Design of a Bioretention System with Water Reuse for Urban Agriculture through a Daily Water Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Materials
2.2. Methods
2.2.1. Experimental Water Balance in the Green
2.2.2. Estimated Water Balance for the Green
2.2.3. The Irrigation Depths and Storage in the Subsurface Reservoir
2.2.4. Irrigation Depth Considering Salt Leaching
2.2.5. Optimal Height of the Harvested Water Storage Tank
2.2.6. Statistical Performance Criteria between ET0PMi and ET0HSi
2.2.7. Hydro-Informatic Tools to Estimate the Water Balance
3. Results
3.1. Estimated Daily Water Balances Using the Hydro-Informatics Tool
3.2. Irrigation Depths Comparison
3.3. Design of the Rainwater Harvesting Bioretention System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Resource Institute. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress. Available online: https://www.wri.org/insights/17-countries-home-one-quarter-worlds-population-face-extremely-high-water-stress (accessed on 10 August 2019).
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Jiménez, M.; Díaz-Delgado, C.; González-Sosa, E.; Gómez-Albores, M.A.; Mastachi-Loza, C.A. Proposal of a water management sustainability index for the 969 sub-basins of Mexico. J. Maps 2020, 16, 432–444. [Google Scholar] [CrossRef]
- Statista. Ranking de Países Con Más Campos de Golf en El Mundo en 2020. 2020. Available online: https://es.statista.com/estadisticas/1039703/paises-con-mas-campos-de-golf-en-el-mundo/ (accessed on 28 October 2021).
- Morell, I. La Demanda de Agua Para Los Campos de golf. El Agua Y El Medio Ambiente; Colección Ciencia y Tecnología. N° 2; Instituto de Estudios Almerienses: Almería, Spain, 2006. [Google Scholar]
- Shuman, L.M. Normal and flush irrigation effects on nitrogen leaching from simulated golf greens in the greenhouse. Soil. Sci. Plant Anal. 2006, 37, 605–619. [Google Scholar] [CrossRef]
- Cámara de Comercio de Mallorca Ibiza y Formentera. Informe Campos de Golf III. Dosis de Riegos; Cámara de Comercio: Palma, Spain, 2000; 4p. [Google Scholar]
- Durán, J.J.; Fernández, M.L.; López-Geta, J.A.; Mateos, R.M.; Robledo, P. Las aguas subterráneas y los campos de golf. Una aproximación integradora. In V Simposio Sobre el Agua en Andalucía; Pulido Leboeuf, P.A., Pulido Bosch, A., Vallejos Izquierdo, A., Eds.; Universidad de Almería: Andalucía, Spain, 2001; Volume 2, pp. 61–68. ISBN 84-8249-459-8. [Google Scholar]
- Siyal, A.A.; Bristowc, K.L.; Sîimunekd, J. Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies. Agric. Water Manag. 2012, 115, 242–251. [Google Scholar] [CrossRef]
- Krčmář, D.; Marschalko, M.; Yilmaz, I.; Patschová, A.; Chalupková, K.; Kovács, T. Potential pollution risk in natural environment of golf courses: An example from Rusovce (Slovakia). Environ. Earth Sci. 2014, 72, 4075–4084. [Google Scholar] [CrossRef]
- Filipović, V.; Toor, G.S.; Ondrašek, G.; Kodešová, R. Modelingwater flowand nitrate–nitrogen transport on golf course under turfgrass. J. Soils Sediments 2015, 15, 1847–1859. [Google Scholar] [CrossRef]
- Barton, L.; Colmer, T.D. Irrigation and fertilizer strategies for minimizing nitrogen leaching from turfgrass. Agric. Water Manag. 2006, 80, 160–175. [Google Scholar] [CrossRef]
- Comisión Europea. Estrategia de Adaptación al Cambio Climático de la UE. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de Las Regiones-Comunitarias (2013) 216 Final. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0216 (accessed on 24 September 2023).
