Phytoremediation of Cu and Mn from Industrially Polluted Soil: An Eco-Friendly and Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Chemical and reagents
- Instruments
2.2. Study Area Description
2.3. Sample Collection
2.4. Soil Analysis
2.5. Water Analysis
2.5.1. pH and Electric Conductivity (EC)
2.5.2. Biological Oxygen Demand (BOD)
2.5.3. Chemical Oxygen Demand (COD)
2.5.4. Total Suspended Solids (TSS)
2.5.5. Total Dissolved Solids (TDS)
2.6. Pot Experiment
2.7. Geochemical Analysis
2.8. Laboratory Analysis of Plant Biomass
2.9. Formula
2.9.1. Bioconcentration Factor (BCF) (%)
2.9.2. Translocation Factor (TF) (%)
2.9.3. Bioremoval Efficiency (%)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Pollution Load of Water Samples
3.2. Physicochemical Characteristics of Soil Sample
3.3. Growth of Grass Species at Various HM Concentrations
3.4. Effect of Plants on Soil Physiochemical Parameters
3.5. Metal Accumulation by Grass Species
3.6. Effect of Grasses on Metal Concentration
3.6.1. Copper
3.6.2. Manganese (Mn)
3.7. Bioconcentration (BCF %) and Translocation Factor (TF %) of Metals
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabgar, S.; Bhavsar, S.; Modi, N. Effects of lead and cadmium on shoot length and root length of Cascabela thevetia (L.) lippold. Int. Assoc. Biol. Comput. Dig. 2023, 2, 301–306. [Google Scholar] [CrossRef]
- Jha, P.K.; Tripathi, P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India. Groundw. Sustain. Dev. 2021, 13, 100576. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Chen, A.; Arai, Y. A Review of the Reactivity of Phosphatase Controlled by Clays and Clay Minerals: Implications for Understanding Phosphorus Mineralization in Soils. Clays Clay Miner. 2023, 71, 119–142. [Google Scholar] [CrossRef]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef]
- Ahmad, S.; Hadi, F.; Jan, A.U.; Ullah, R.; Albalawi, B.F.A.; Ditta, A. Appraisal of Heavy Metals Accumulation, Physiological Response, and Human Health Risks of Five Crop Species Grown at Various Distances from Traffic Highway. Sustainability 2022, 14, 16263. [Google Scholar] [CrossRef]
- Boregowda, N.; Jogigowda, S.C.; Bhavya, G.; Sunilkumar, C.R.; Geetha, N.; Udikeri, S.S.; Chowdappa, S.; Govarthanan, M.; Jogaiah, S. Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. Environ. Pollut. 2022, 297, 118728. [Google Scholar] [CrossRef]
- Keyster, M.; Niekerk, L.-A.; Basson, G.; Carelse, M.; Bakare, O.; Ludidi, N.; Klein, A.; Mekuto, L.; Gokul, A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. Plants 2020, 9, 1781. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, Y.; Xu, Z.; Zhang, W.; Jiang, K. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation. Ecotoxicol. Environ. Saf. 2019, 181, 18–25. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Ljung, K.; Vahter, M. Time to Re-evaluate the Guideline Value for Manganese in Drinking Water? Environ. Health Perspect. 2007, 115, 1533–1538. [Google Scholar] [CrossRef]
- Faria, J.M.; Teixeira, D.M.; Pinto, A.P.; Brito, I.; Barrulas, P.; Alho, L.; Carvalho, M. Toxic levels of manganese in an acidic Cambisol alters antioxidant enzymes activity, element uptake and subcellular distribution in Triticum aestivum. Ecotoxicol. Environ. Saf. 2020, 193, 110355. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Cavalletti, E.; Romano, G.; Esposito, F.P.; Barra, L.; Chiaiese, P.; Balzano, S.; Sardo, A. Copper Effect on Microalgae: Toxicity and Bioremediation Strategies. Toxics 2022, 10, 527. [Google Scholar] [CrossRef]
