Application of the Weighted Arithmetic Water Quality Index in Assessing Groundwater Quality: A Case Study of the South Gujarat Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Methods
- Select parameters to measure the quality of the groundwater;
- Quality ratings are scaled for each parameter;
- The unit weight (Wi) is calculated, and Wi is inversely dependent upon the standard value (Si) of the parameters recommended;
- Calculating the overall WQI by summing the subindex value.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, P.; Mehta, D.; Sharma, N. A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Supply 2022, 22, 5190–5205. [Google Scholar] [CrossRef]
- Chaudhari, A.N.; Mehta, D.J.; Sharma, D.; Neeraj, D. An assessment of groundwater quality in South-West zone of Surat city. Water Supply 2021, 21, 3000–3010. [Google Scholar] [CrossRef]
- Derdour, A.; Abdo, H.G.; Almohamad, H.; Alodah, A.; Al Dughairi, A.A.; Ghoneim, S.S.M.; Ali, E. Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments. Sustainability 2023, 15, 9687. [Google Scholar] [CrossRef]
- Kulisz, M.; Kujawska, J.; Przysucha, B.; Cel, W. Forecasting Water Quality Index in Groundwater Using Artificial Neural Network. Energies 2021, 14, 5875. [Google Scholar] [CrossRef]
- Patel, P.; Mehta, D.J.; Sharma, N.D. A GIS-based DRASTIC Model for Assessing Groundwater Quality Vulnerability: Case Study of Surat and its Surroundings. J. Geol. Soc. India 2023, 99, 578–582. [Google Scholar] [CrossRef]
- Rajput, D.; Mistry, K.; Bhoraniya, J.; Umrigar, J.; Waikhom, S.; Mehta, D. Assessing the Decadal Groundwater Level Fluctuation—A Case Study of Gujarat, India. LARHYSS J. 2023, 54, 175–191. [Google Scholar]
- Saqib, N.; Rai, P.K.; Kanga, S.; Kumar, D.; Đurin, B.; Singh, S.K. Assessment of Ground Water Quality of Lucknow City under GIS Framework Using Water Quality Index (WQI). Water 2023, 15, 3048. [Google Scholar]
- Azzirgue, E.M.; Cherif, E.K.; Tchakoucht, T.A.; El Azhari, H.; Salmoun, F. Testing Groundwater Quality in Jouamaa Hakama Region (North of Morocco) Using Water Quality Indices (WQIs) and Fuzzy Logic Method: An Exploratory Study. Water 2022, 14, 3028. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index-do we dare. Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Călmuc, V.A.; Călmuc, M.; Țopa, M.C.; Timofti, M.; Iticescu, C.; Georgescu, L.P. Various methods for calculating the water quality index. Analele Univ. “Dunărea De Jos” Din Galați. Mat. Fiz. Mec. Teor./Ann. “Dunarea De Jos” Univ. Galati. Fascicle II Math. Phys. Theor. Mech. 2018, 41, 171–178. [Google Scholar] [CrossRef]
- Mehta, D.; Patel, P.; Sharma, N.; Eslamian, S. Comparative analysis of DRASTIC and GOD model for groundwater vulnerability assessment. Model. Earth Syst. Environ. 2023, 6, 1–24. [Google Scholar] [CrossRef]
- Ram, A.; Tiwari, S.K.; Pandey, H.K.; Chaurasia, A.K.; Singh, S.; Singh, Y.V. Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl. Water Sci. 2021, 11, 1–20. [Google Scholar] [CrossRef]
- Makubura, R.; Meddage, D.P.P.; Azamathulla, H.M.; Pandey, M.; Rathnayake, U. A Simplified Mathematical Formulation for Water Quality Index (WQI): A Case Study in the Kelani River Basin, Sri Lanka. Fluids 2022, 7, 147. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water Quality Assessment in Terms of Water Quality Index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Al-Hadithi, M. Application of water quality index to assess suitability of groundwater quality for drinking purposes in Ratmao-Pathri Rao watershed, haridwar district India. J. Sci. Ind. Res. 2012, 23, 1321–1336. [Google Scholar] [CrossRef]
- Badeenezhad, A.; Tabatabaee, H.R.; Nikbakht, H.-A.; Radfard, M.; Abbasnia, A.; Baghapour, M.A.; Alhamd, M. Estimation of the groundwater quality index and investigation of the affecting factors their changes in Shiraz drinking groundwater, Iran. Groundw. Sustain. Dev. 2020, 11, 100435. [Google Scholar] [CrossRef]
