Lyon, C.; Rothwell, S.; Doody, D.G.; Jarvie, H.P.; Martin-Ortega, J.; Jacobs, B.; Cordell, D.; Patton, M.; et al. Towards Resolving the Phosphorus Chaos Created by Food Systems. Ambio 2020, 49, 1076–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HELCOM. Sources and Pathways of Nutrients to the Baltic Sea [HELCOM PLC-6] [Baltic Sea Environment Proceedings No. 153]; HELCOM: Helsinki, Finland, 2018. [Google Scholar]
- German Environment Agency (Umweltbundesamt). Nährstoffeinträge über Flüsse und Direkteinleiter in die Ostsee. Available online: https://www.umweltbundesamt.de/daten/wasser/ostsee/naehrstoffeintraege-ueber-fluesse-direkteinleiter#zustandsbewertung-der-ostsee (accessed on 5 January 2023).
- German Environment Agency (Umweltbundesamt). Gewässer in Deutschland: Zustand und Bewertung; German Environment Agency (Umweltbundesamt): Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Statistisches Amt Mecklenburg Vorpommern. Statistisches Taschenbuch 2022 Mecklenburg Vorpommern; Statistisches Amt Mecklenburg Vorpommern: Schwerin, Germany, 2022. [Google Scholar]
- Reusch, T.B.H.; Dierking, J.; Andersson, H.C.; Bonsdorff, E.; Carstensen, J.; Casini, M.; Czajkowski, M.; Hasler, B.; Hinsby, K.; Hyytiäinen, K.; et al. The Baltic Sea as a Time Machine for the Future Coastal Ocean. Sci. Adv. 2018, 4, eaar8195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry for Climate Protection, Agriculture, Rural Areas and the Environment. Darstellung und Erläuterung der Neuen Gemeinsamen Agrarpolitik Sowie der Verschiedenen Kombinationsmöglichkeiten in der 1. und 2. Säule; Ministry for Climate Protection, Agriculture, Rural Areas and the Environment: Schwerin, Germany, 2022. [Google Scholar]
- European Parliament; Directorate General for Parliamentary Research Services. The Common Agricultural Policy at 60: A Growing Role and Influence for the European Parliament.; Publications Office: Luxemburg, 2022. [Google Scholar]
- European Commission. Common Agricultural Policy Funds. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/financing-cap/cap-funds_en (accessed on 8 January 2023).
- Nègre, F. Financing of the CAP [Fact Sheets on the European Union]; European Parliament: Brussels, Belgium, 2022. [Google Scholar]
- Nègre, F. The Common Agricultural Policy in Figures [Fact Sheet]; European Parliament: Brussels, Belgium, 2022. [Google Scholar]
- Federal Ministry of Food and Agriculture. Den Wandel gestalten! Zusammenfassung zum GAP-Strategieplan 2023–2027. (Stand: 30. September 2022); Federal Ministry of Food and Agriculture: Berlin, Germany, 2022. [Google Scholar]
- Federal Ministry of Food and Agriculture. Mittelvolumen für 2014–2022 in Deutschland. Available online: https://www.bmel.de/DE/themen/laendliche-regionen/foerderung-des-laendlichen-raumes/eu-foerderung/eler-2014-2020-umsetzung.html#doc21780bodyText2 (accessed on 25 July 2022).
