Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Analysis
2.3.1. Nemero Index Method
2.3.2. Potential Ecological Risk
3. Results and Discussion
3.1. Typical Heavy Metal Loadings in Sludge
3.2. Distribution Characteristics of Heavy Metals in Sludge
3.3. Effects of Sewage Sources and Wastewater Treatment Processes on Heavy Metal Levels
3.4. Potential Risks of Heavy Metals in Sludge
3.4.1. Analysis of the Sources of Heavy Metal Contamination in Sludge
3.4.2. Evaluation of the Degree of Heavy Metal Contamination and Ecological Risk of Sludge
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kacprzak, M.; Neczaj, E.; Fijalkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almas, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.K.; Lo, S.L. Sludge: A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, H.; Tan, Y.K.; Chen, G.H.; Hao, T.W. Emerging electrochemistry-based process for sludge treatment and resources recovery: A review. Water Res. 2022, 209, 117939. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef]
- Romero-Guiza, M.S.; Vila, J.J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Stasinakis, A.S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 2015, 524, 81–92. [Google Scholar] [CrossRef]
- Zhou, G.J.; Lin, L.; Li, X.Y.; Leung, K.M.Y. Removal of emerging contaminants from wastewater during chemically enhanced primary sedimentation and acidogenic sludge fermentation. Water Res. 2020, 175, 115646. [Google Scholar] [CrossRef]
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to Recover Nutrients from Waste Streams: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 385–427. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.G.; Hu, J.J.; Lee, D.J.; Chang, Y.J.; Lee, Y.J. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159–1172. [Google Scholar] [CrossRef]
- Siebielska, I. Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures. Water Sci. Technol. 2014, 70, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Tytla, M.; Widziewicz, K.; Zielewicz, E. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.Q.; Wei, C.; Ke, X.; Pan, J.M.; Wei, G.R.; Chen, Y.; Wei, C.H.; Li, F.S.; Preis, S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. J. Hazard. Mater. 2022, 437, 129267. [Google Scholar] [CrossRef] [PubMed]
- Praspaliauskas, M.; Pedisius, N. A review of sludge characteristics in Lithuania’s wastewater treatment plants and perspectives of its usage in thermal processes. Renew. Sustain. Energy Rev. 2017, 67, 899–907. [Google Scholar] [CrossRef]
- Feng, J.J.; Jia, L.; Liu, Q.Z.; Chen, X.L.; Cheng, J.P. Source identification of heavy metals in sewage sludge and the effect of influent characteristics: A case study from China. Urban Water J. 2018, 15, 381–387. [Google Scholar] [CrossRef]
- Guo, G.; Chen, T.; Yang, J.; Zheng, G.; Gao, D. Regional distribution characteristics and variation of heavy metals in sewage sludge of China. Acta Sci. Circumstantiae 2014, 34, 2455–2461. [Google Scholar]
- Chen, S.Y.; IOP. Occurrence Characteristics and Ecological Risk Assessment of Heavy Metals in Sewage Sludge. In Proceedings of the 5th International Conference on Energy Materials and Environment Engineering (ICEMEE), Kuala Lumpur, Malaysia, 12–14 April 2019. [Google Scholar]
- Hou, H.; Zhao, L.; Zhang, J.; Xu, Y.F.; Yan, Z.G.; Bai, L.P.; Li, F.S. Organochlorine pesticides and polychlorinated biphenyls in soils surrounding the Tanggu Chemical Industrial District of Tianjin, China. Environ. Sci. Pollut. Res. 2013, 20, 3366–3380. [Google Scholar] [CrossRef]
