Removal of Pharmaceuticals from Water Using Laccase Immobilized on Orange Peels Waste-Derived Activated Carbon
Abstract
:1. Introduction
2. Methodology
2.1. Chemicals
2.2. Activated Carbon
2.3. SEM-EDS, SBET and XRD
2.4. FTIR and Boehm Titration
2.5. Physical and Chemical Analysis
2.6. pHPZC
2.7. Enzyme Assay and Immobilization
2.8. pH, Temperature, Laccase Concentration, and Storage Stability
2.9. Removal Test and Recyclability
2.10. Reusability (ABTS)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties
3.2. pHpzc
3.3. SEM-EDS and XRD
3.4. FTIR and Boehm Titration
3.5. Reusability (ABTS)
3.6. The Optimization of LMOPs Parameters
3.7. pH, Thermal Stability, and Storage Ability
3.8. System Application
3.9. Biosorbent End-of-Life
4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.H.; Aziz, H.A.; Khan, N.A.; Hasan, M.A.; Ahmed, S.; Farooqi, I.H.; Dhingra, A.; Vambol, V.; Changani, F.; Yousefi, M.; et al. Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A Critical review. Int. J. Environ. Sci. Technol. 2021, 19, 677–688. [Google Scholar] [CrossRef]
- Hawash, H.B.; Moneer, A.A.; Galhoum, A.A.; Elgarahy, A.M.; Mohamed, W.A.; Samy, M.; El-Seedi, H.R.; Gaballah, M.S.; Mubarak, M.F.; Attia, N.F. Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations. J. Water Process. Eng. 2023, 52, 103490. [Google Scholar] [CrossRef]
- Radovic, S.; Pap, S.; Niemi, L.; Prodanović, J.; Sekulic, M.T. A review on sustainable technologies for pharmaceutical elimination in wastewaters—A ubiquitous problem of modern society. J. Mol. Liq. 2023, 383, 122121. [Google Scholar] [CrossRef]
- Khan, M.D.; Singh, A.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process. Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Al-Sareji, O.J.; Meiczinger, M.; Salman, J.M.; Al-Juboori, R.A.; Hashim, K.S.; Somogyi, V.; Jakab, M. Ketoprofen and aspirin removal by laccase immobilized on date stones. Chemosphere 2023, 311, 137133. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Nabeel, F.; Iqbal, H.M.; Zhao, Y. Hazardous contaminants in the environment and their lac-case-assisted degradation—A review. J. Environ. Manag. 2019, 234, 253–264. [Google Scholar] [CrossRef]
- Dong, C.-D.; Tiwari, A.; Anisha, G.S.; Chen, C.-W.; Singh, A.; Haldar, D.; Patel, A.K.; Singhania, R.R. Laccase: A potential biocatalyst for pollutant degradation. Environ. Pollut. 2023, 319, 120999. [Google Scholar] [CrossRef]
- Bijoy, G.; Rajeev, R.; Benny, L.; Jose, S.; Varghese, A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. Chemosphere 2022, 307, 135759. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Pahmeyer, M.J.; Assadpour, E.; Jafari, S.M. Extraction and purification of d-limonene from orange peel wastes: Recent advances. Ind. Crop. Prod. 2022, 177, 114484. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorization of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Brink, H.G. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023, 9, e13156. [Google Scholar] [CrossRef] [PubMed]
- Imam, A.; Suman, S.K.; Singh, R.; Vempatapu, B.P.; Ray, A.; Kanaujia, P.K. Application of laccase immobilized rice straw biochar for anthracene degradation. Environ. Pollut. 2021, 268, 115827. [Google Scholar] [CrossRef]