- Nayak, J.G.; Patil, L.G.; Patki, V.K. Artificial neural network based water quality index (WQI) for river Godavari (India). Mater. Today Proc. 2021, 81, 212–220. [Google Scholar] [CrossRef]
- Salami, E.S.; Salari, M.; Ehteshami, M.; Bidokhti, N.T.; Ghadimi, H. Application of artificial neural networks and mathematical modeling for the prediction of water quality variables (case study: Southwest of Iran). Desalination Water Treat. 2016, 57, 27073–27084. [Google Scholar] [CrossRef]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water Quality Indices: Challenges and Application Limits in the Literature. Water 2019, 11, 361. [Google Scholar] [CrossRef]
- Yan, T.; Shen, S.L.; Zhou, A. Indices and models of surface water quality assessment: Review and perspectives. Environ. Pollut. 2022, 308, 119611. [Google Scholar] [PubMed]
- Patki, V.K.; Jahagirdar, S.; Patil, Y.M.; Karale, R.; Nadagouda, A. Prediction of water quality in municipal distribution system. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Islam, M.S.; Azadi, M.A.; Nasiruddin, M.; Islam, M.S. Water quality index of Halda River, Southeastern Bangladesh. Am. J. Environ. Eng. 2020, 10, 59–68. [Google Scholar]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Chaudhari, A.N.; Mehta, D.J.; Sharma, N.D. Coupled effect of seawater intrusion on groundwater quality: Study of South-West zone of Surat city. Water Supply 2022, 22, 1716–1734. [Google Scholar] [CrossRef]
- Abualhaija, M.M.; Mohammad, A.H. Assessing Water Quality of Kufranja Dam (Jordan) for Drinking and Irrigation: Application of the Water Quality Index. J. Ecol. Eng. 2021, 22, 159–175. [Google Scholar] [CrossRef]
- Tokatli, C. Application of water quality index for drinking purposes in dam lakes: A case study of thrace region. Sigma J. Eng. Nat. Sci. 2020, 38, 393–402. [Google Scholar]
- Mehta, D.; Chauhan, P.; Prajapati, K. Assessment of ground water quality index status in Surat City. Next Front. Civ. Eng. Sustain. Resilient Infrastruct. 2018, 16, JCE60. [Google Scholar]
- Ghoderao, S.B.; Meshram, S.G.; Meshram, C. Development and evaluation of a water quality index for groundwater quality assessment in parts of Jabalpur District, Madhya Pradesh, India. Water Supply 2022, 22, 6002–6012. [Google Scholar]
- Siriwardhana, K.D.; Jayaneththi, D.I.; Herath, R.D.; Makumbura, R.K.; Jayasinghe, H.; Gunathilake, M.B.; Azamathulla, H.M.; Tota-Maharaj, K.; Rathnayake, U. A simplified equation for calculating the water quality index (WQI), kalu river, Sri Lanka. Sustainability 2023, 15, 12012. [Google Scholar] [CrossRef]
- Zolghadr, M.; Zomorodian, S.M.A.; Fathi, A.; Tripathi, R.P.; Jafari, N.; Mehta, D.; Sihag, P.; Azamathulla, H.M. Experimental Study on the Optimum Installation Depth and Dimensions of Roughening Elements on Abutment as Scour Countermeasures. Fluids 2023, 8, 175. [Google Scholar]
- Patel, P.; Mehta, D.; Sharma, N. Assessment of groundwater vulnerability using the GIS approach-based GOD method in Surat district of Gujarat state, India. Water Pract. Technol. 2023, 18, 285–294. [Google Scholar] [CrossRef]
- Surati, M.H.; Prajapati, K.J.; Parmar, U.K.; Mehta, D.J. Assessment of Water Quality Index of Tapi River: A Case Study of Surat City. In Groundwater and Water Quality: Hydraulics, Water Resources and Coastal Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 263–277. [Google Scholar]
- Mehta, D.J.; Yadav, S. Meteorological drought analysis in Pali District of Rajasthan State using standard precipitation index. Int. J. Hydrol. Sci. Technol. 2023, 15, 1–10. [Google Scholar] [CrossRef]
- Mangukiya, N.K.; Mehta, D.J.; Jariwala, R. Flood frequency analysis and inundation mapping for lower Narmada basin, India. Water Pract. Technol. 2022, 17, 612–622. [Google Scholar]
- IS10500; Indian Standard Drinking Water–Specification (Second Revision). Bureau of Indian Standards (BIS): New Delhi, India, 2012.