- Yang, J.; Gao, D.; Chen, T.B.; Lei, M.; Zheng, G.D.; Zhou, X.Y. Comparison of heavy metal removal efficiencies in four activated sludge processes. J. Cent. South Univ. 2015, 22, 3788–3794. [Google Scholar] [CrossRef]
- Kowalik, R.; Latosinska, J.; Metryka-Telka, M.; Porowski, R.; Gawdzik, J. Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology. Membranes 2021, 11, 722. [Google Scholar] [CrossRef]
- Riaz, U.; Murtaza, G.; Saifullah; Farooq, M. Influence of different sewage sludges and composts on growth, yield, and trace elements accumulation in rice and wheat. Land Degrad. Dev. 2018, 29, 1343–1352. [Google Scholar] [CrossRef]
- Panseriya, H.Z.; Gosai, H.B.; Sankhwal, A.O.; Sachaniya, B.K.; Gavali, D.J.; Dave, B.P. Distribution, speciation and risk assessment of heavy metals: Geochemical exploration of Gulf of Kachchh, Gujarat, India. Environ. Earth Sci. 2020, 79, 1–10. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.M.; Xu, L.B.; Wang, Q.R.; Guo, L.J.; Miao, Y.X.; Shen, Z.Y. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Sun, J.X.; Zhao, M.L.; Ni, Y.Y.; Wang, X.R.; Fan, Z.Q. Seasonal Variation and Contamination Risk Assessment of Heavy Metals in Surface Sediment of an Estuary Alluvial Island in Eastern China. Bull. Environ. Contam. Toxicol. 2022, 108, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Ntzala, G.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Papadopoulos, A.H. Impact of sludge and wastewater on lactuca sativa l growth and on soil pollution. Glob. Nest J. 2015, 17, 148–161. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Kundu, G.K. Heavy metals in the industrial sludge and their ecological risk: A case study for a developing country. J. Geochem. Explor. 2017, 172, 41–49. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution-control—A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Masunaga, S. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ. 2015, 512, 94–102. [Google Scholar] [CrossRef]
- Geng, Y.M.; Zhang, C.B.; Zhang, Y.; Huang, D.D.; Yan, S.X.; Sun, T.F.; Wang, J.; Mao, Y.X. Heavy metal(loid)s in sewage sludge in China: Concentrations and spatial-temporal variations. Environ. Sci. Pollut. Res. 2021, 28, 29146–29156. [Google Scholar] [CrossRef]
- Ito, A.; Kusanagi, J.; Matsukura, T.; Aizawa, J.; Umita, T. Relationship between partition of heavy metals in sewage sludge and elution of heavy metals. Water Sci. Technol. 2002, 46, 25–32. [Google Scholar] [CrossRef]
- Merrigton, G.; Oliver, I.; Smernik, R.J.; McLaughlin, M.J. The influence of sewage sludge properties on sludge-borne metal availability. Adv. Environ. Res. 2003, 8, 21–36. [Google Scholar] [CrossRef]
- Kouki, S.; Saidi, N.; M’Hiri, F.; Hafiane, A.; Hassen, A. Co-Composting of Macrophyte Biomass and Sludge as an Alternative for Sustainable Management of Constructed Wetland By-Products. Clean-Soil Air Water 2016, 44, 694–702. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Baroutian, S.; Munir, M.T.; Young, B.R. Variation in metals during wet oxidation of sewage sludge. Bioresour. Technol. 2017, 245, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Chen, L.; Yan, C.; Yan, Y.; Chi, Q. Assessment of metal contamination in coastal sediments of the Maluan Bay (China) using geochemical indices and multivariate statistical approaches. Mar. Pollut. Bull. 2015, 99, 43–53. [Google Scholar] [CrossRef] [PubMed]