- Sánchez-Almodóvar, E.; Olcina-Cantos, J.; Martí-Talavera, J.; Prieto-Cerdán, A.; Padilla-Blanco, A. Floods and Adaptation to Climate Change in Tourist Areas: Management Experiences on the Coast of the Province of Alicante (Spain). Water 2023, 15, 807. [Google Scholar] [CrossRef]
- Comisión Europea. Infraestructura Verde: Mejora del Capital Natural de Europa. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de Las Regiones-Comunitarias (2013) 249 Final. 2013. Available online: http://ec.europa.eu/environment/nature/ecosystems/docs/Green_Infrastructure.pdf (accessed on 24 September 2023).
- Ministerio de Transportes, Movilidad y Agenda Urbana. Agenda Urbana Española. 2019. Available online: https://www.aue.gob.es/que-es-la-aue#Sinergias_con_otras_agendas_y_estrategias (accessed on 24 September 2023).
- Parlamento Europeo. El Consejo de la Unión Europea. Directiva 2000/60/CE del Parlamento Europeo y del Consejo, de 23 de octubre de 2000, Por la Que se Establece un Marco Comunitario de Actuación en el Ámbito de la Política de Aguas. Diario Oficial de La Unión Europea. Serie L, 43 (327, 23 de Octubre), 2000, 72. Available online: http://data.europa.eu/eli/dir/2000/60/oj (accessed on 24 September 2023).
- Versini, P.A.; Kotelnikova, N.; Poulhes, A.; Tchiguirinskaia, I.; Schertzer, D.; Leurent, F. A distributed modelling approach to assess the use of blue and green infrastructures to fulfil stormwater management requirements. Landsc. Urban Plan. 2018, 173, 60–63. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.; Shao, W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Davis, A.P.; Traver, R.G.; Hunt, W.F.; Lee, R.; Brown, R.A.; Olszewski, J.M. Hydrologic performance of bioretention storm-water control measures. J. Hydrol. Eng. 2012, 17, 604–614. [Google Scholar] [CrossRef]
- Loc, H.H.; Duyen, P.M.; Ballatore, T.J.; Lan, N.H.; Gupta, A.D. Applicability of sustainable urban drainage systems: An evaluation by multi-criteria analysis. Environ. Syst. Decis. 2017, 37, 332–343. [Google Scholar] [CrossRef]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C.M. Investigating the effects of low impact development (lid) on surface runoff and tss in a calibrated hydrodynamic model. J. Urban Environ. Eng. 2016, 9, 091–096. [Google Scholar] [CrossRef]
- Ponce, V.M. Engineering Hydrology Principles and Practices; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1989; ISBN 01-3-315466-1. [Google Scholar]
- Bandenay, G.L. Caracterización del Flujo Hídrico y la Dinámica Salina en un Green Experimental con Diferentes Sustratos. Ph.D. Thesis, Universitat Jaume I, Castelló de la Plana, Spain, 2013. [Google Scholar]
- Martin del Campo, M.A.; Esteller, M.V.; Morell, I.; Expósito, J.L.; Bandenay, G.L.; Díaz-Delgado, C. A lysimeter study under field conditions of nitrogen and phosphorus leaching in a turf grass crop amended with peat and hydrogel. Sci. Total Environ. 2019, 648, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Allen, R.G.; Monteith, J.L.; Pereira, L.S.; Segeren, A. Report on the Expert Consultation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Requirements; Land and Water Development Division: Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del Cultivo. Guías Para la Determinación de los Requerimientos de Agua de los Cultivos; Estudio FAO Riego y Drenaje: Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 92-5-304219-2. [Google Scholar]
- Warnke, S.E. Creeping bentgrass (Agrostis stolonifera L.). In Turfgrass Biology, Genetics and Breeding; Casler, M.D., Duncan, R.R., Eds.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2003; pp. 175–182. ISBN 978-0-471-44410-7. [Google Scholar]