- Rajoria, S.; Vashishtha, M.; Sangal, V.K. Treatment of electroplating industry wastewater: A review on the various techniques. Environ. Sci. Pollut. Res. 2022, 29, 72196–72246. [Google Scholar] [CrossRef] [PubMed]
- Charvalas, G.; Solomou, A.D.; Giannoulis, K.D.; Skoufogianni, E.; Bartzialis, D.; Emmanouil, C.; Danalatos, N.G. Determination of heavy metals in the territory of contaminated areas of Greece and their restoration through hyperaccumulators. Environ. Sci. Pollut. Res. 2021, 28, 3858–3863. [Google Scholar] [CrossRef]
- Bedair, H.; Ghosh, S.; Abdelsalam, I.M.; Keerio, A.A.; AlKafaas, S.S. Potential implementation of trees to remediate contaminated soil in Egypt. Environ. Sci. Pollut. Res. 2022, 29, 78132–78151. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T. Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Curr. Opin. Environ. Sci. Health 2023, 32, 100451. [Google Scholar] [CrossRef]
- Rapp, G.; Garcia-Montoto, V.; Bouyssière, B.; Thiebaud-Roux, S.; Montoya, A.; Trethowan, R.; Pratt, P.; Mozet, K.; Portha, J.F.; Coniglio, L. Indian mustard bioproducts dry-purification with natural adsorbents-A biorefinery for a green circular economy. J. Clean. Prod. 2021, 286, 125411. [Google Scholar] [CrossRef]
- Nedjimi, B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Appl. Sci. 2021, 3, 286. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, I.; Shah, M.T.; Rehman, S.; Khaliq, A. Use of constructed wetland for the removal of heavy metals from industrial wastewater. J. Environ. Manag. 2009, 90, 3451–3457. [Google Scholar] [CrossRef]
- Hussain, R.; Khattak, S.A.; Shah, M.T.; Ali, L. Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. J. Soils Sediments 2015, 15, 1119–1129. [Google Scholar] [CrossRef]
- Farid, N.; Ullah, A.; Khan, S.; Butt, S.; Khan, A.Z.; Afsheen, Z.; El-Serehy, H.A.; Yasmin, H.; Ayaz, T.; Ali, Q. Algae and Hydrophytes as Potential Plants for Bioremediation of Heavy Metals from Industrial Wastewater. Water 2023, 15, 2142. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, A.; Ayaz, T.; Aziz, A.; Aman, K.; Habib, M.; Yilmaz, S.; Farid, A.; Yasmin, H.; Ali, Q. Phycoremediation of industrial wastewater using Vaucheria debaryana and Cladophora glomerata. Environ. Monit. Assess. 2023, 195, 825. [Google Scholar] [CrossRef]
- Ayaz, T.; Khan, S.; Khan, A.Z.; Lei, M.; Alam, M. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). J. Environ. Manag. 2020, 255, 109833. [Google Scholar] [CrossRef] [PubMed]
- APHA. Compendium of Methods for the Microbiological Examination, 3rd ed.; American Public Health Association: Washington, DC, USA, 1992; pp. 105–119, 325–367, 371–415, 451–469, 637–658. [Google Scholar]
- Saidu, M.; Yuzir, A.; Salim, M.R.; Richard, A.; Afiz, B. Effect of operating parameter on the anaerobic digestion oil palm mesocarp fibre with cattle manure for biogas production. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 476, p. 012085. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Waste Water, 10th ed.; American Public Health Association: Washington, DC, USA, 1985. [Google Scholar]
- Gautam, M.; Agrawal, M. Identification of metal tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Appl. Geochem. 2019, 104, 83–92. [Google Scholar] [CrossRef]