- El Hammoudani, Y.; Dimane, F. Assessing behavior and fate of micropollutants during wastewater treatment: Statistical analysis. Environ. Eng. Res. 2021, 26, 200359. [Google Scholar] [CrossRef]
- Busetti, F.; Badoer, S.; Cuomo, M.; Rubino, B.; Traverso, P. Occurrence and removal of potentially toxic metals and heavy metals in the wastewater treatment plant of fusina (Venice, Italy). Ind. Eng. Chem. Res. 2005, 44, 9264–9272. [Google Scholar] [CrossRef]
- Filipovic, J.; Grcic, I.; Bermanec, V.; Kniewald, G. Monitoring of total metal concentration in sludge samples: Case study for the mechanical-biological wastewater treatment plant in Velika Gorica, Croatia. Sci. Total Environ. 2013, 447, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, U.; Brorstrom-Lunden, E.; Kylin, H.; Haglund, P. Comprehensive mass flow analysis of Swedish sludge contaminants. Chemosphere 2013, 90, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Yakamercan, E.; Ari, A.; Aygun, A. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. J. Clean. Prod. 2021, 319, 128568. [Google Scholar] [CrossRef]
- Chen, M.H.; Oshita, K.; Mahzoun, Y.; Takaoka, M.; Fukutani, S.; Shiota, K. Survey of elemental composition in dewatered sludge in Japan. Sci. Total Environ. 2021, 752, 141857. [Google Scholar] [CrossRef]
- Westerhoff, P.; Lee, S.; Yang, Y.; Gordon, G.W.; Hristovski, K.; Halden, R.U.; Herckes, P. Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from US Wastewater Treatment Plants Nationwide. Environ. Sci. Technol. 2015, 49, 9479–9488. [Google Scholar] [CrossRef]
- Tang, J.; Tang, H.J.; Sima, W.P.; Wang, H.Y.; Zou, D.B.; Qiu, B.A.; Qu, J.; Liang, R.; Dong, J.W.; Liao, Y.; et al. Heavy metal pollution level and potential ecological risk assessment of sludge landfill. Environ. Prog. Sustain. Energy 2022, 41, e13795. [Google Scholar] [CrossRef]
- Yang, T.; Huang, H.-j.; Lai, F.-y. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China. Trans. Nonferrous Met. Soc. China 2017, 27, 2249–2259. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; Wei, Z.; Chen, Y.; Hei, L.; Wu, Q.-T. Indirect application of sludge for recycling in agriculture to minimize heavy metal contamination of soil. Resour. Conserv. Recycl. 2021, 166, 105358. [Google Scholar] [CrossRef]
- Duan, B.; Feng, Q. Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province. Int. J. Environ. Res. Public Health 2022, 19, 4236. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, J.; Li, Y.; Zhou, J.; Jia, Z.-M.; Yu, F.; Zhang, Y.-Y.; Jiang, Y.-L. Zoning and Safe Utilization Method of Heavy Metal Contaminated Cultivated Land at Block Scale. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 4190–4198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Chen, S.Y.; Ai, F.T.; Jin, L.M.; Zhu, N.Z.; Meng, X.Z. Identification of industrial sewage sludge based on heavy metal profiles: A case study of printing and dyeing industry. Environ. Sci. Pollut. Res. 2022, 29, 12377–12386. [Google Scholar] [CrossRef]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Fei, Y.; Jiabin, W.; Rui, W.; Yu, W.; Huan, N.M.; Yunyi, Z.; Liming, S.; Jinxiu, D. Analysis and risk evaluation of heavy metal sources in arable soils in a high geological background area based on township scale. Environ. Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- Zhang, L.J.; Xu, H.; Yang, H.; Du, S.H. Source Identification and Health Risk Assessment of Heavy Metals in the Soil from a Typical Agricultural Area in the Sanjiang Plain, China. Chiang Mai J. Sci. 2020, 47, 973–983. [Google Scholar]