Sr. No. | Parameters | Acceptable Limit | Ideal Values (V0) | K | Wi |
---|---|---|---|---|---|
1 | pH | 6.5–8.5 | 7 | 0.710461 | 0.083584 |
2 | Turbidity | 1 | 0 | 0.710461 | 0.083584 |
3 | TDS | 500 | 0 | 0.710461 | 0.001421 |
4 | Total Hardness | 200 | 0 | 0.710461 | 0.003552 |
5 | Calcium | 75 | 0 | 0.710461 | 0.009473 |
6 | Magnesium | 30 | 0 | 0.710461 | 0.023682 |
7 | Chloride | 250 | 0 | 0.710461 | 0.002842 |
8 | Sulfate | 200 | 0 | 0.710461 | 0.003552 |
9 | Nitrate | 45 | 0 | 0.710461 | 0.015788 |
10 | Fluoride | 1 | 0 | 0.710461 | 0.710461 |
11 | Total Alkalinity | 200 | 0 | 0.710461 | 0.003552 |
WQI | Water Types (Class) |
---|---|
0–25 | Excellent Water |
26–50 | Good Water |
51–75 | Poor Water |
76–100 | Very Poor Water |
Above 100 | Water Unsuitable for Drinking Purposes |
Site | Year | TDS | TH | Mg | F | Cl | Alkalinity | Ca |
---|---|---|---|---|---|---|---|---|
N1 | 2018 | 765 | 235 | 35 | 452 | |||
N2 | 2018 | 910 | 493 | 60 | 412 | 99 | ||
N3 | 2018 | 602 | 289 | 31 | 1.4 | 291 | ||
N4 | 2018 | 950 | 323 | 39 | 523 | 404 | ||
N5 | 2018 | 3164 | 1471 | 178 | 1034 | 291 | 295 | |
N6 | 2018 | 674 | 356 | 43 | 226 | |||
N8 | 2018 | 770 | 323 | 39 | 331 | |||
N7 | 2018 | 846 | 461 | 53 | 315 | 92 | ||
N9 | 2018 | 652 | 259 | |||||
N10 | 2018 | 820 | 541 | 66 | 404 | 108 | ||
2019 | 570 | 218 | 424 | |||||
2020 | 3896 | 1519 | 184 | 4122 | 549 | 304 | ||
2021 | 887 | 553 | 68 | 110 | ||||
2022 | 901 | 398 | 60 | 558 | 99 | |||
N11 | 2018 | 598 | 396 | 48 | 275 | 79 | ||
2019 | 660 | 242 | 218 | |||||
2020 | 984 | 404 | 49 | 582 | 89 | |||
2021 | 965 | 400 | 45 | 258 | 497 | 83 | ||
2022 | 897 | 391 | 39 | 572 | 77 | |||
N12 | 2018 | 384 | 250 | 250 | ||||
2019 | 320 | 275 | 33 | 356 | ||||
2020 | 556 | 331 | 40 | 339 | ||||
2021 | 680 | 337 | 41 | 456 | ||||
2022 | 620 | 325 | 39 | 383 | ||||
N13 | 2018 | 840 | 242 | 525 | ||||
N14 | 2018 | 1020 | 444 | 54 | 323 | 428 | 89 | |
2019 | 642 | 634 | 44 | 226 | ||||
2020 | 765 | 397 | 63 | 369 | 79 | |||
N15 | 2018 | 598 | 396 | 48 | 275 | 79 | ||
2020 | 250 | |||||||
N16 | 2018 | 628 | 420 | 51 | 356 | 84 | ||
N17 | 2018 | 560 | 267 | 32 | 210 | |||
N18 | 2018 | 624 | 384 | 56 | 1.26 | 232 | ||
2019 | 246 | 300 | ||||||
2022 | 524 | 240 | ||||||
N19 | 2018 | 398 | 234 | |||||
N20 | 2018 | 222 | ||||||
2019 | 265 | 33 | ||||||
2020 | 232 | |||||||
2021 | 224 | |||||||
N21 | 2018 | 284 | 236 | |||||
2019 | 320 | 39 | ||||||
2020 | 559 | 338 | 40 | 265 | ||||
2021 | 232 | |||||||
2022 | 628 | 360 | 44 | 244 | ||||
N22 | 2018 | 216 | ||||||
2019 | 232 | |||||||
2020 | 614 | 232 | 344 | |||||
2022 | 239 | |||||||
N23 | 2018 | 208 | 31 | 204 | ||||
2019 | 216 | |||||||
2020 | 232 | |||||||
2022 | 242 |