- USGA Green Section Staff. USGA Recommendations for a Method of Putting Green Construction; United States Golf Association; Golf House: Far Hills, NJ, USA, 2004. [Google Scholar]
- Bandenay, G.L.; Renau-Pruñonosa, A.; Morell, I.; Esteller, M.V. Effects of different amendments (organic matter and hydrogel) on the actual evapotranspiration and crop coefficient of turf grass under field conditions. Irrig. Drain. 2020, 70, 293–305. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Lagacé, R. Le Diagnostic Hydraulique: Un Incontournable Pour Planifier la Réhabilitation D’une Sablière À Des Fins Agricoles; Département des Sols et de Génie Agroalimentaire, Université Laval: Québec, QC, Canada, 2017. [Google Scholar]
- Papineau, F.; Gallichand, J.; Broughton, R.S.; Beaulieu, R. Etude Hydrologique du bassin versant de la rivière L’Acadie. In Proceedings of the Gestion et qualité de l’eau des bassins versants agricoles. In Proceedings of the 16iéme Colloque de génie rural, Québec, Canada, 27 October 1992. [Google Scholar]
- Quiñones, P.H. Necesidades hídricas de los cultivos. In Manual Para Diseño de Zonas de Riego Pequeñas; Instituto Mexicano de Tecnología del Agua: Mexico, 1997; pp. 1.13–1.40. [Google Scholar]
- Samani, Z. Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Martín Clemente, C.R.; Sosa Ramírez, J.; Maass Moreno, M.; Luna Ruíz, J.D.; Meráz Jiménez, A.D.; Flores Ancira, E. Comparación de métodos para estimar disponibilidad hídrica en cuencas forestales. Terra Latinoam. 2015, 33, 17–26. [Google Scholar]
- Flores, L. Manual de Procedimientos Analíticos, Laboratorio de Física de Suelos; Instituto de Geología: Departamento de Edafología, Universidad Nacional Autónoma de México: Toluca, Mexico, 2010. [Google Scholar]
- Briggs, L.J.; Shantz, H.L. The wilting coefficient for different plants and its indirect determination. J. Wash. Acad. Sci. 1911, 1, 228–232. Available online: https://www.jstor.org/stable/24520619 (accessed on 1 September 2022).
- Fuentes, J.L.; García, G. Técnicas de Riego, 1st ed.; Mundi-Prensa Libros: Madrid, Spain, 2003; ISBN 84-8476-124-X. [Google Scholar]
- Peele, T.C. The Relation of certain physical characteristics to the erodibility of soils. Soil Sci. Soc. Am. J. 1937, 2, 97–100. [Google Scholar] [CrossRef]
- Ángeles, V.; Fernández, V.H.; Bâ, K.M.; Díaz-Delgado, C. Elementos Básicos de Riego Presurizado Para Productores: Microirrigación; Instituto de Investigación y Capacitación Agropecuaria, Acuícola y Forestal del Estado de México: Mexico, Mexico, 2002. [Google Scholar]
- Saxton, K.E. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Fonseca, C.R.; Hidalgo, V.; Díaz-Delgado, C.; Vilchis-Francés, A.Y.; Gallego, I. Design of optimal tank size for rainwater harvesting systems through use of a web application and geo-referenced rainfall patterns. J. Clean. Prod. 2017, 145, 323–335. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Harmel, R.D.; Smith, P.K. Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. J. Hydrol. 2007, 337, 326–336. [Google Scholar] [CrossRef]
- Harmel, R.D.; Smith, P.K.; Migliaccio, K.W. Modifying goodness-pf-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation. Trans. ASABE. 2010, 53, 55–63. [Google Scholar] [CrossRef]
- Higham, D.J.; Higham, N.J. MATLAB Guide, 3rd ed.; SIAM: Philadelphia, PA, USA, 2017; ISBN 978-1-61197-465-2. [Google Scholar]
- BOE. Real Decreto 3/2023, de 10 de Enero, por el que se Establecen los Criterios Técnico-Sanitarios de la Calidad del Agua de Consumo, su Control y Suministro. Ministerio de la Presidencia. Referencia: BOE-A-2023-628. 2023. Available online: https://www.boe.es/eli/es/rd/2023/01/10/3/con (accessed on 24 September 2023).