- Espinoza-Guillen, J.A.; Alderete-Malpartida, M.B.; Gallegos-Huaman, R.L.; Paz-Rosales, Y.M.; Dominguez-Vivar, R.M.; Bujaico-Leon, C. Ecological risk assessment and identification of sources of heavy metals contamination in sewage sludge from municipal wastewater treatment plants in the Metropolitan Area of Lima-Callao, Peru. Environ. Dev. Sustain. 2022, 1–32. [Google Scholar] [CrossRef]
- Han, L.; Xu, X.-B. Quantitative Evaluation of Human Health Risk of Heavy Metals in Soils Based on Positive Matrix Factorization Model and Geo-statistics. Environ. Sci. 2020, 41, 5114–5124. [Google Scholar] [CrossRef]
No. | City | Region | Size /(Million m3·d−1) | Proportion of Industrial Wastewater /(%) | pH | Heavy Metals/(mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Ni | Cd | Zn | Pb | As | Cr | Hg | ||||||
A | Nanjing | South | 67 | 0 | 7 | 74 | 115 | 0.5 | 1450 | 16 | 40.8 | 90 | 15.2 |
B | Zhenjiang | Central | 2 | 8 | 6.69 | 196 | 50 | 0.66 | 2760 | 79 | 33.4 | 113 | 1.13 |
C | Zhenjiang | Central | 4 | 2 | 7.51 | 94 | 15 | 0.65 | 326 | 10 | 12.2 | 21 | 1.98 |
D | Yangzhou | Central | 26 | 10 | 6.91 | 193 | 129 | 0.69 | 1210 | 26 | 34.1 | 99 | 1.18 |
E | Taizhou | Central | 8 | 7 | 6.29 | 59 | 82 | 0.83 | 387 | 24 | 20.3 | 80 | 0.67 |
F | Yancheng | North | 10 | 0 | 6.06 | 28 | 9 | 0.26 | 154 | \ | 13.7 | 10 | 0.9 |
G | Huai’an | North | 10.5 | 20 | 7.01 | 64 | 32 | 0.5 | 477 | 60 | 27.9 | 31 | 1.23 |
H | Huai’an | North | 10 | 0 | 9.99 | 46 | 20 | 0.35 | 1380 | 35 | 41.6 | 24 | 0.76 |
I | Suqian | North | 1.5 | 33 | 7.27 | 91 | 262 | 2.77 | 2920 | 22 | 30.6 | 136 | 19.5 |
J | Suqian | North | 6 | 20 | 6.84 | 69 | 58 | 0.33 | 2970 | 12 | 19.6 | 126 | 1.25 |
K | Xuzhou | North | 20 | 5 | 7.36 | 61 | 34 | 0.58 | 668 | \ | 28.4 | 60 | 1.96 |
L | Changzhou | South | 20 | 5 | 5.94 | 1150 | 56 | 1.16 | 1040 | 74 | 22.8 | 79 | 1.31 |
M | Wuxi | South | 6 | 56 | 9.16 | 368 | 19 | 0.49 | 435 | 14 | 17.5 | 36 | 1.09 |
N | Wuxi | South | 3 | 30 | 7.9 | 75 | 20 | 0.54 | 346 | 47 | 25.7 | 43 | 1.41 |
O | Nantong | Middle | 15 | 15-20 | 9.62 | 69 | 20 | 0.55 | 523 | 25 | 27.1 | 48 | 0.99 |
P | Nantong | Middle | 12.8 | 60 | 8.31 | 94 | 121 | 0.33 | 1380 | \ | 31.1 | 43 | 0.72 |
Q | Lianyungang | North | 12 | 0 | 6.77 | 92 | 96 | 0.84 | 512 | 70 | 33.5 | 70 | 1.84 |
R | Lianyungang | North | 4 | 20 | 7.16 | 60 | 20 | 0.81 | 383 | \ | 35 | 45 | 1.69 |
S | Suzhou | South | 3 | 2 | \ | 68 | 9 | 0.21 | 193 | 14 | 12.7 | 73 | 1.65 |
T | Suzhou | South | 6 | 0 | 6.74 | 282 | 60 | 0.83 | 722 | 32 | 16.5 | 68 | 1.68 |
Average | 7.4 | 161.65 | 58.53 | 0.7 | 1011.8 | 36.27 | 25.46 | 63.42 | 2.26 |
Region | Heavy Metals/(mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Cd | Zn | Pb | As | Cr | Hg | |
Thessaloniki, Greece [35] | 79 | 770 | 3.3 | 470 | 39 | 40 | ||
Venice, Italy [36] | 108 | 46 | 1 | 356 | 31.1 | 8.4 | 17.8 | |
Velika Gorica, Croatia [37] | 630 | 109 | 3.06 | 137 | 74.8 | 2.54 | ||
Sweden [38] | 280 | 12 | 0.78 | 560 | 21 | 3.4 | 21 | 0.57 |
United Kingdom [39] | 562 | 59 | 3.5 | 778 | 221.5 | 160 | ||
Japan [40] | 255 | 40 | 2.3 | 979 | 53 | 69 | ||
Turkey summer [39] | 147 | 75 | 1.7 | 1133 | 64.2 | 9.4 | 111 | 0.7 |
Turkey winter [39] | 161 | 72 | 2.0 | 1299 | 92.8 | 6.5 | 145 | 0.9 |
USA [41] | 436 | 28 | 3.6 | 620 | 24.0 | 10.0 | 36 | |
China [13] | 259 | 56.22 | 10.78 | 906.73 | 81.74 | 28.01 | 188.37 | 4.41 |
Shenyang, China [42] | 821 | 54.7 | 3.54 | 666 | 50.9 | 11.9 | 68.4 | 4.32 |