Sr. No. | WQI | Status | Site | Year |
---|---|---|---|---|
1 | 0–25 | Excellent water | N1 | 2018 |
N2 | 2019 | |||
N5 | 2019 | |||
N6 | 2018, 2021, 2022 | |||
N7 | 2019 | |||
N8 | 2021 | |||
N10 | 2019 | |||
N11 | 2018 | |||
N15 | 2018 | |||
N16 | 2019, 2021, 2022 | |||
N17 | 2018 | |||
N22 | 2018 | |||
N23 | 2018, 2020 | |||
N24 | 2021 | |||
2 | 25–50 | Good Water | N1 | 2019, 2020, 2021, 2022 |
N2 | 2020, 2021 | |||
N3 | 2019, 2020, 2021, 2022 | |||
N4 | 2019, 2020, 2021, 2022 | |||
N5 | 2020, 2021, 2022 | |||
N6 | 2019, 2020 | |||
N7 | 2020, 2021, 2022 | |||
N8 | 2018, 2019, 2020, 2021, 2022 | |||
N9 | 2018, 2019, 2020, 2021, 2022 | |||
N10 | 2018, 2020, 2021, 2022 | |||
N11 | 2019, 2020, 2021, 2022 | |||
N12 | 2018, 2019, 2020, 2021, 2022 | |||
N13 | 2018, 2019, 2020, 2021, 2022 | |||
N14 | 2018, 2019, 2020, 2021, 2022 | |||
N15 | 2019, 2022 | |||
N16 | 2020 | |||
N17 | 2019, 2020, 2021, 2022 | |||
N18 | 2019 | |||
N19 | 2019, 2020, 2021, 2022 | |||
N20 | 2021, 2022 | |||
N21 | 2018, 2019, 2020, 2021, 2022 | |||
N22 | 2019, 2020, 2021, 2022 | |||
N23 | 2019, 2021, 2022 | |||
N24 | 2018, 2019, 2020, 2022 | |||
N25 | 2018, 2019, 2020, 2021, 2022 | |||
3 | 51–75 | Poor Water | N2 | 2022 |
N8 | 2018 | |||
N15 | 2020, 2021 | |||
N16 | 2018 | |||
N18 | 2020, 2021, 2022 | |||
N20 | 2018 | |||
4 | 76–100 | Very poor water | N2 | 2018 |
N7 | 2018 | |||
N20 | 2019 | |||
5 | Above 100 | Water Unsuitable for Drinking Purposes | N3 | 2018 |
N4 | 2018 | |||
N5 | 2018 | |||
N18 | 2018 | |||
N20 | 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, D.D.; Mehta, D.J.; Azamathulla, H.M.; Shaikh, M.M.; Jha, S.; Rathnayake, U. Application of the Weighted Arithmetic Water Quality Index in Assessing Groundwater Quality: A Case Study of the South Gujarat Region. Water 2023, 15, 3512. https://doi.org/10.3390/w15193512
Patel DD, Mehta DJ, Azamathulla HM, Shaikh MM, Jha S, Rathnayake U. Application of the Weighted Arithmetic Water Quality Index in Assessing Groundwater Quality: A Case Study of the South Gujarat Region. Water. 2023; 15(19):3512. https://doi.org/10.3390/w15193512
Chicago/Turabian StylePatel, Divya D., Darshan J. Mehta, Hazi M. Azamathulla, Mohdzuned Mohmedraffi Shaikh, Shivendra Jha, and Upaka Rathnayake. 2023. "Application of the Weighted Arithmetic Water Quality Index in Assessing Groundwater Quality: A Case Study of the South Gujarat Region" Water 15, no. 19: 3512. https://doi.org/10.3390/w15193512
APA StylePatel, D. D., Mehta, D. J., Azamathulla, H. M., Shaikh, M. M., Jha, S., & Rathnayake, U. (2023). Application of the Weighted Arithmetic Water Quality Index in Assessing Groundwater Quality: A Case Study of the South Gujarat Region. Water, 15(19), 3512. https://doi.org/10.3390/w15193512