- Lakner, S.; Schleyer, C.; Schmidt, J.; Zinngrebe, Y. Agricultural Policy for Biodiversity: Facilitators and Barriers for Transformation. In Transitioning to Sustainable Life on Land; MDPI: Basel, Switzerland, 2021. [Google Scholar]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global Phosphorus Shortage Will Be Aggravated by Soil Erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of Soil Loss by Water Erosion in Europe by 2050. Environ. Sci. Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Schlacke, S. Umweltrecht; Nomos Verlagsgesellschaft mbH & Co. KG: Baden-Baden, Germany, 2021; ISBN 978-3-7489-0298-0. [Google Scholar]
- Tynkkynen, N.; Schönach, P.; Pihlajamäki, M.; Nechiporuk, D. The Governance of the Mitigation of the Baltic Sea Eutrophication: Exploring the Challenges of the Formal Governing System. Ambio 2014, 43, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backer, H.; Leppänen, J.-M.; Brusendorff, A.C.; Forsius, K.; Stankiewicz, M.; Mehtonen, J.; Pyhälä, M.; Laamanen, M.; Paulomäki, H.; Vlasov, N.; et al. HELCOM Baltic Sea Action Plan—A Regional Programme of Measures for the Marine Environment Based on the Ecosystem Approach. Mar. Pollut. Bull. 2010, 60, 642–649. [Google Scholar] [CrossRef]
- Nilsson, A.K.; Bohman, B. Legal Prerequisites for Ecosystem-Based Management in the Baltic Sea Area: The Example of Eutrophication. Ambio 2015, 44, 370–380. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. HELCOM Baltic Sea Action Plan; HELCOM: Helsinki, Finland, 2007. [Google Scholar]
- Markowska, A.; Żylicz, T. Costing an International Public Good: The Case of the Baltic Sea. Ecol. Econ. 1999, 30, 301–316. [Google Scholar] [CrossRef]
- Bromley, D.W.; Hodge, I. Private Property Rights and Presumptive Policy Entitlements: Reconsidering the Premises of Rural Policy. Eur. Rev. Agric. Econ. 1990, 17, 197–214. [Google Scholar] [CrossRef]
- HELCOM. Evaluation of the 2017 Progress towards Updated Nutrient Input Ceilings; HELCOM: Helsinki, Finland, 2022. [Google Scholar]
- Federal Ministry of Food and Agriculture DE. GAP-Strategieplan für die Bundesrepublik Deutschland; Version 1.1; Federal Ministry of Food and Agriculture DE: Berlin, Germany, 2022. [Google Scholar]
- Schneider, C.; Köder, L. Bodenschutz in der Gemeinsamen Agrarpolitik der EU (GAP). Bodenschutz 2019, 3, 90–97. [Google Scholar] [CrossRef]
- Heyl, K.; Döring, T.; Garske, B.; Stubenrauch, J.; Ekardt, F. The Common Agricultural Policy beyond 2020: A Critical Review in Light of Global Environmental Goals. Rev. Eur. Comp. Int. Environ. Law 2021, 30, 95–106. [Google Scholar] [CrossRef]
- Pe’er, G.; Finn, J.A.; Díaz, M.; Birkenstock, M.; Lakner, S.; Röder, N.; Kazakova, Y.; Šumrada, T.; Bezák, P.; Concepción, E.D.; et al. How Can the European Common Agricultural Policy Help Halt Biodiversity Loss? Recommendations by over 300 Experts. Conserv. Lett. 2022, 15, e12901. [Google Scholar] [CrossRef]
- Runge, T.; Latacz-Lohmann, U.; Schaller, L.; Todorova, K.; Daugbjerg, C.; Termansen, M.; Liira, J.; Le Gloux, F.; Dupraz, P.; Leppanen, J.; et al. Implementation of Eco-schemes in Fifteen European Union Member States. EuroChoices 2022, 21, 19–27. [Google Scholar] [CrossRef]
- Bitschofsky, F.; Nausch, M. Spatial and Seasonal Variations in Phosphorus Speciation along a River in a Lowland Catchment (Warnow, Germany). Sci. Total Environ. 2019, 657, 671–685. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Zak, D.; Kronvang, B.; Kjaergaard, C.; Carstensen, M.V.; Audet, J. An Overview of Nutrient Transport Mitigation Measures for Improvement of Water Quality in Denmark. Ecol. Eng. 2020, 155, 105863. [Google Scholar] [CrossRef]