- Shamshad, I.; Khan, S.; Waqas, M.; Ahmad, N.; Ur-Rehman, K.; Khan, K. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae. Water Sci. Technol. 2015, 71, 38–44. [Google Scholar] [CrossRef]
- Irshad, M.; Ahmad, S.; Pervez, A.; Inoue, M. Phytoaccumulation of Heavy Metals in Natural Plants Thriving on Wastewater Effluent at Hattar Industrial Estate, Pakistan. Int. J. Phytoremediat. 2015, 17, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Shamshad, I.; Waqas, M.; Nawab, J.; Ming, L. Remediating industrial wastewater containing potentially toxic elements with four freshwater algae. Ecol. Eng. 2017, 102, 536–541. [Google Scholar] [CrossRef]
- Singh, D.; Singh, V.; Agnihotri, A.K. Study of textile effluent in and around Ludhiana district in Punjab, India. Int. J. Environ. Sci. 2013, 3, 1271–1278. [Google Scholar]
- Amin, N.; Ibrar, D.; Alam, S. Heavy Metals Accumulation in Soil Irrigated with Industrial Effluents of Gadoon Industrial Estate, Pakistan and Its Comparison with Fresh Water Irrigated Soil. J. Agric. Chem. Environ. 2014, 3, 80–87. [Google Scholar] [CrossRef]
- Ali, F.; Israr, M.; Rehman, S.U.; Azizullah, A.; Gulab, H.; Idrees, M.; Iqbal, R.; Khattak, A.; Hussain, M.; Al-Zuaibr, F.M. Health risk assessment of heavy metals via consumption of dietary vegetables using wastewater for irrigation in Swabi, Khyber Pakhtunkhwa, Pakistan. PLoS ONE 2021, 16, e0255853. [Google Scholar] [CrossRef]
- Shehnaz, H.; Naz, S.; Shahnaz, L.; Yasmine, K.; Naqqash, T.; Haider, A. Bioremediation potential of some local grasses of Karachi city. FUUAST J. Biol. 2019, 9, 1–7. [Google Scholar]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Laghlimi, M.; Baghdad, B.; El Hadi, H.; Bouabdli, A. Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open J. Ecol. 2015, 5, 375–388. [Google Scholar] [CrossRef]
- Wang, X.W.; Liu, Z.F. The Subcellular Distributions of Cadmium, Chromium, Copper, Plumbum and Zinc in Hyperaccumulator and Accumulator. Adv. Mater. Res. 2013, 726, 2434–2437. [Google Scholar] [CrossRef]
- Singh, S.; Dhyani, S.; Janipella, R.; Chakraborty, S.; Pujari, P.R.; Shinde, V.M.; Singh, K. Biomonitoring-Supported Land Restoration to Reduce Land Degradation in Intensively Mined Areas of India. Sustainability 2022, 14, 13639. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ugulu, I.; Zafar, A.; Mehmood, N.; Bashir, H.; Ahmad, K.; Sana, M. Biomonitoring of heavy metals accumulation in wild plants growing at Soon valley, Khushab, Pakistan. Pak. J. Bot. 2021, 53, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Campillo-Cora, C.; Fernández-Calviño, D.; Pérez-Rodríguez, P.; Fernández-Sanjurjo, M.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Nóvoa-Muñoz, J. Copper and zinc in rhizospheric soil of wild plants growing in long-term acid vineyard soils. Insights on availability and metal remediation. Sci. Total. Environ. 2019, 672, 389–399. [Google Scholar] [CrossRef]
- Nasrullah, R.N.; Bibi, H.; Iqbal, M.; Durrani, M.I. Pollution load in industrial effluent and ground water of Gadoon Amazai Industrial Estate (GAIE) Swabi, NWFP. J. Agric. Biol. Sci. 2006, 1, 18–24. [Google Scholar]
- Baig, Z.M. Environmental Geochemistry of Water, Rocks and Soil of Gadoon and Surrounding Area District Swabi, North West Frontier Pakistan (NWFP), Pakistan. Master’s Thesis, National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan, 1996. [Google Scholar]