- Ghosh, P.; Ghosh, U. Immobilization of purified fungal laccase on cost effective green coconut fiber and study of its physical and kinetic characteristics in both free and immobilized form. Curr. Biotechnol. 2019, 8, 3–14. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, D.; Zhao, Y.; Huang, C.; Zhang, S.; Zhang, X.; Kang, C.; Deng, Z.; Guo, H. Remediation and improvement of 2,4-dichlorophenol contaminated soil by biochar-immobilized laccase. Environ. Technol. 2021, 42, 1679–1692. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Pourcel, F.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac. Chem. Eng. J. 2018, 351, 985–994. [Google Scholar] [CrossRef]
- Li, N.; Xia, Q.; Niu, M.; Ping, Q.; Xiao, H. Immobilizing laccase on different species wood biochar to remove the chlorinated biphenyl in wastewater. Sci. Rep. 2018, 8, 13947. [Google Scholar] [CrossRef]
- da Silva, C.K.H.; Polidoro, A.S.; Ruschel, P.M.C.; Thue, P.S.; Jacques, R.A.; Lima, C.; Bussamara, R.; Fernandes, A.N. Laccase covalently immobilized on avocado seed biochar: A high-performance biocatalyst for acetaminophen sorption and biotransformation. J. Environ. Chem. Eng. 2022, 10, 107731. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Lin, W.H.; Chang, Y.C. The influence of treatment duration on multi-walled carbon nanotubes func-tionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 2011, 257, 2401–2410. [Google Scholar] [CrossRef]
- Boehm, H. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Kosmulski, M. Surface Charging and Points of Zero Charge; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Pandey, D.; Daverey, A.; Dutta, K.; Arunachalam, K. Bioremoval of toxic malachite green from water through sim-ultaneous decolorization and degradation using laccase immobilized biochar. Chemosphere 2022, 297, 134126. [Google Scholar] [CrossRef]
- Al-Sareji, O.J.; Meiczinger, M.; Somogyi, V.; Al-Juboori, R.A.; Grmasha, R.A.; Stenger-Kovács, C.; Jakab, M.; Hashim, K.S. Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J. Environ. Chem. Eng. 2023, 11, 109803. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Hanif, M.A.; Ibrahim, N.; Dahalan, F.A.; Md Ali, U.F.; Hasan, M.; Azhari, A.W.; Jalil, A.A. Microplastics in facial cleanser: Extraction, identification, potential toxicity, and continuous-flow removal using agricultural waste–based biochar. Environ. Sci. Pollut. Res. 2023, 30, 60106–60120. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.; Sinha, K. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. J. Environ. Manag. 2021, 278, 111501. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Abbas, Q.; Ali, M.U.; Cheema, A.I.; Yousaf, B.; Rinklebe, J. Synergistic effects of low-/medium-vacuum carbonization on physico-chemical properties and stability characteristics of biochars. Chem. Eng. J. 2019, 373, 44–57. [Google Scholar] [CrossRef]
- Nascimento, G.E.D.; Duarte, M.M.M.B.; Campos, N.F.; Rocha, O.R.S.D.; Silva, V.L.D. Adsorption of azo dyes using peanut hull and orange peel: A comparative study. Environ. Technol. 2014, 35, 1436–1453. [Google Scholar] [CrossRef] [PubMed]
- Scheverin, V.; Horst, M.; Lassalle, V. Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption. Results Eng. 2022, 16, 100648. [Google Scholar] [CrossRef]
- Xia, W.; Jin, C.; Kundu, S.; Muhler, M. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 2009, 47, 919–922. [Google Scholar] [CrossRef]
- Rosca, I.D.; Watari, F.; Uo, M.; Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005, 43, 3124–3131. [Google Scholar] [CrossRef]
- Akinhanmi, T.F.; Ofudje, E.A.; Adeogun, A.I.; Aina, P.; Joseph, I.M. Orange peel as low-cost adsorbent in the elimination of Cd (II) ion: Kinetics, isotherm, thermodynamic and optimization evaluations. Bioresour. Bioprocess. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Belala, Z.; Jeguirim, M.; Belhachemi, M.; Addoun, F.; Trouvé, G. Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies. Desalination 2011, 271, 80–87. [Google Scholar] [CrossRef]