- Gdańskie Wody Company. Gdańska Polityka Małej Retencji Miejskiej, (Gdansk Policy of Urban Surface Small Retention). 2020. Available online: http://www.gdmel.pl/component/attachments/download/11 (accessed on 1 September 2022).
- Kasprzyk, M.; Szpakowski, W.; Poznańska, E.; Boogaard, F.C.; Bobkowska, K.; Gajewska, M. Technical solutions and benefits of introducing rain gardens—Gdańsk case study. Sci. Total Environ. 2022, 835, 155487. [Google Scholar] [CrossRef]
- Atanasova, N.; Castellar, J.A.C.; Pineda-Martos, R.; Nika, C.E.; Katsou, E.; Istenič, D.; Pucher, B.; Andreucci, M.B.; Langergraber, G. Nature-based solutions and circularity in cities. Circ. Econ. Sustain. 2021, 1, 319–332. [Google Scholar] [CrossRef]
Plot | Surface (m2) | Volume (m3) | Soil Composition | Organic Matter (%) | Water Retention Field Capacity (%) | Infiltration Rate (cm min−1) | Bulk Density (g cm−1) | Porosity (%) |
---|---|---|---|---|---|---|---|---|
P1 | 37.5 | 10.5 | 80% Sand, 20% peat 145 g m−2 Hidrogel | 4.045 | 35.56 | 0.69 | 1.467 | 40.14 |
P2 | 37.6 | 11.2 | 80% Sand 20% Organic matter | 7.397 | 45.83 | 1.26 | 1.394 | 51.65 |
P3 | 36.5 | 10.6 | 100% Sand 145 g m−2 Hidrogel | 0.178 | 28.47 | 2.85 | 1.784 | 34.41 |
P4 | 35.4 | 9.3 | 100% Sand | 0.139 | 26.75 | 3.38 | 1.684 | 34.88 |
Year | Evapotranspiration mm Year−1 | Drainage mm Year−1 | Output mm Year−1 | Irrigation mm year−1 | Precipitation mm Year−1 | Input mm Year−1 | Input–Output mm Year−1 |
---|---|---|---|---|---|---|---|
Experimental water balance of the green with ET0PM | |||||||
2009 | 947 | 464 | 1411 | 1004 | 584 | 1588 | 177 |
2010 | 1011 | 795 | 1806 | 1578 | 414 | 1992 | 186 |
2011 | 996 | 655 | 1651 | 1180 | 471 | 1651 | 0 |
Water balance simulate of the green with ET0PM | |||||||
2009 | 947 | 547 | 1493 | 943 | 584 | 1527 | 34 |
2010 | 1011 | 366 | 1377 | 972 | 414 | 1386 | 8 |
2011 | 996 | 437 | 1433 | 999 | 471 | 1470 | 37 |
Water balance simulate of the green with ET0HS | |||||||
2009 | 1071 | 540 | 1611 | 1053 | 584 | 1637 | 27 |
2010 | 1108 | 354 | 1462 | 1077 | 414 | 1491 | 29 |
2011 | 1119 | 428 | 1548 | 1098 | 471 | 1569 | 21 |
Year | Applied Irrigation in Plot P2 (mm Year−1) | Estimated Irrigation. ET0PM (mm Year−1) | Estimated Irrigation. ET0HS (mm Year−1) | IrrigationPM and Experimental Irrigation Difference (mm Year−1) | IrrigationHS and Experimental Irrigation Difference (mm Year−1) | Difference between Estimated Irrigations (mm Year−1) |
---|---|---|---|---|---|---|
Irrigation depth: applied in plot P2; estimated with leaching using the PM method and estimated with leaching using the HS method. | ||||||