Nanchang, China [43] | 383 | 693 | 11.7 | 609 | 113 | 113 | ||
Guangzhou, China [44] | 112.7 | 0.841 | 389.9 | 44.72 | ||||
Shanxi, China [45] | 175.99 | 2.71 | 146.03 | 45.09 | 15.1 | 126.68 | 2.85 | |
Jiangsu, China | 111.61 | 58.53 | 0.7 | 427.17 | 36.27 | 25.46 | 63.42 | 2.26 |
Region | Heavy Metals/(mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Cd | Zn | Pb | As | Cr | Hg | |
Northern Jiangsu | 63.88 | 66.38 | 0.81 | 1183.00 | 28.43 | 28.79 | 62.75 | 3.64 |
Central Jiangsu | 117.50 | 69.50 | 0.62 | 654.00 | 27.33 | 26.37 | 67.33 | 1.11 |
Southern Jiangsu | 230.46 | 54.21 | 0.63 | 600.60 | 31.03 | 23.31 | 64.19 | 1.24 |
Industries | Heavy Metals/(mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Cd | Zn | Pb | As | Cr | Hg | |
Metallurgy | 130 | 41 | 0.58 | 1618.5 | 69.5 | 30.65 | 72 | 1.18 |
Chemical | 69 | 58 | 0.33 | 2970 | 12 | 19.6 | 126 | 1.25 |
Food | 193 | 129 | 0.69 | 1210 | 26 | 34.1 | 99 | 1.18 |
Printing and dyeing | 94 | 121 | 0.33 | 1380 | 0 | 31.1 | 43 | 0.72 |
No industrial wastewater | 98.33 | 51.5 | 0.5 | 735.17 | 27.83 | 26.47 | 55.83 | 3.67 |
Processes | Heavy Metals/(mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Cd | Zn | Pb | As | Cr | Hg | |
AAO and deformation process | 85.5 | 65.91 | 0.88 | 468 | 41.78 | 26.44 | 73.55 | 3.05 |
SBR and deformation process | 137.67 | 51.17 | 0.42 | 282 | 25.25 | 22.47 | 50.67 | 1.16 |
Biofilter | 46 | 20 | 0.35 | 1380 | 35 | 41.6 | 24 | 0.76 |
OD and its deformation process | 282 | 60 | 0.83 | 722 | 32 | 16.5 | 68 | 1.68 |
Cu | Ni | Cd | Zn | Pb | As | Cr | Hg | Eigenvalue | Variance% | Cumulative% | |
---|---|---|---|---|---|---|---|---|---|---|---|
First principal component | 0.083 | 0.906 | 0.801 | 0.780 | 0.188 | 0.449 | 0.819 | 0.801 | 3.626 | 45.326 | 45.326 |
Second principal component | 0.835 | −0.156 | 0.078 | 0.045 | 0.824 | −0.066 | 0.141 | −0.331 | 1.541 | 19.263 | 64.589 |
Third principal component | −0.329 | −0.108 | −0.375 | 0.211 | 0.336 | 0.785 | −0.022 | −0.171 | 1.065 | 13.309 | 77.898 |
Element | Nemerow Pollution Coefficient P | Pollution Level | Potential Ecological Risk Coefficient Er | Potential Ecological Risk | Comprehensive Potential Ecological Risk Index RI | Degree of Comprehensive Potential Ecological Risk |
---|---|---|---|---|---|---|
Cu | 0.32 | clean | 8.08 | slight | 161.65 | moderate |
Ni | 0.61 | clean | 3.07 | slight | 61.35 | low |
Cd | 0.23 | clean | 69.4 | medium | 1388 | severe |
Zn | 0.67 | clean | 4.05 | slight | 80.94 | low |
Pb | 0.09 | clean | 1.17 | slight | 23.33 | low |
As | 0.87 | still clean | 8.74 | slight | 174.85 | moderate |
Cr | 0.13 | clean | 0.65 | slight | 12.95 | low |
Hg | 0.97 | still clean | 48.45 | medium | 968.92 | severe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Li, H.; Wang, Y.; Wen, G.; Wang, C. Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks. Water 2023, 15, 313. https://doi.org/10.3390/w15020313
Xiao D, Li H, Wang Y, Wen G, Wang C. Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks. Water. 2023; 15(2):313. https://doi.org/10.3390/w15020313
Chicago/Turabian StyleXiao, Dandan, He Li, Yizhuo Wang, Guixin Wen, and Chencheng Wang. 2023. "Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks" Water 15, no. 2: 313. https://doi.org/10.3390/w15020313
APA StyleXiao, D., Li, H., Wang, Y., Wen, G., & Wang, C. (2023). Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks. Water, 15(2), 313. https://doi.org/10.3390/w15020313