- Bieroza, M.Z.; Bol, R.; Glendell, M. What Is the Deal with the Green Deal: Will the New Strategy Help to Improve European Freshwater Quality beyond the Water Framework Directive? Sci. Total Environ. 2021, 791, 148080. [Google Scholar] [CrossRef]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The Role of Agri-environment Schemes in Conservation and Environmental Management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, S.P.; Mills, J.; Chiswell, H. Developing Payment-by-Results Approaches for Agri-Environment Schemes: Experience from an Arable Trial in England. Land Use Policy 2021, 109, 105698. [Google Scholar] [CrossRef]
- Staggenborg, J.; Anthes, N. Long-term Fallows Rate Best among Agri-environment Scheme Effects on Farmland Birds—A Meta-analysis. Conserv. Lett. 2022, 15, e12904. [Google Scholar] [CrossRef]
- European Commission. Anlage. Bemerkungen zum GAP-Strategieplan von Deutschland; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Hasler, B.; Czajkowski, M.; Elofsson, K.; Hansen, L.B.; Konrad, M.T.; Nielsen, H.Ø.; Niskanen, O.; Nõmmann, T.; Pedersen, A.B.; Peterson, K.; et al. Farmers’ Preferences for Nutrient and Climate-Related Agri-Environmental Schemes: A Cross-Country Comparison. Ambio 2019, 48, 1290–1303. [Google Scholar] [CrossRef] [PubMed]
- Mack, G.; Ritzel, C.; Jan, P. Determinants for the Implementation of Action-, Result- and Multi-Actor-Oriented Agri-Environment Schemes in Switzerland. Ecol. Econ. 2020, 176, 106715. [Google Scholar] [CrossRef]
- Arbeitsgemeinschaft bäuerliche Landwirtschaft. GAP-Strategieplan Anpassen, Prämien der Öko-Regelungen Anheben. AbL zur Kurzstellungnahme des BMEL zu den Bemerkungen zum GAP-Strategieplan von Deutschland. Available online: https://www.abl-ev.de/apendix/news/details/gap-strategieplan-anpassen-praemien-der-oeko-regelungen-anheben (accessed on 10 November 2022).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Ensuring Availability and Affordability of Fertilisers [COM(2022) 590 Final]. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022DC0590&qid=1668196358061 (accessed on 8 January 2023).
- The World Bank. Commodity Markets Outlook. The Impact of the War in Ukraine on Commodity Markets. Commodity Market Outlook; The World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Candel, J.J.L.; Lakner, S.; Pe’er, G. Europe’s Reformed Agricultural Policy Disappoints. Nature 2021, 595, 650. [Google Scholar] [CrossRef]
- Scown, M.W.; Brady, M.V.; Nicholas, K.A. Billions in Misspent EU Agricultural Subsidies Could Support the Sustainable Development Goals. One Earth 2020, 3, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Šumrada, T.; Lovec, M.; Juvančič, L.; Rac, I.; Erjavec, E. Fit for the Task? Integration of Biodiversity Policy into the Post-2020 Common Agricultural Policy: Illustration on the Case of Slovenia. J. Nat. Conserv. 2020, 54, 125804. [Google Scholar] [CrossRef]
- Raffelsiefen, M. The EU Common Agricultural Policy and Its Contribution to the Protection and Sustainable Use of Soils: New Approaches for the Period 2021–2027. In International Yearbook of Soil Law and Policy 2019; Ginzky, H., Dooley, E., Heuser, I.L., Kasimbazi, E., Kibugi, R., Markus, T., Qin, T., Ruppel, O., Eds.; International Yearbook of Soil Law and Policy; Springer International Publishing: Cham, Switzerland, 2021; Volume 2019, pp. 335–354. ISBN 978-3-030-52316-9. [Google Scholar]
- Sabev, D.; Kopečný, O.; Trošok, M.; Kotecký, V.; Máriás, L.; Rizea, A.; Calistru, A. Where Does the EU Money Go? An Analysis of the Implementation of CAP Funds in Bulgaria, the Czech Republic, Hungary, Slovakia and Romania. In A Report Commissioned by the Greens/EFA Group in the European Parliament; The Greens/EFA: Brussels, Belgium, 2021. [Google Scholar]