- Sonowal, S.; Prasad, M.N.V.; Sarma, H. C3 and C4 plants as potential phytoremediation and bioenergy crops for stabilization of crude oil and heavy metal co-contaminated soils-response of antioxidative enzymes. Trop. Plant Res. 2018, 5, 306–314. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Gong, J. Physiological mechanisms of the tolerance response to manganese stress exhibited by Pinus massoniana, a candidate plant for the phytoremediation of Mn-contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 45422–45433. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, Y.; Fan, L.; Jin, Q.; Yang, G.; Xu, Z. Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth promoting (PGP) Bacillus species. Chemosphere 2020, 260, 127614. [Google Scholar] [CrossRef]
- Gravand, F.; Rahnavard, A.; Pour, G.M. Investigation of Vetiver Grass Capability in Phytoremediation of Contaminated Soils with Heavy Metals (Pb, Cd, Mn, and Ni). Soil Sediment Contam. Int. J. 2021, 30, 163–186. [Google Scholar] [CrossRef]
- Shuaibu, L.; Abdullahi, U.; Yaradua, A.I.; Bungudu, J.I. Phytoremediation Potentials of Cynodon dactylon on Heavy Metal Contaminated Soils from Challawa Industrial Estate, Kano-Nigeria. Asian J. Appl. Chem. Res. 2021, 9, 25–36. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Y.; Zhang, J.; Lu, X.; Wei, G. Naturally selected dominant weeds as heavy metal accumulators and excluders assisted by rhizosphere bacteria in a mining area. Chemosphere 2020, 243, 125365. [Google Scholar] [CrossRef]
- Da Silva, I.C.B.; Somavilla, A.; Soares, V.M.; Tarouco, C.P.; Schwalbert, R.; Trentin, E.; de Quadros, F.L.F.; Nicoloso, F.T.; Ferreira, P.A.A.; Brunetto, G. Potential phytoremediation of Pampa biome native and invasive grass species cohabiting vineyards contaminated with Cu in Southern Brazil. Environ. Sci. Pollut. Res. 2022, 29, 85376–85388. [Google Scholar] [CrossRef] [PubMed]
- Ancheta, M.H.; Quimado, M.O.; Tiburan, C.L., Jr.; Doronila, A.; Fernando, E.S. Copper and arsenic accumulation of Pityrogramma calomelanos, Nephrolepis biserrata, and Cynodon dactylon in Cu-and Au-mine tailings. J. Degrad. Min. Lands Manag. 2020, 7, 2201. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Dogan, I.; Karadeniz, S.; Severoglu, Z.; Demir, G.; Yalcin, I.E.; Yarci, C. Mineral nutrient compositions of field-grown weed and maize (Zea mays L.) plants in terms of competition. Pak. J. Agric. Sci. 2021, 58, 115–123. [Google Scholar]
- Mwegoha, W.J. The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: Opportunities and challenges. J. Sustain. Dev. Afr. 2008, 10, 140–156. [Google Scholar]
- Tu, S.; Ma, L.Q.; Fayiga, A.O.; Zillioux, E.J. Phytoremediation of Arsenic-Contaminated Groundwater by the Arsenic Hyperaccumulating Fern Pteris vittata L. Int. J. Phytoremediat. 2004, 6, 35–47. [Google Scholar] [CrossRef]
- Erakhrumen, A.A.; Agbontalor, A. Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ. Res. Rev. 2007, 2, 151–156. [Google Scholar]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
Physiochemical Parameters | CT1 | T1 | CT2 | T2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Eff% | p | Mean ± SD | Eff% | p | Mean ± SD | Eff% | p | Mean ± SD | Eff% | p | ||