- Danish, M.; Hashim, R.; Ibrahim, M.M.; Sulaiman, O. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass-Bioenergy 2014, 61, 167–178. [Google Scholar] [CrossRef]
- Al-Sareji, O.J.; Meiczinger, M.; Al-Juboori, R.A.; Grmasha, R.A.; Andredaki, M.; Somogyi, V.; Idowu, I.A.; Stenger-Kovács, C.; Jakab, M.; Lengyel, E.; et al. Efficient removal of pharmaceutical contaminants from water and wastewater using immobilized laccase on activated carbon derived from pomegranate peels. Sci. Rep. 2023, 13, 11933. [Google Scholar] [CrossRef]
- Pavan, F.A.; Lima, E.C.; Dias, S.L.; Mazzocato, A.C. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J. Hazard. Mater. 2008, 150, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Piao, M.; He, L.; Yao, L.; Piao, T.; Liu, Z.; Piao, Y. Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water. RSC Adv. 2020, 10, 4795–4804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Shi, L.; Zhang, Y.; Wei, D.; Yan, T.; Wei, Q.; Du, B. Aerobic granular sludge-derived activated carbon: Mineral acid modification and superior dye adsorption capacity. RSC Adv. 2015, 5, 25279–25286. [Google Scholar] [CrossRef]
- Marshall, M.W.; Popa-Nita, S.; Shapter, J.G. Measurement of functionalized carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 2006, 44, 1137–1141. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, W.; Zhou, Q.; Li, J.; Zeb, A.; Wang, Q.; Lian, Y.; Shi, R.; Wang, J. Effects of co-modified biochar immo-bilized laccase on remediation and bacterial community of PAHs-contaminated soil. J. Hazard. Mater. 2023, 443, 130372. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, D.; Yu, H.; Zhang, S.; Zhang, X.; Chen, W. Preparation optimization and stability comparison study of alkali-modified biochar immobilized laccase under multi-immobilization methods. Biochem. Eng. J. 2022, 181, 108401. [Google Scholar] [CrossRef]
- Taheran, M.; Naghdi, M.; Brar, S.; Knystautas, E.; Verma, M.; Surampalli, R. Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane. Sci. Total. Environ. 2017, 605, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cui, J.; Li, G.; Zhang, J.; Huang, F.; Wei, Q. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry. Polymers 2014, 6, 2357–2370. [Google Scholar] [CrossRef]
- Wu, E.; Li, Y.; Huang, Q.; Yang, Z.; Wei, A.; Hu, Q. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere 2019, 233, 327–335. [Google Scholar] [CrossRef]
- Leonowicz, A.; Sarkar, J.M.; Bollag, J.M. Improvement in stability of an immobilized fungal laccase. Appl. Microbiol. Biotechnol. 1988, 29, 129–135. [Google Scholar] [CrossRef]
- Feng, Q.; Wei, Q.; Hou, D.; Bi, S.; Wei, A.; Xu, X. Preparation of amidoxime polyacrylonitrile nanofibrous membranes and their applications in enzymatic membrane reactor. J. Eng. Fibers Fabr. 2014, 9, 155892501400900218. [Google Scholar] [CrossRef]
- Jiang, D.-S.; Long, S.-Y.; Huang, J.; Xiao, H.-Y.; Zhou, J.-Y. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 2005, 25, 15–23. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Arunachalam, K. Biochar: Production, properties and emerging role as a support for enzyme immobilization. J. Clean. Prod. 2020, 255, 120267. [Google Scholar] [CrossRef]