2009 | 1004 | 943 | 1053 | 61 | −49 | 110 |
2010 | 1578 | 972 | 1077 | 579 | 501 | 105 |
2011 | 1180 | 999 | 1098 | 181 | 82 | 99 |
Irrigation depth: applied in plot P2; estimated with leaching using the PM method and estimated without leaching using the HS method. | ||||||
2010 | 1004 | 943 | 1030 | 61 | −26 | 87 |
2011 | 1578 | 972 | 1053 | 579 | 525 | 81 |
2009 | 1180 | 999 | 1074 | 181 | 106 | 75 |
Year | Estimated Irrigation Depth. (mm Year−1) | Harvested Water. (mm Year−1) | Irrigation Water Deficit (mm Year−1) | Percentage of Water Reused. (%) |
---|---|---|---|---|
Harvested water using ET0PM | ||||
2009 | 943 | 547 | 396 | 58 |
2010 | 972 | 366 | 606 | 38 |
2011 | 999 | 437 | 562 | 44 |
Harvested water using ET0HS | ||||
2010 | 1053 | 540 | 513 | 51 |
2011 | 1077 | 354 | 723 | 33 |
2009 | 1098 | 428 | 670 | 39 |
Irrigation Period (mm/dd/yyyy) | Output N (g) | Output P (g) | Output N (kg ha−1) | Output P (kg ha−1) | |
---|---|---|---|---|---|
05/28/2009 | 07/21/2009 | 11.83 | 1.96 | 118.3 | 19.6 |
07/22/2009 | 10/14/2009 | 28.33 | 12.20 | 283.3 | 122.0 |
10/15/2009 | 09/11/2009 | 1.05 | 1.43 | 10.5 | 14.3 |
10/11/2009 | 03/03/2010 | 67.65 | 18.79 | 676.5 | 187.9 |
04/03/2010 | 05/20/2010 | 31.56 | 5.91 | 315.6 | 59.1 |
05/21/2010 | 07/07/2010 | 19.63 | 4.81 | 196.3 | 48.1 |
Total | 160.05 | 45.1 | 1600.5 | 451 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Colin, J.C.; Díaz-Delgado, C.; Salinas Tapia, H.; Fonseca Ortiz, C.R.; Esteller Alberich, M.V.; Bâ, K.M.; García Pulido, D. Design of a Bioretention System with Water Reuse for Urban Agriculture through a Daily Water Balance. Water 2023, 15, 3477. https://doi.org/10.3390/w15193477
García-Colin JC, Díaz-Delgado C, Salinas Tapia H, Fonseca Ortiz CR, Esteller Alberich MV, Bâ KM, García Pulido D. Design of a Bioretention System with Water Reuse for Urban Agriculture through a Daily Water Balance. Water. 2023; 15(19):3477. https://doi.org/10.3390/w15193477
Chicago/Turabian StyleGarcía-Colin, Julio César, Carlos Díaz-Delgado, Humberto Salinas Tapia, Carlos Roberto Fonseca Ortiz, María Vicenta Esteller Alberich, Khalidou M. Bâ, and Daury García Pulido. 2023. "Design of a Bioretention System with Water Reuse for Urban Agriculture through a Daily Water Balance" Water 15, no. 19: 3477. https://doi.org/10.3390/w15193477
APA StyleGarcía-Colin, J. C., Díaz-Delgado, C., Salinas Tapia, H., Fonseca Ortiz, C. R., Esteller Alberich, M. V., Bâ, K. M., & García Pulido, D. (2023). Design of a Bioretention System with Water Reuse for Urban Agriculture through a Daily Water Balance. Water, 15(19), 3477. https://doi.org/10.3390/w15193477