EC (dS/m) | I | 278.9 ± 4.52 | 61.5 | 0.04 * | 308 ± 2.90 | 48.9 | 0.01 * | 278.9 ± 4.52 | 46.9 | 0.007 * | 308 ± 2.90 | 38.3 | 0.002 * |
F | 107.21 ± 4.63 | 157.18 ± 3.51 | 147.98 ± 4.33 | 189.74 ± 2.69 | |||||||||
pH | I | 8.03 ± 0.88 | 47 | 0.421 | 9.4 ± 1.21 | 75 | 0.28 | 8.03 ± 0.88 | 33.6 | 0.11 | 9.4 ± 1.21 | 53 | 0.381 |
F | 8.41 ± 2.34 | 10.11 ± 1.72 | 8.30 ± 1.99 | 9.90 ± 2.12 | |||||||||
TOM% | I | 0.47 ± 0.03 | 27.6 | 0.008 * | 0.39 ± 0.01 | 43.5 | 0.01 * | 0.47 ± 0.03 | 38.2 | 0.004 * | 0.39 ± 0.01 | 48.7 | 0.003 * |
F | 0.34 ± 0.01 | 0.22 ± 0.02 | 0.29 ± 0.01 | 0.20 ± 0.01 | |||||||||
Phosphorus (mg/kg) | I | 59.05 ± 2.31 | 66.7 | 0.002 * | 97.21 ± 2.25 | 58.1 | 0.00 ** | 59.05 ± 2.31 | 57.6 | 0.011 * | 97.21 ± 2.25 | 49 | 0.010 * |
F | 19.61 ± 1.06 | 40.73 ± 2.13 | 25.01 ± 1.97 | 49.55 ± 5.22 | |||||||||
Potassium (mg/kg) | I | 498.6 ± 4.04 | 51.6 | 0.00 ** | 788.7 ± 6.32 | 37.7 | 0.00 ** | 498.6 ± 4.04 | 49.2 | 0.00 ** | 788.7 ± 6.32 | 36.3 | 0.00 ** |
F | 241.12 ± 5.48 | 491.10 ± 7.60 | 253.08 ± 5.30 | 502.4 ± 3.01 | |||||||||
Saturation.% | I | 31.9 ± 1.79 | 45 | 0.002 * | 26.76 ± 1.76 | 43.3 | 0.002 * | 31.9 ± 1.79 | 29.81 | 0.00 ** | 26.76 ± 1.76 | 36.7 | 0.029 * |
F | 17.35 ± 4.83 | 15.16 ± 1.66 | 22.39 ± 1.88 | 16.93 ± 1.44 | |||||||||
Cu (mg/kg) | I | 76.3 ± 4.27 | 42.5 | 0.00 ** | 161.9 ± 2.51 | 39.6 | 0.00 ** | 76.3 ± 4.27 | 59.0 | 0.001 * | 161.9 ± 2.51 | 49.7 | 0.00 ** |
F | 43.82 ± 3.19 | 97.77 ± 4.01 | 31.27 ± 2.50 | 81.42 ± 1.49 | |||||||||
Mn (mg/kg) | I | 1201.4 ± 2.48 | 59.9 | 0.00 ** | 2491.7 ± 8.91 | 53.0 | 0.00 ** | 1201.4 ± 2.48 | 41.9 | 0.00 ** | 2491.7 ± 8.91 | 39.3 | 0.00 ** |
F | 481.11 ± 8.32 | 1170.78 ± 4.29 | 697.38 ± 2.76 | 1511.29 ± 9.46 |
Heavy Metals | CT1 | T1 | CT2 | T2 | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
Cu (mg/kg) | Root | 19.06 ± 1.23 | 41.68 ± 1.87 | 25.33 ± 2.71 | 39.43 ± 4.15 |
Shoot | 10.97 ± 0.78 | 18.10 ± 0.88 | 16.07 ± 1.65 | 23.97 ± 2.32 | |
Average | 15.03 | 29.89 | 28.04 | 31.7 | |
Mn (mg/kg) | Root | 501.12 ± 4.09 | 837.18 ± 3.45 | 381.03 ± 2.11 | 671.19 ± 5.29 |
Shoot | 209.48 ± 2.18 | 441.09 ± 3.17 | 112.37 ± 1.89 | 299.76 ± 2.62 | |
Average | 355.3 | 639.14 | 246.7 | 485.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Dilawar, S.; Hassan, S.; Ullah, A.; Yasmin, H.; Ayaz, T.; Akhtar, F.; Gaafar, A.-R.Z.; Sekar, S.; Butt, S. Phytoremediation of Cu and Mn from Industrially Polluted Soil: An Eco-Friendly and Sustainable Approach. Water 2023, 15, 3439. https://doi.org/10.3390/w15193439
Khan S, Dilawar S, Hassan S, Ullah A, Yasmin H, Ayaz T, Akhtar F, Gaafar A-RZ, Sekar S, Butt S. Phytoremediation of Cu and Mn from Industrially Polluted Soil: An Eco-Friendly and Sustainable Approach. Water. 2023; 15(19):3439. https://doi.org/10.3390/w15193439
Chicago/Turabian StyleKhan, Sara, Shabnam Dilawar, Said Hassan, Amin Ullah, Humaira Yasmin, Tehreem Ayaz, Fazlullah Akhtar, Abdel-Rhman Z. Gaafar, Selvam Sekar, and Sadia Butt. 2023. "Phytoremediation of Cu and Mn from Industrially Polluted Soil: An Eco-Friendly and Sustainable Approach" Water 15, no. 19: 3439. https://doi.org/10.3390/w15193439
APA StyleKhan, S., Dilawar, S., Hassan, S., Ullah, A., Yasmin, H., Ayaz, T., Akhtar, F., Gaafar, A.-R. Z., Sekar, S., & Butt, S. (2023). Phytoremediation of Cu and Mn from Industrially Polluted Soil: An Eco-Friendly and Sustainable Approach. Water, 15(19), 3439. https://doi.org/10.3390/w15193439