- D’Acunzo, F.; Galli, C. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. JBIC J. Biol. Inorg. Chem. 2003, 270, 3634–3640. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total. Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Fernández-González, R.; Martín-Lara, M.; Moreno, J.; Blázquez, G.; Calero, M. Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: Scale-up and preparation of zinc-Based biochar. J. Clean. Prod. 2019, 227, 634–644. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Rosine, G.M.L.; Kaur, S.; Hegde, K.; Brar, S.K.; Drogui, P.; Verma, M. Novel biomaterials from citric acid fermentation as biosorbents for removal of metals from waste chromated copper arsenate wood leachates. Int. Biodeterior. Biodegrad. 2017, 119, 147–154. [Google Scholar] [CrossRef]
- Tay, C.-C.; Muda, A.-M.; Abdul-Talib, S.; Ab-Jalil, M.-F.; Othman, N. The half saturation removal approach and mechanism of Lead (II) removal using eco-friendly industrial fish bone meal waste biosorbent. Clean Technol. Environ. Policy 2016, 18, 541–551. [Google Scholar] [CrossRef]
- Ramrakhiani, L.; Halder, A.; Majumder, A.; Mandal, A.K.; Majumdar, S.; Ghosh, S. Industrial waste derived biosorbent for toxic metal remediation: Mechanism studies and spent biosorbent management. Chem. Eng. J. 2017, 308, 1048–1064. [Google Scholar] [CrossRef]
Parameters (%) | OPs (Raw) (Wt%) a ± SD b | OPs (Biochar) (Wt%) ± SD |
---|---|---|
Moisture | 8.93 ± 0.15 | 1.72 ± 0.03 |
Volatile matter | 67.43 ± 3.18 | 9.63 ± 0.08 |
Ash | 5.27 ± 0.11 | 8.91 ± 0.12 |
Fixed carbon | 29.61 ± 0.48 | 79.74 ± 2.15 |
C c | 46.35 ± 0.71 | 78.45 ± 1.87 |
O d | 43.72 ± 0.46 | 4.68 ± 0.16 |
H e | 7.41 ± 0.61 | 1.76 ± 0.06 |
N f | 1.93 ± 0.08 | 2.38 ± 0.04 |
S g | 0.58 ± 0.04 | 0.95 ± 0.02 |
H/C | 0.16 | 0.02 |
O/C | 0.94 | 0.06 |
N/C | 0.04 | 0.03 |
S/C | 0.01 | 0.01 |
Functional Groups | OPs | MOPs |
---|---|---|
Carbonyl groups | 0.52 | 1.47 |
Carboxylic groups | 0.38 | 0.71 |
Phenolic groups | 0.96 | 1.38 |
Total acidity | 1.86 | 3.56 |
Total basicity | 0.47 | 0.36 |
SBET m2/g | Vtot | Vmic cm3/g | Vmes | |
---|---|---|---|---|
OPs | 22.8 | 0.047 | 0.014 | 0.033 |
MOPs | 367.5 | 0.103 | 0.036 | 0.067 |
LMOPs | 93.4 | 0.041 | 0.018 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-sareji, O.J.; Abdulzahra, M.A.; Hussein, T.S.; Shlakaa, A.S.; Karhib, M.M.; Meiczinger, M.; Grmasha, R.A.; Al-Juboori, R.A.; Somogyi, V.; Domokos, E.; et al. Removal of Pharmaceuticals from Water Using Laccase Immobilized on Orange Peels Waste-Derived Activated Carbon. Water 2023, 15, 3437. https://doi.org/10.3390/w15193437
Al-sareji OJ, Abdulzahra MA, Hussein TS, Shlakaa AS, Karhib MM, Meiczinger M, Grmasha RA, Al-Juboori RA, Somogyi V, Domokos E, et al. Removal of Pharmaceuticals from Water Using Laccase Immobilized on Orange Peels Waste-Derived Activated Carbon. Water. 2023; 15(19):3437. https://doi.org/10.3390/w15193437
Chicago/Turabian StyleAl-sareji, Osamah J., Mohammed Alaa Abdulzahra, Thaer Shafi Hussein, Ahmed S. Shlakaa, Mustafa M. Karhib, Mónika Meiczinger, Ruqayah Ali Grmasha, Raed A. Al-Juboori, Viola Somogyi, Endre Domokos, and et al. 2023. "Removal of Pharmaceuticals from Water Using Laccase Immobilized on Orange Peels Waste-Derived Activated Carbon" Water 15, no. 19: 3437. https://doi.org/10.3390/w15193437
APA StyleAl-sareji, O. J., Abdulzahra, M. A., Hussein, T. S., Shlakaa, A. S., Karhib, M. M., Meiczinger, M., Grmasha, R. A., Al-Juboori, R. A., Somogyi, V., Domokos, E., Idowu, I., Andredaki, M., & Hashim, K. S. (2023). Removal of Pharmaceuticals from Water Using Laccase Immobilized on Orange Peels Waste-Derived Activated Carbon. Water, 15(19), 3437. https://doi.org/10.3390/w15193437