- European Court of Auditors. The Commission’s Response to Fraud in the Common Agricultural Policy. Time to Dig Deeper; European Union: Luxemburg, 2022. [Google Scholar]
- Pe’er, G.; Dicks, L.; Visconti, P.; Arlettaz, R.; Báldi, A.; Benton, T.; Collins, S.; Dieterich, M.; Gregory, R.; Hartig, F.; et al. EU Agricultural Reform Fails on Biodiversity. Science 2014, 344, 1090–1092. [Google Scholar] [CrossRef]
- Jansson, T.; Andersen, H.E.; Gustafsson, B.G.; Hasler, B.; Höglind, L.; Choi, H. Baltic Sea Eutrophication Status Is Not Improved by the First Pillar of the European Union Common Agricultural Policy. Reg. Environ. Chang. 2019, 19, 2465–2476. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R.A.; Eitzel, M. A Review of Vegetated Buffers and a Meta-Analysis of Their Mitigation Efficacy in Reducing Nonpoint Source Pollution. J. Environ. Qual. 2010, 39, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Sidemo-Holm, W.; Smith, H.G.; Brady, M.V. Improving Agricultural Pollution Abatement through Result-Based Payment Schemes. Land Use Policy 2018, 77, 209–219. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Environmental Implementation Review 2022. Turning the Tide through Environmental Compliance [COM(2022) 438 Final]. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=comnat%3ACOM_2022_0438_FIN (accessed on 8 January 2023).
- Jetoo, S. Multi-Level Governance Innovations of the Baltic Sea and the North American Great Lakes: New Actors and Their Roles in Building Adaptive Capacity for Eutrophication Governance. Mar. Policy 2018, 98, 237–245. [Google Scholar] [CrossRef]
- Ekardt, F.; Wieding, J.; Garske, B.; Stubenrauch, J. Agriculture-Related Climate Policies—Law and Governance Issues on the European and Global Level. Carbon Clim. Law Rev. 2018, 12, 316–331. [Google Scholar] [CrossRef]
- Weishaupt, A.; Ekardt, F.; Garske, B.; Stubenrauch, J.; Wieding, J. Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels. Sustainability 2020, 12, 2053. [Google Scholar] [CrossRef] [Green Version]
- Ekardt, F.; Wieding, J.; Zorn, A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability 2018, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Ekardt, F.; Bärenwaldt, M.; Heyl, K. The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets. Environments 2022, 9, 112. [Google Scholar] [CrossRef]
Maximum Allowable Input of Total Phosphorus (Tonnes/Year) | Net Nutrient Input Ceiling of Phosphorus of Germany (Tonnes/Year) | Estimated Phosphorus Inputs 2017 Including Uncertainty (Tonnes) | P Input Ceilings Fulfilment (Tonnes) | ||
---|---|---|---|---|---|
Baltic Sea sub-basins | Kattegat | 1687 | |||
Danish Straits | 1601 | 401 | 350 | +51 | |
Baltic Proper | 7360 | 109 | 481 | −372 | |
Bothnian Sea | 2773 | ||||
Bothnian Bay | 2675 | ||||
Gulf of Riga | 2020 | ||||
Gulf of Finland | 3600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heyl, K. Reducing Phosphorus Input into the Baltic Sea—An Assessment of the Updated Baltic Sea Action Plan and Its Implementation through the Common Agricultural Policy in Germany. Water 2023, 15, 315. https://doi.org/10.3390/w15020315
Heyl K. Reducing Phosphorus Input into the Baltic Sea—An Assessment of the Updated Baltic Sea Action Plan and Its Implementation through the Common Agricultural Policy in Germany. Water. 2023; 15(2):315. https://doi.org/10.3390/w15020315
Chicago/Turabian StyleHeyl, Katharine. 2023. "Reducing Phosphorus Input into the Baltic Sea—An Assessment of the Updated Baltic Sea Action Plan and Its Implementation through the Common Agricultural Policy in Germany" Water 15, no. 2: 315. https://doi.org/10.3390/w15020315